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Preface

Machine learning is a study of computational methods for acquiring knowledge and
improving problem solving ability. Because of the breadth of this charter, machine learning
includes a wide range of topics. This volume collects research results from twelve areas of
machine learning which were represented at the Seventh International Conference on
Machine Learning, held June 21-23, 1990 at the University of Texas in Austin.

The 165 technical papers submitted to the conference provide evidence that machine
learning continues to mature and evolve. New areas of active research, such as robot learn-
ing, have emerged, presenting challenging new problems and applications. Furthermore,
many papers described research that cuts across traditional boundaries in machine learning
and synthesizes disparate results. '\

Tom Mitchell, Doug Lenat, Lehny Pitt, and Don Michie were invited to discuss their
ongoing projects at the conference. " heir sometimes unconventional views provided contro-
versy and perspective.

The success of the conference is lue to the concern and dedication of all those involved.
In particular, the twenty-four membrs of the program committee earned the praise of the
authors because of their comprehensive and insightful reviews. The conference staff-John
Haradon, Yvonne Van Olphen, and Bess Sullivan-provided invaluable organizational skills.
Finally, Shirley Jowell of Morgan y(aufmann Publishers produced this excellent proceedings.

The conference was funded Jn part by generous contributions from the Office of Naval
Research, the Defense Advanced Research Projects Agency, and the National Science Foun-
dation. Their long-term sup drt for machine learning research has been critical to the suc-
cess of this important field.

Bruce Porter
Ray Mooney
University of Texas, Austin
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2 Arunkumar and Yegneshwar

Knowledge Acquisition from Examples
using Maximal Representation Learning

S Arunkumar and S Yegneshwar*
Department of Computer Science and Engg.

Indian Institute of Technology
Bombay - 400 076, India.

uunetlshalktilbetaal!cse!sak
uunctlshaktilbetaal!cse!yagi

Abstract from examples of other classes, rather than to find a
complete description of the given class based on the

In this paper we describe a new Knowledge set of attributes specified. For instance, the two con-
Acquisition technique based on the learn- cepts chair and stool can be discriminated using the
ing from examples paradigm. This technique attribute backrest, though this attribute is not suffi-
uses the principle of mazimal representation cient to describe either of them. Our emphasis here, is
of attributes which clusters the examples into on learning the characteristic description of the class.
sub-descriptions using the frequencies, and There is evidence that humans too prefer characteris-
orders the attributes based on how well it rep- tic description as highlighted in pMed 87].

rsents the class. The sub-descriptions a d A domain independent system which learns a char-
in simple definitions of importance and re- acteristic description of the class and that determines
dundancy of attributes for a class which arc the redundancy of attributes was proposed by the first
then used to discard unimportant attributes author and first reported in [Doct 85]. The system
and thereby simplify class description. The ato n is eotdi Dc 5.Tesse
resultant description is the simplest charac- described here is a modified version of the above work
rstan description which escibes th cass- which in addition to having a modified learning algo-

tristic lescription wih ch describes the class rithm and definition of redundancy, also learns impor-
completely with respect to the learning sx- tance of attributes for a class [Yeg 87] [Arun 89]. In
amples and the attributes specified. This this paper, we restrict to examples specified by binary
helps not only in describing the class well valued attributes.
but also in potentially discriminating the cur- In the following section we explain the proposed
rent class from all other classes envisaged, learning of the class description from examples for bi-

An inference algorithm based on the frequen- nary valued attributes and prove its convergence. In

cies of the sub-descriptions and importance of section 3 we xplain how redundancy of attributes for

attributes is used to classify new examples. a class is determined. The importance of an .tributer

This system has been tested on two real-life is defined in section 4. In section 5 we explain the
applications, the results of which are highly process of inference based on category validity [Med

encouraging. 87]. We highlight the two applications in section 6,
and conclude the paper in section 7.

I Introduction

Knowledge acquisition is the process of acquiring 2 Learning Class Description from

knowledge to create expertise for solution of problems Examples
in a particular field of application. This is one of the The system learns descriptions of the classes for which
main bottlenecks in the development of Expert Sys- examples have been given. Each learning example is
tems [Duda 83], and there have been many attempts to represented as a vector or as (attribute,value) pairs.
automate the process using learning techniques [Quin For instance an example of a stool may be represented
86] [Mich 80] (Lee 86] [Paw 84] [Fu 85]. However, the86ph[Mih 80] [Lee 86] [Pawe 84]m [u 8. Heerng the as (number of legs, 4) (height, short) (shape of top, cir-
emp~hasis of most of these systems is on learning dis- cular). The class description is represented as a binary
criminaive description of he class (represented as de- tree called Generation Tree (GT).
cision trees [Quin 80][Lee 86][Craw 89] or as clusters
[Mich 83]) which helps in performance, but does not 2.1 The Generation Tree
generate an intelligible knowledge base. This is be- The Generation Tree is learnt using the principle of
cause the aim of discrimination is to give a description maximal repremsentation which states that at each node
which deterministically separates examples of one class of the tree select that attribute whose most represen-

*This work is part of the Intelligent Systems Project at tative value has the highest cardinality. This learning
lIT, Bombay, India criterion ensures that relatively more important at-
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tributes are selected earlier in the tree and the less true distribution. This implies that for a given c > 0,
important ones lower down. The Generation Tree is 3n(.) such that IF n(z) - F(x) 1< c, with probability
contructed top-down from the root to tile leaves. 1, Vn > n(e).

If we assume that the joint frequencies are such that
2.2 Algorithm for construction of GT in the "limiting description" there are no ties in the
The GT is built using the criterion of maximal repre- selection of attributes at all the nodes of the Genera-
sentation at each node. tion Tree, we can choose e such that for all n > n(e),

1. Consider the given set of examples at the root chosen suitably, the structure of the Generation Tree
node. Select the most representative attribute stabilises. Once the structure stabilises the frequencies
among the examples at the current node. This also stabilise. Furthermore, by the Central Limit The-
is done as follows: orem, this convergence is at the rate of VS.

(a) If both the binary values occur for the given 2.3 Class Description from Generation Tree
attribute among the set of examples at the
current node, then find the cardinality of The class description is represented as a binary tree
both the sets, where all the examples in the where nodes are labelled by attributes and arcs by the
first. set have one value (say 0) for this at- corresponding attribute's value an1 joint frequency.
tribute and all the examples in the other set The attribute at a node is selected using the maxi-
have the complementary value (value 1) for mal representation learning criterion explained in sec-
this attribute. Else, find the cardinality of tion 2.2. The Generation Tree is a disjunction of
the given set. sub-descriptions. Each sub-description corresponds

(b) Find the maximum of the cardinality of the to a path in the GT, and is a conjunction of (at-
tribute,value) pairs of that path. The sequence of
T he (attribute,vaiue) pairs in the sub-description spec-
ifies that each such pair is conditioned on the previousand select that attribute as most representa- pairs. It is this sequence which helps determine the im-

tive which has the maximum cardinality as pis ti hssqec hc ep eemn h m
portance of attributes. In Example 2.1 there are three

determined in step (b). sub-descriptions, viz. {(a3 1) & (a, = 1) & (a2 =
2. For both the values (0 and 1) branch off from the 1) 0.3), {(a3 = 1) & (al = 1) & (a 2 = 0) 0.5), {(a3 =

current node. At the left child node consider all 1) & (al = 0) & (a2 = 1) 0.2).
those examples having value 0 for further branch- The binary tree structure for class description is
ing, and at the right child consider all those ex- found to be powerful enough for practical applications.
aiples having value 1 for further branching. It also helps in evaluation of importance of attributes

3. Termination Condition : If all the attributes for a class, and aids in determining redundancy of at-
have been selected at some node along all the tributes in a simple manner.
paths of the tree or if the frequency along all the
leaves is less than a specified threshold called ex- 3 Redundancy of an attribute at a
pansion threshold, then stop. Else, go to step 2 node of a GT
and proceed in a depth first fashion.

Example 2.1 Given the following set of examples The aim of finding if an attribute is redundant at a
specified by three attributes and represented in vector node is to simplify the class description by pruning
form, and the expansion threshold equal to o. the Generation Tree. It may also lead to finding re-

dundant attributes for a class. A simple class descrip-
S = {(101)(011)(101)(111)(101)(011)(111) tion helps in easier explanation, and the collection of

(101)(111)(101)} less information from the user. The latter could mean
saving in terms of time and money for the user if the

We will show how the GT is built for this Example set. attribute is a complex test in a diagnostic context.
We have, In the GT framework, it is very easy to determine

{(Ia = 1 = 8) (1 a, = 0 -- 2) (Ia 2 = 1 5) redundancy of an attribute at a node. The GT is con-
structed top-down, whereas redundancy is determined

(I a2 .=5, ( a = 1I= 10) (Iat = 0 I= 0)} htum-up. The reason for this is as follows : Only
where I . I stands for cardinality. at the bottom-most node of a path, redundancy can
Since a3 satisfies the maximal representation learn- be determined at any time because, at any other node

ing criterion, at the root node we select a3. Then at the correlation of subsequent attributes is not known.
the next node we select al and proceeding similarly, we Since the attribute at the bottom-niost node is condi-
get the GT described in figure 1. tioned on all the earlier attributes no more informationis required1 aiid the redhundaicy check can be applied
Theorem 2.1 The Generation Tree constructed by at this node.

the algorithm described above converges in the limit.

Proof By Glivenko-Cantelli Theorem, Fn(x) -- Definition 3.1 An attribute is said to be redundant
F(x) -* 0, with probability 1 uniformly in T, where at a node if the node is the lowest in the path and both
F, is the empirical distribution function nd F the the domain values occur with equal frequency.
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Note: The equality is in the ideal case. In practice, drp is the distance of the pth occurrence of attribute
however, if the percentage difference in frequency is a,. from the root, and
less than a specified threshold then, that node can be tip is the joint frequency at this node.
deleted.
Definition 3.2 An attribute is redundant for a class Note: In both decision tree and clustering systems
if it is redundant at aill the nodes where it is chosen, the importance of an attribute for a class is not ex-
i.e., it does not occur at any node of the GT after the plicitly evaluated. However, in decision tree systems
redundancy check is applied, it is implicit that an attribute occuring higher in the

tree is more important for the application (i.e., for all
Definition 3.3 A class is said to be a null class if the classes) than those occuring lower down, because
each element of the cartesian product of the domain the entropy measure is used to select the atribute at
of attributes occurs with equal frequency. In the GT each node.
framework such a class should be represented by a sin-
gle node. 5 The Inference Process
Note: The definition of redundancy helps reduce the
GT in such a case to a single node. This is illustrated The inference process used in our system is a modified
by the following example. version of Category Validity [Med 87] which is defined

Example 3.1 In this ezample we show that the qiven as the probability of the attribute value set given the
set of samples S={( 1) (1 0) (0 1) (0 0)) represents class. The attribute value set corresponds to a path
the null class. This also illustrates redundancy at a in the GT. The modification was necessary to help
node and attribute redundancy for a class. The re- classify test examples having missing attribute values.
duction of the initial GT to a single node is described The process is described below:
pictorially in figure 2. 1. Set the first class C1 to Ci.
Note: The redundancy of an attribute for decision 2. Start with the root node of the GT corresponding
tree and clustering systems is based on the discrimi- to the class Ci.
native power of the attribute whereas in KAHLE, an
attribute is redundant because it does not add to the 3. At each node of the GT traverse that arc whose
description of the class. attribute value is the same as that of the input

example e. If the value is different from all the
4 Importance of an attribute arcs existing at that node then, output validity

as zero and stop. If the value is missing then,
The Iportance of an attribute is the relevance of traverse all the arcs at that node. Repeat this
the attribute for a particular class. It is denoted as for all the nodes. Then, evaluate f(e I Ci) the
I(a,. I C,), read as Importance of an attribute a, given Validity of class C1 as shown below:
class Qr. The importance of attributes for a class not
only aids in inference under uncertainty but also helps
prune the GT by enabling dropping of attributes. f(e I C) = {f(ep1 I C,) * I I(at I C) +

Since the Importance of an attribute is judged by 1=1

the representativeness of the attribute in the class, we n2

consider the Importance of an attribute given the class f(ep 2 I Ci) * I(ai C Ci) + .... +
as directly proportional to the frequency at the node 1=1

at which it occurs, and inversely proportional to the nk
distance of the node from the root. f(ek Ci) * I(al Ci)}

The importance lies between 0 and 1, and satisfies 1
the following property: k nvj

n E= ~ p I C,) • (al I C,)}EI(ar I C.) = 1 (1) =1 1

r=11=

As a first approximation we have chosen the fol- where
lowing form for I(Ur which saUlis tille above f(C 1 i) s thle Val;idiy of class C. g;.eP ......
constraints. e,

I, pj is the jth path which the evidence matches ci-
I(ar I C.) = Z(2/(n * (n + 1)) * (n - d,.p) * frp (2) ther completely or incompletely (incompletely if

,= t the example has missing attribute values),

where ej is the set of (attribute,value) pairs along path
n is the distance from leaf to the root node (i.e. equal P31
to-the number of attributes considered), f(epj I Ci) the validity of class Ci given epj, is the
2/(n*(n+1) is the normalising factor, leaf frequency along path pj, and
tr is the number of occurrences of attribute a,. in the nj is the lumber of attributes along path pj for
GT, which value is available in e.
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4. If Ci is the last class then go to next step else chosen a particular problem of stomach diseases con-
repeat steps 2 and 3 for the next class, viz., for cerning classification of hiatal hernia and gallstones
Ci := Ci+i. as the first experiment. The second experiment of

5. Select that Ci for which f(e I C1) is the maximum. characterisation of the two political parties of USA,

If the maximum value is equal to zero then output viz. Democrat and Republican helps substantiate our

"Not Classified" and exit; else output ci. model.
Application 11: This is a two class example involving

Example 5.1 Suppose we have three classes for which either hiatal hernia or gallstones. Examples are speci-
the GTs are as shown in fig. S. fled by 11 binary valued attributes. The total number

Suppose two ezamples to be classified are S1 = of examples are 107 of which in the first experiment
{(al = 1) (a2 = 0) (a3 =?)} and S2 = {(al = 1) (a2 = 54 was used for learning and 53 for testing. In the see-
1) (a3 = 1)1, where ? stands for missing value then, ond experiment these example sets were interchanged.

The expansion threshold in both the experiments is
f I 1) = f((ai = 1)(a2 =0)(a3 = 1) C1) 0.20. The performance details of the two experiments

= 0.6 are given in tables 1 and 2 respectively.

f I(eP 1) = f((a, = 1)(a2 = 0)(a3 = 0) 1 C1 ) The classification accuracy defined as (freq. of

= 0.3 rightly classified / freq. of totally classified) is ap-

= 2/(3 * (+ * - * 1 = 0.5 prox. 80% for the first experiment and 70% for the
(a C) 2 (3 1)) •(3- 0) *1second. These are quite good considering that the

I(a2 I C1 ) = 2/(3 * (3 + 1)) * ((3 - 1) * 0.9 + classes are fuzzy and are overlapping. The number of

((3 - 1) * 0.1) = 0.33 sub-descriptions learnt are much lower than the num-
ber of distinct examples as seen from tables 1 and

Similarly the other importances can be calculated. 2. In both the experiments, attributes a4, a7 and
The values are as follows: a8 have an importance value-less than 0.134 (which is

I(al Cl) = I(al I G2 ) = I(al C 3) = 0.5 very low) for both the classes. Hence these attributes
were deleted and the experiment was carried out for

I(a2 I C1) = I(a2 C C2 ) = 1(a2 0 C3) = 0.33 both the databases. The number of sub-descriptions

1(a3 I C1) = I(a3 C C2 ) = l(a3 C C3) = 0.17 for both the classes are lower than that of the earlier

f(Sl C1) = f(epi I C1) * (I(al I C1 ) experiment, and substantially lower than the number

+(a2 I Cl)) + f(e2 I Cl) *of distinct examples. The Generation Tree learnt is
+ )thus compact. The performance details given in ta-
(I(al I C1) + I(a2 I C1)) ble 3 is comparable to the performance of the earlier

= 0.6 * (0.5 + 0.33) + 0.3 * (0.5 + 0.33) experiment.

= 0.75 The performance after the deletion of the attributes
f(S1 C2) = f(epl I C2) * (0(alI C2) a4, a7, and as (since these attributes once again had

very low importance value) for the second database is
+ 1(a2 I C2 )) + f(ep2 I C2) * as shown in table 4. The nurber of sub-descriptions

(I(al I C2) + I(a2 I C2 )) is once again substantially lower than the number of

= 0.1 * (0.5 + 0.33) + 0.7 * (0.5 + 0.33) distinct examples. In this case the accuracy has im-
proved from 70% to 79% which substantiates the fact

= 0.67 that having more than the optimal number of attributes

f(S1 C3 ) = 0.0. [since S1 does not match any tends to degrade the performance [Chan 75].
path of C3]. Application 2 : The database is the 1984 Congres-

sional voting pattern records consisting of two classes,
Therefore, Si is classified as C1 . S2 cannot be clas. viz. Democrats and Republicans. There are sixteen
sified since it does not match (even incompletely) any binary valued attributes for which each member has
path of any of the three GTs. to vote. The total number of examples is 435 of which

232 has all the attribute values and 203 has at least
6 Practical Applications one missing attribute value. So, the first set is used

sbeen implemented as a set of programs for learning and the second set for testing. The value
The system hasn M plemenx as he np uts of expancion threhold is 0.25. The results of the study
in Pascal on an MC68000 Unix machine. The inpuits are as described in table 5.
are learning examples, expansion threshold, sample size The classification accuracy is equal to 94.5%. This
of each class, attribute names, and the testing exam- compares favourably with [Schl 87] where the accuracy
ples. For each class, the frequency of "rightly classi- reported is between 90% to 95%.
fied", the frequency of "not classified" the frequency Since the importance of attributes a2 and 950 were
of "wrongly classified" examples, and the number ofsub-escrptios ar outut.zero fcr both the classes, and the importance of at-sub-descriptions are output. tributes al, all and a13 were very low they were

Medicine has the best potential for application of
learning systemus as there is tremendous variation in 'This data has been taken from "Feature selection
the example cases of each disease. Here, a class is a for binary data - medical diagnosis with fuzzy sets" by
disease and an example is a patient record. We have J.C.M3zdek in proc. of AFIPS, 1976, pp.1059-1062.
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attributes is complete, and empirical validation is in an Artificial Intelligence approach, Tioga,
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Table 1: Frequency details for the first database

Class freq. of number freq. of freq. of freq. of
learning of rightly not wrongly
examples sub-des classd. classd. classd.

M -2 11 26 0 2

2 211 - 0 _

Table 2: Frequency details for the second database

Class freq. of number freq. of freq. of freq. of
learning of rightly not wrongly
examples sub-des classd. classd. classd.

1 2 9 22 T
2 25 9 15 1 9

Table 3: Frequency details after deletion of attributes for first database

Class freq. of number freq. of freq. of feq. of
learning of rightly not wrongly
examples sub-des classd. classd. classd.

1 29 5 2 1 2
2 25 7 IT 1 10

Table 4: Frequency details after deletion of attributes for second database

Class freq. of number freq. of freq. of freq. of
learning of rightly not wrongly
examples sub-des classd. classd. classd.

1 28 5 2T 1 2
2 25 7 14 1 10

Table 5: Frequency details for the second ezperiment

Class freq. of number freq. of freq. of freq. of
learning of rightly not wrongly

examples sub-des classd. classd. classd.
1 108 15 57 1 2
2 124 14 134 0 9

Table 6: Frequency details after attributes are deleted

Class freq. of number freq. of freq. of freq. of
learning of rightly not wrongly
examples sub-des classd. classd. classd.

1 108 11 57 1 2
2 124 12 134 0 9
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Abstract* (ATC) in order to build an Expert Knowledge Base inRadar Conflict Resolution. Previous work, directed by
the CENA ("Centre d'Etudes de la Navigation A6rienne",

Fundamentally, generalization can be seen as a Athis-Mons, France), has pointed out the difficulties in
technique for performing compression of modeling the tasks of air traffic controllers.
information ; the result of this process In this real world domains there were several problems
provides the basis to learn new knowledge, to solve such as : the presence of both symbolic and
However, in all domains, the use of an numeric descriptors ; the necessity to express the data in
elementary process requires the implementation first order logic because each entity can exist with a
of both fast and efficient algorithms. In this various number of occurrences ; the presence of complex
paper, we present a new generalization background knowledge containing some calculations
mechanism, inspired by the structural between the descriptors. Lastly, the great size of the
matching algorithm. The principle of our learning set (examples and domain theory) required that
method consists in using the domain theory any system rapidly perform generalization. In order to
in order to perform the saturation of the implement a system able to resolve simultaneously all
examples given by an expert. We will see that these constraints, we needed to greatly modify the
this "rough" approach provides some existing algorithms and we developed a new
advantages both for generalization quality and generalization method mainly based on the previous
for construction rapidity. saturation of examples.

This paper is organized in two parts. In the first one,
we detail our motivations and the advantages of our

1 Introduction approach. In the second one, we present and explain more
accurately the running of the system.

At the present time, a great number of generalization We must emphasize that KBG is a generalization tool
systems have been written and work. So, we can question but not a discrimination one : indeed, the aim of this
the neccessity of adding a new one to this list. In fact, system is to obtain efficiently a most specific
KBG corresponds to an extension of some existing and generalization from an example set (without counter-
running systems such as AGAPE [Bollinger 86] and examples), but not to build automatically a set of
OGUST [Vrain 90], both based on the Structural discrimination rules between the different concepts.
Matching algorithm. Thereby, KBG is currently "just" a tool allowing the

The system KBG is a generalizing tool belonging to expert (or another part of the learning system) to build up
the family of "Inductive Learning" and more accurately to more easily the rules modeling the application domain.
the one of "Constructive Learning" [Kodratoff, Michalski
90]. It can learn a recognition function of a concept from 2 Structural Matching
an example set which illustrates this concept. The system
has been developed in the frame of the PERSPICACE 2.1 Definitions
project [Cannat 88] whose aim was to apply techniques We will begin by briefly recalling the definitions of
of Machine Learning to the domain of Air Traffic Control generalization and of Structural Matching [Kodratoff 86]

as used in both AGAPE and OGUST. The main goal of
This work is partially supported by CEC through the structural matching method is to limit the

the ESPRIT-2 contract MLT 2154 and also by MRT information loss during the generalization process by
through PRC-IA. minimizing the use of the dropping rule [Michalski 83].
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Deft We say that an expression G is a generalization be solved by memorizing the deduced instances, there is a
formula, modulo a domain theory T, of the more embarrassing one about the choice of the theorems
examples set El , E2 , .... En , if there exists N in the background knowledge to apply. As a matter of
substitutions a i such that for each i : ai(G) is fact, for lack of meta-knowledge, the choice of suitable
included into Ei, modulo the domain theory T. rules is mainly driven by syntactical criteria. As we

can see in the following example, this solution is not

Def2 : We say that E1, E2, ... En structurally match totally satisfying :

if there exists a formula F and N substitutions Backgroundknowlee
ai such that for each i : ci(F)=Ei. The formula
F constitutes a correct generalization of the Ti : IF rect (X), blue (X,Y) THENflag (X)
examples. To put the examples into Structural 72 : IF rect (X), red (XY) THEN flag (X)
Matching aims at finding F. T3 : IF square (X), blue (XY) THEN signal (7)

T4: IF square (X), red (X,Y) THEN signal (X,In order to put the examples into Structural Matching T5: IF square (X) THEN shape (X)
[Ganascia 871, [Kodratoff 88], we first use the theorems T6: IF rect (X) THEN shape (X)
and taxonomies given in the background knowledge as
well as the commutativity, associativity and idempotency Examles:
properties of conjunction. The elementary process of the
Structural Matching algorithm is split into two el: rect (a), red (a, hot), square (b), blue (b, light);
successive steps which are repeated until there are no
more constants within the examples: e2 : square(c), red (c, dark), rect (d), blue (d, roy);

1) The system chooses a constant Oi in each By using simple syntactical criteria to choose the
rules, such as the relative complexity of the theorems

example and turns it into a generalization variable fired (number of premises and variables), we are going to
GV. The chosen constants must be as "similar" as match the constants (a, c) and (b, d) because it is simpler
p heuristicse curinghes anredrtivn by she to match the colors (red, blue) than the forms (rect,heuristics. During the introduction of GV, the square). So, we obtain the foliowing generalization :

corresponding instantiations are memorized into

some links associated with each example. G = shape (X), shape (Y), red (X, Z), blue (YT)

2) Then, the terms containing the generalization But, a more detailed examination of the examples and
variable GV are matched, taking care not to of the domain theory suggests that the crossed matching
modify the previously introduced variables. (a,d) and (c,b) is much better in terms of information

In the second stage, in order to satisfy the Structural content. !n this way, we obtain the generalization
Matching definition, we apply the dropping rule to the G? =rect (X), square (Y), red (Z, WI),
parts of the examples which have not been treated by the blue (T, W2), flag (X), signal (')
previous algorithm. Finally, the generalization formula is
easily obtained by computing the intersection between 2.2 Why The Saturation Approach ?
the links associated with each example and by keeping
the common terms of the examples. Here, our argument is that the syntactical criteria can

lead to some misinterpretations of the semantics of the
2.2 Algorithm Analysis domain. Therefore, for lack of meta-knowledge which

would allow to elaborate a coherent strategy for theIn the previous algorithm, informations given by the choice of rules, we think that ultimately the best
domain theory are used according to the needs. Thereby, approach will be to saturate initially the examples with
at a given time, the set of facts handled is relatively the domain theory provided by the expert. This solution
small. So, this method is theoretically usable with any may seem very questionable, so we are going to discusssize of examples and domain theory. However, in some further advantages:
practice we realize that we often use the knowledge base ther advantages 

and ~ ~ ~ .tha ir~efr som A f f~ai~ There are three kinds of advantages. Firstly, theand that therefore some pecesof infonation ar c , i deduction step is done only once, when the system
twice or more. Indeed, the inferences are first performed, saturates the examples ; thereby, the theorem prover used
when the system is searching for the most similar can be both simple and efficient because it just consists
constants, and secondly, when it puts effectively the in a forward chaining engine. Secondly, with this
terms in Structural Matching. All these computations approach, when the system is searching for the "most
slow down the generalization process. If this problem can similar constants" it already knows all the properties
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verified by the constants ; thus, the constants are chosen gathering the typically verified properties. This list will
with full knowledge of the facts and the generalization be call the "signatuce of the constant".
will be more relevant. Last but not least, as the
deductions are done once and for all, and no longer for 3.2 Signature Between Constants
each matching step, the learning will be faster in spite of The "signature of the constant", noted SIG, is the
the data increase. basis of the similarity computation. It expresses an

Of course, the main drawback of this approach is the exhaustive abstract of the properties verified by the
possibility of running into combinatorial explosion. consta t the roeresurate the
However, several limiting factors exist. On one hand, the constant in the fact bases. Since we saturate the examples
facts are handled at the example level : therefore, if there at the beginning of the learning session, the signature
are E examples and N facts (terms) on average, we must need only be computed once, the end of the saturation
execute E propagations of N facts instead of one step. In KBG, we can split the constants into to types
propagation of ExN facts. On the other hand, the example that we call "objects" and "values" (notice that the
descriptions are usually composed by less than a previous algorithms, did not handle the values). The
hundred facts; moreover, as part of similarity based objects are constants without semantics: in other words,
learning the domain theories are relatively small. Note their significance is only provided by the predicates in
that the use of recursive rules in the background which they occur. The values are typed constants and
knowledge is not a problem as long as they do not contain their own meaning. Here is an example:
generate an infinite list of instances ... Let the type "size" which handles the values

Practically, during the project PERSPICACE, we have (small, medium, large, giga)
used without problem a domain theory containing 250 theaexpreion:
complex rules (with recursions) and 20 examples of 50 Let the expression u&
terms each [Cannat 88]. E = square(a) & ousize(a, small) & weight(a, 50)

According to our previous definition, the constant "a"
3 The Algorithm is an object and the constants "small" and "50" are

3.1 Introduction values. We can easily see the different semantics
associated with these two kind of constants : the objects

The generalization process is performed by the system express links between the properties (predicates) of the
in two steps. Firstly, using the background knowledge same entity, whereas the values quantify those properties.
given by the user, the system completes the examples Consequently, the signatures of objects and values are
with the help of a forward chaining engine (saturation). different. In the case of an object, its signature will be
Secondly, the learning process begins, working on the composed by the list of the occurrences (predicates,
fact bases, one for each example, built with the help of positions) of this constant within the example:
the inference engine. The generalization formula will be
composed of only the predicates which have at least one E = square(a) & outsize(a, small) & weight(a, 50)
instance in each fact base, expression of the saturated SIG (a) = (square] outsize1 weight1)
examples. This set of predicates is named GP. The
generalization is performed predicate by predicate. For The values are completely local to the predicates in
each predicate, we gather the "most similar" instances which they occur, thereby the signature of a value is
together, in order to turn them into variables. Roughly, itself. For instance: SIG(50)=50.
the algorithm is the following Redundant instances:

* For each predicate P belonging to the GP set However, the completion process can sometimes have
* Until there remains one ungeneralized instance some drawbacks ! Indeed, the same information can be

- Match the most similar instances of P. deduced several times. Consider this problem:
-Name the generalization variables Vi and

create the links between them. El = color (A) & square (A)
- Append the new predicate P(V1, ...) to the E2 = color (B) & square (C)

generalization formula. We also know the two rules :
R1 : square (x) => rectangle(x)

Firstly, we have to define the similarity computation R2 : rectangle(x) => shape(x)
between the instances of a given predicate. In order to After the completion of the examples, we obtain the
execute this computation as fast as possible, we need to following signatures :
index the information used; to achieve that, we build for SIG(A) = (color square rectangle shape)
each of the constants, composing the examples, a list SIG(B) = (color)

SIG(C) = (square rectangle shape)
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In this case, for the examples El and E2, the We must emphasize that by sorting the signature list
occurrences "rectangle" and "shape" are not relevant before computing the similarity, the complexity of this
because they provide no information with respect to operation becomes linear in reiation to the number of
"square". This is an annoying problem for two reasons: items. Here is a computation example:
firstly, the signature comparison will be perverted and
consequently the generalization; secondly, we will have El= square(a) & red(a) & small(a)
an unnecessarily large number of instances to treat. E2= rect(b) & red(b) & square(c) & green(c) & sniall(c)
Thereby, we need to delete this kind of information when SIG(a) = (square small red);
the completion step is achieved. This operation will be SIG(b) = (rect red);
easily performed with the following algorithm, which SIG(c) = (square small green)
complexity is linear in accordance to the number of SIM(a,b) = 113 ; SIM(a,c) = 213
instances in the facts' base :

For achpreicae Pownng t lastoneinsanc Similrity between values:
* For each predicatePowningatleastoneinstance: In the case of values, the similarity measure is

If there is in the background knowledge a theorem computed between the values owned by the same
T whose premises are made with the predicate list predicate, according to the constant type. For instance, if
(Q1...Qn) named LP, such that: the constants belong to an ordered type, we can

1) All the instances of P have been deduced by classically define the measure of similarity as:
the theorem T (at least)

2) Let LPI the predicate list of LP whose Let the type "size": (small, medium, large, giga)
arguments are identical to those of P.
Instances of P must be identical to those of S1M (a,b) = (Interval length - Place-difference (a.b))
one of the predicates of LPI (<=> same Jntervallength
number of instances). SIM (small, medium) = 314 = 0,75

Then the instances of P are not relevant, thus: SIM (medium, giga) = 214 = 0,50
* If GP owns P then P is not generalized.
* P does not appear in the constant signature. 3.4 Similarity Between Instances

Practically, the predicates are n-tuplets and the
3.3 Similarity Between Constants arguments composing their instances are objects and
In first order logic, the examples can be represented as values. Therefore, for each argument, the computation of

graphs where the nodes are the constants of the examples the similarity will be performed according to the constant
and the edges the predicates (or properties) linking these type. For a N arity predicate, the distance between two
constants. So, in this representation, the generalization instances I1 and 12 will be defined as the average of the
problem becomes one of finding the "greatest" subgraph similarity between each arguments Ain and A2n.
common to all the examples : unfortunately, this is a NP
problem ! Thus, to match correctly and rapidly these 3.5 Matching Between Instances
constants, we consider that the generalization process The matching of the most similar instances of a
consists of the gathering, under the same variable name,
of the most similar constants. In order to achieve this, we predicate P is the basic operation which allows to create a
are going to define a notion of similarity (distance) new term in the generalization. It consists of selecting for
between constants. This measure is noted SIM and its each example Ei, one instance Ii of P in the fact base
computation depends on the constant type. associed to Ei, taking care to maintain as far as possible

the greatest similarity between the items of the resulting
* Similarity between objects: vector (I1 ... IE). However, for a given predicate, we can

In the case of objects, we just look at the common not compute the optimum matching; indeed, if we have E
properties between the two signatures, for instance, by examples and an average of N instances for each one, the
measuring the length of the lists' intersection. However, complexity of this computation is exponential in O(NE).
It is necessary to balance this measure with the number So, we use the following heuristic to obtain a
of differences observed. Otherwise the constants owning a reasonable complexity. The elementary step of the
lot of properties will be match together. Practically, we process is to select in the fact base associated with an
use the following formula: example one instance (not yet generalized) I ; then, for

each remaining example we choose the most similar
SIM (X,Y)= LENGTH (SIG (K)nSIG (Y)) instance (generalized or not). Finally, we obtain a

) LENGTH (SIG (X) u SIG ( )generalizable instance set. The computation is finished
LENGTH (SIG (X) i SIG (Y))i when all of the instances are treated. The great advantage

of this method is firstly, its simplicity and secondly, a
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reasonable complexity in o(N2 .E). Another advantage of G = rect(X) & rect(Z) & red(X) & red(Y) & large(Z)
this heuristics is that we can easily control the & (X-Y) & (Y-Z)
application of idempotence (I => I&I), by modifying the with X = (a c e), Y = (a d e), Z = (b d)
stopping test of the previous algorithm ; if we do not
need idempotency, the system will match only the We need to be able to detect this kind of
instances not yet generalized. The main drawback is information. Saying that two links LI and L2 are verified
that the quality of the matching depends a lot on the at the same time means that the intersection between
choice of the first instance; thereby, this heuristic can be the example sets where Li is true and where L2 is true,
very noise sensitive ! is empty. Then, the idea is to memorize for each MBS

link the list of examples verifying this link, in the
3.6 Links Between Variables and Constants form of a vector V of bits, in which each bit codes an

example; we will call this vector V the "truth table" of
The instance matching process provides us with a the link. Thus, if the intersection between two tables

vector V : (I1 ... IE), in which each instance is composed is empty, we are able to say that the corresponding links
of a list of N constants, N representing the arity of the are exclusive ones.
current predicate. This vector can be seen as a matrix of
constants MN,E ; in this way, creating a variable exI ex2 ex3
corresponds to grouping, under the same symbol name, LI = (X-Y) ( 1 0 1 )
one column of this matrix. For a given data type, the L2 = (Y-Z) = ( 0 1 0 )
different variables built during the generalization process & ------------------------
are not totally independent because their definitions often ( 0 0 0 )
have some common parts (list of substituted constants).
Therefore, independently of the variable type (object or => The links LI and L2 are exclusive.
value) we must define some links between the variables,
specifying the coherence constraints: Furthermore, this method allows us to establish some

other relations between the MBS links and therefore, to
* (X = Y): both variables are always instanciated obtain a more specific generalization. Previously, we

with the same items. have looked at the resolution of the logical equation
* (X Y) : both variables are never instanciated with (Truth table 1 AND Truth table 2 = 0) ; however, it is

the same items. not the only interesting one. Let two links Li and L2,
* (X - Y): the variables can be either the same or and their associated truth tables TI and T2:

different (May Be the Same).
*If (T1 AND T2 = )

Traditionally, the MBS links are not explicitly given we have the link: (L1 NAND L2)
in the generalization : as a matter of fact, in logic when * If (Ti AND 172 = T2)
two variables have the same name, they can be either we have the link: (I =>L2)
equal or different. On the other hand, when we compute a * If (Ti AND "12 = TI)
generalization, we notice that the MBS links are less we have the link: (L2 => Li)
numerous than the difference ones. Therefore, in order to * If (Ti = T2)
increase the readability of the result, we have chosen we have the link: (LI <=> L2)
another convention in our system : it is the difference * If (Ti XOR T2 = 1)
links which are implicit, we have the link : (L1 XOR L2)

S E The study of the relations between two MBS links
can be generalized to relations between several, in orderThrexaple , IBS ln are ote lwas simulanuy te to bring to the fore some more complex relations such

For example, we can write the links (XY) and (Y-Z) as (L1 & L2 => L3), etc ... This problem has beenwithout having, in the examples, the equality X--Y=Z ; examined by [Ganascia 87]. Nevertheless, if this kind

in this case, we have lost some information. Therefore, of information is logically relevant, it often provides
the relation between (X-Y) and (Y-Z) must be expressed some uninteresting information and its computation is
as a logic NAND rather than a simple AND. We stme consing
illustrate this point iii the following example: time consuming.

El = rect (a) & red (a) & rect (b) & large (b) * Type deendant links:
E2 = rect (c) & red (c) & rect (d) & red (d) & large (d) The previous links are defined for every kind of
E3 = rect (e) & red (e) & rect (9 & large 09 variables. However, when the instances of the variables

are values, we can add some information to the
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generalization formula in order for it to become more in all the examples the value of X was always less
specific. The functions which compute this kind of than the value of Y. In this part, we provide these
information are type dependant. The usual links can be kind of dependencies.
split. in two families : unary links and binary ones. The
unary links express a synthesis of the values handled by 5 - Object links : Implicitly, in order to increase the
each variable V. For example, if the instances of V readability of the result, when two variables always
belong to an ordered type, we can add the interval of have a different substitution in the examples, their
values to the generalization. The binary links express the names in the generalization are different. Here we
observable rcati' ns between the values of two variables provide the links MBS (May Be the Same) which
VI and V2 belonging to the same type. These links will express that two variables can be either equal or not.
be created by comparing the definitions of the variables.
For instance, in the case of integer values, we can add 6 - MBS links : Here, we provide the relations between
some links such as "less" or "greater than" between the the MBS links (Nand, Xor, ... ) described above.
variables, in the generalization. Here is an example:

El = age (a,9) & teeth-nbr (a,28) Here is a simple example of a generalization process:
E2 = age (b,20) & teeth-nbr (b,32)

a) Background knoWtgee:

G = age (XA) & teeth-nbr (XN) &
(A<N) & (A e (9,20]) & (N e [28,321) size : ordered type (micro,small,medium,largegiga);

3.7 Results of Generalization and Example object

In the system KBG, the examples are expressed in the shape
form of a conjunction of instanciated terms. The domain
theory is composed of two parts : the first part is the rect ell se trangle
declaration of the data types used, and the second the r
production rules "IF ... THEN" expressing the relations 1
between the predicates. Moreover, the user can easily cube circle
define his own types of values by providing to the
system the LISP functions expressing the behavior of R1 : IF near (X,Y) THEN near (YX) ;
these items ; he can also put Rome external procedural R2 : IF on (X,Y) THEN near (X,Y) ;calls into the premisses and L..; conclusions of the rules
(for instance, to perform somc computation). b) Example to generalize

In the current implementation, the result of the
generalization consists of six different pants: el : rect (a), red (a), size (a, large), circle (b),

on (a, b), size (b, small);
I - Generalization : A conjunction of predicates, the e2 : ellipse (c), red (c), size (c, micro), triangle (d),

arguments of which are variables or constants. These
predicates express the common properties and on (d, c), size (d, giga);
relations found in the example set. c) Result a the generalization:

2 - Object matching : The generalization process is based
on the matching of the most similar constants (one 1) Genera'ization of the examples : (el e2)
per example). Thereby, each variable of the G = ellipse (CO), shape (Ci), on (C1,CO), red (C2)
generalization's formula corresponds to a list of outsize (CO,TAO), outsize (Ci,TAi).
constants. In this part, we provide all these 2) Matching : (CO : b c), (Ci : a d), (C2 : a c),
corresponding substitutions. (TAO : micros small), (TAI : large giga).

3) Interval of values : (TAO e (micro .. small 1)
3 - Intervals of values : In the case of typed constants, for (TA E large .. giga ).

each corresponding variable we provide in this part the 5) Objects Links (MBS) (L1 C2-CO),
intervals of possible values. (L2 : C2~CO),(L2 : C2-C1).

4 - Value links : In the case of typed constants in which 6) MBS links: (LI xor L2).
the elements are ordered, we can sometimes observe
some regularities as "x<Y". This relation means that
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4 Conclusion appliqudes h la construction de bases de connaissances",
Th~se d'!tat 27/4/1987, Universit6 Paris Sud.

The generalization process can be seen as an operation [Kodratoff 861 KODRATOFF Y., GANASCIA J.G.,
aiming to extract and to compact the meaningful "Improving the generalization step in Learning", Machine
information held in a example set. The result of this Learning 2, an Artificial Intelligence Approach, Morgan
operation can be used by a higher conceptual level Kaufmann Publishers, pp. 215-244.
mechanism or even by another external system in order to [Kodratoff 881, Y.KODRATOFF, Introduction to
build a knowledge base modeling the studied domain. Machine Learning, Pitman 1988.

However, using generalization as an elementary [Kodratoff, Michalski 90] Y.KODRATOFF,
process requires that it is both accurate and fast. We think R.MICHALSKI, Introduction of Machine Learning 3, an
that the completion strategy and the algorithms used Artificial Intelligence Approach, 1990.
in our system, allow us to achieve these goals. In the [Michalski 83] MICHALSKI R.S., CARBONNEL
project PERSPICACE, the system KBG was used just as J.G., MITCHELL T.M.: "A Theory and Methodology of
a tool for helping in the construction of the knowledge Inductive Learning",Machine Learning 1, an Artificial
base. Thus, a large part of the processes were performed Intelligence Approach, Tioga Publishing 83, pp. 83-
manually. At the present time, we are developing two 129.
new components, using the generalizer results, in order to [Vrain 90] VRAIN C., OGUST : A System Which
increase the automatic parts in the rule construction. Learns Using Domain Properties Expressed As

On the one hand, currently when we generalize an Theorems, Machine Learning 3, "a Artificial Intelligence
example set illustrating one concept, we obtain a large Approach, 1990.
recognition function in which all the terms are not
necessarily meaningful ; so, the management of the
counter-examples will allow us to perform an "over-
generalization" of the learnt knowledge. In this way, we
will obtain a more compact and significant information.

On the other hand, the system's capacity to explain its
computation is fundamental : indeed, when the expert
does not agree, it is often very difficult to find, just by
reading the generalization, the modifications to the
knowledge representation that are required. We have seen
that the generalization process consists of gathering the
most similar objects. In our case, the completion of the
examples vouches for the fact that the matching will
roughly reflect all of the properties expressed in the
background knowledge. Thus, the idea is to translate in a
readable form the information provided by the
similarity computation and to use it to establish a
direct dialog between the learning system and the expert.
The implementation of explanations will also be the
basis on which to elaborate a conceptual clustering of
the examples, as a first step towards automatic
knowledge base generation.
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Abstract The other problem with pre-pruning of deci-
Thik paper presents a new method for sion trees is that prunig deci-ion is iiinae hnsed
acquiring classificatory knowledge by on local information alone. Due to limited 'loo-

induction. Based on a probabilistic infer- kahead', this process nay terminate too early,
ence techiniquc, this nlethiol allows leaving out important information. To avoid thisinherent patterns in t noisy training problen, post-pruning of already-formed decision

instances to be easily detected. A set of trees has been proposed. Tihe current post-
classification rules can then be constructed pruning strategy adopted by ID3 uses a set of
based on these detected patterns. The production rules equivalent to the tree [12-13].
proposed method has been evaluated by Based on Fisher's Exact Test, the conditions on
testing it with some real-world data sets the left-hand side of each rule are examined to
and the results show that it out-performs determine if they are relevant for classification.
some decision-tree based algorithins both Conditions that are irrelevant are discarded fron
in terms of computational efficiency and a rule. The set of pruned rules are then further
classification accuracy. simplified by throwing away those whose onis-

sion would not lead to more nisclassified
instances. As observed in [12], this algorithn is

1. Introduction rather slow and inefficient when compared to
Given a collection of objects (events, observa- other post-pruning strategies. Furthermore, since
tions, situations, processes, etc.) that are hill-climubing strategies are used for pruning the
described in terms of one or more attributes and conditions and rules, important information may
are preclassified into a number of known classes, be lost due to a local optinuin [13].
the classification problem is to find a set of
characteristic descriptions for these classes or, 2. An Efficient Classification
equivalently, a procedure for identifying an Method
object as belonging to, or not belonging to a par- To efficiently handle uncertaiity in classificatiou
ticular one.

tasks, we have developed an inductive learning
Many inductive learning systems have been metiod based on a powerful probabilistic infer-

developed to solve the classification problem and ence technique [J-21. It can uncover patterns
the decision-tree based program ID3 is one of the underlying a set of noisy data and is, for this rea-
best knowni among themn [10]. It has been suc- son, particularly effective in dealing with uncer-
cessfully employed for a wide range of applica- tainty. The method consists of three phases: 1)
tions including several industrial projects [12]. I detection of uiderlying patterns in training data;
order to further improve the performance of ID3 2) conruction of classification rules based on
when classification have to be made in the pres- tihe detected patterns; and 3) use of these rules
enc, of uncertainty, a pre-pruning method based for object classificatioi.
on the use of the chi-square test has been
employed [12-13]. The problem with the use of
this test is that the number of training instances 2.1. ...... " attem "'in-., . . No-isy "Daa

satisfying the path that is being constructed Suppose a training set consists of M objects
becomes less and less. When the number falls described by n attributes, Ali,,, -'', Atfr,,, so
below a certain threshold, the chi-square test that in an instantiation of object description,
cannot be validly used [12]. Therefore, such Atih', 1<j:n, takes oii val1 cdo,,ain(Attrj)
technique can be employed only when a large =1 J). Suppose that the Al objects
training set is available.

are preclassified into P known classes, cp,
p=1, • - • P, tie clo.ssificatiol prolblemn is to find
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a set of characteristic descriptions for these for a greater confidence level), we can conclude
classes. To discover patterns underlying this set that the discrepancy between o1 k. and eat, (i.e.
of noisy training data, attributes important foi between Pr(object is in c, I Attr = vj) and
object class determination need to be identified. Pr(object is il ,)) is significantly different d
To achieve this, many systems use the chi-square troet is i for is clasdifferin an
test to find attributes that are statistically depen- therefore v, is important for the classification of
dent on the classes [11]. the objects it characterizes. The sign of d,k is

Let olk be the total number of objects in the also iniportant. A dt.>+I.90 indicates that the
training set that belong to c%, and are character- presence of v$ is a relevant value of c, whereas a

ized by vi and let eL be the expected nunber of d,,:.<-1.96 indicates it is more unlikely for an

such objects under the assumption that the object characterized by vi to be a member of c,
values of Attri are randomly distributed in c,,. than other classes.
Then, the chi square statistic can be defined as: Values of Attrj showing no correlation with

.(o.-ej2  p K o2 any class yield no classificatory information.
X2= =z. - 1 - M. (1) These values are considered as irrelevant for

1 -uL-l el k '.-I epk learning. Their inclusion may cause overfitting
and the generation of misleading classification

where M'=Z,.ol,. is less than or equal to Al (the rules. Hence, they are discarded from further
10.k analysis.

total number of objects in the training set) due
to the possibility of having missing values in the
data. If X2 is greater than tile critical value, 2.2. Construction of J1asslfleation Rules

X 2,.0, where d=(P-1)(J-1) is the degree of free- To use the detected relevant values for each
dora and a, usually taken to be 0.05 or 0.01, is object class, they are explicitly represented in the
thle significance level (i.e. (1-o)% is tile confi- classification rules. Suppose that vi is a relevant

dence level), then one can conclude that Attrj is value of c,, the following rule is constructed.

statistically dependent on the classes and it is If AttrJ of an object is vj then that this object
therefore helpful in deternining the class
membership of an object. Otherwise, there is not belongs to cp is with weight of evidence

enough evidence to support such a conclusion. TV(aClass=c,,/Classc,,!Attrj=-vj) ,

However, the chi-sa,: .ze test indicates only where W(Class= c./Class#cilAttrj=vi) measures
that an attribute is important for classification the amount of positive or negative evidence pro-
but not which particular value, say vi, of Atirj is vided by v, supporting or refuting an object that
helpful in determining if an object belongs to a it characterizes to be classified into c,.
class, say e,. Such a value call, however, be

identified if Pr(object is in c, Attrj = vj), is The dlerivation of W(Class=c,, /Classoc,
significantly different from Pr(object is in c,) s =v) is based on an information theoretic

sneasure known as the nututal information. The
(i.e. og. should deviate significantly from e, L. mutual information between el and the relevant
(1-2]). Since the absolute difference Iot.-eljJ feature, t,. is defined as [8, 161:
does not provide information on the relative [
degree of the discrepancy, it needs to be stand- I( Class=c,,:Att1 =vi)
ardized to avoid the influence of the marginal
totals. Haberman [7] recommended using the =logP r(3Class=cAtlr=v)

adjusted residual: Pr(Class=c)(

-(2) so that I(Class=c: Attrj=vi) is positive if and
M A, 1 only if Pr(Class=c,1Att,=v,) > Pr(Class=ce)

t he otherwise it is either negative or has a value 0.
Based on this measure, the weight of evidence

training set that are in cp and o+x, the total provided by vi in favor of an object being a
number of training objects having the charac- member of c,, as opposed to its not being a
teristic v (7]. nember of the class, call lbe defined as follows [8]:

For p = 1, 2, • ' , P, and k = 1, 2, • , J, W(.lass=c,/Class. cAtfir v.)
if the absolute value of an adjusted residual, say TV C
dl,, is greater than 1.96, the 95 percentiles of the
normal distribution (or 99 percentiles or higher
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=I(Class=c:A trj-v )-I(Class~c,:AttrJ-v ) Though not explicitly represented as high-
Pr(A ltrjfv/ ]l Classfcl,) order rules, the combination of the low-order
=log (4) ones are necessary in order to determine the class

-logpr(A t=v Classc.(4) membership of an object (Section 2.3). As will
be described later in Section 3 and 4, based on

In other words, W may be interpreted as the this rule combination technique, the proposed
difference in information about an object being in nethod can be shown to perform better, both in
c, compared to other classes given that it is terms of accuracy and learning efficiency, than

characterized by vi [8). W is therefore, in its conuuon classification techniques.

technical sense, the log of the likelihood ratio. It Other than combining low-order rules in the
should be noted that the likelihood ratio is well above manner, high-order rules can also be
known anong Bayesian statisticians. It is, formed by considering attribute values together,
perhaps for this reason, that it is also quite popu- instead of separately, in determining their
lar among AI researchers as a scheme for uncer- relevancy for classification (Section 2.1). The
tainty representation. For example, Duda et. al details of how this can be done will be discussed
found its use quite convenient for plausible rea- in a separate paper.
soning in Prospector [5]. Schlinuner et. al also
adopted it in the STAGGER system [14]. 2.3. Classification of Objects

The class description of a class cp can be con- Suppose that an object obj described by n
sidered as the subset of classification rules whose characteristics val, . • ', vaip . .- , val,, is
conclusion parts predict cp. These rules describe given. By matching each attribute value of obj
each class of training objects probabilistically. It against each classification rule in turn, the classes
should be noted that, like the decision-tree based it may be assigned to can be determined. How-
inductive learning systems which determine the ever, since the description of obj may match par-
information gain [10] of each attribute indepen- tially with that of more than one class of objects,
dent of the others at a node, the proposed it may be classified into different classes based on
method also evaluates the weight of evidence its different characteristics. As is discussed in the
provided by an attribute value for classification last section, since each of the attribute values of
independently. Hence, each classification rule obj that matches the classification rules can be
represents the amount of evidence provided by a considered as providing some evidence for or
single attribute value for or against an object's against the assignment of obj to those classes
being assigned to a certain class. Conjunctive predicted by the rules, its classification can be
rules can, however, be formed by combining the made based on a measure that combines these
first-order rules. For example, consider the fol- pieces of evidence together. Its value should-
lowing rules: increase with the strength and the mumber of

1. If Attri~vi then Class=c with W . pieces of positive evidence supporting a specific
class assignment for obj anid decreases vice versa.

2. If Attr,=vj then Class=c with W=v. One of such measure that possess such property
These titles ca be combined to form Ride No. 3: is proposed here. It estimates quantitatively the

various pieces of evidence, provided by val l ,

3. If Attri-ivi and Affitvp then Class--c with • " • , ml,, in favor of obj heing classified into c,,:
W= 10i+ w" as opposed to being classified into other classes.

In other words, high-order conjunctive rules can It is definled as:
be combined to form low-order ones if the conclu- IV( =c,4/, c,,,,ti 11 . . . ,ial)
sion parts of time low-order rules are the sane. If

the condition parts of two or iuore rules involve Pr(Clog jc., no!l, " " ,
the same attribute, they can be combined to - log
form disjunctive rules. For example, consider the
following rules: Pr( .,,Jc,,, ,J • "v ,val,,)
4. -If Ar,=v,, thcn ...... wi. w.. log , ,

5. IfAttri=v,. then Class=c with tV=ui.. Pr(al1, • ,a,,,,,

These rules can be combined to form Rule No. 6: P1( a 1, t " I
6. If Attri=vz, or Attri=vi, then Class=c with Suppose that, of the n attributes that describe

W=w,, or W=wi,. obj, only in (mn n) of themi, valil], ', val],

• *'', 110111 C1 {m alij = 1, ' n), are
found to maclh one or more classification rules,
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then the weight of evidence can be simplified 1. Derinatoglyphic Data - Over decades,
into: nmnerous articles have been published report-

W(Qj=ci/ #cval,'' ,val) ing clinical significance of finger prints and
pain patterns in cogenital disease identifica-

= W( ,1=c.,/,,jc,,ua~q,... ,,] (6) tion [4, 15, 17). For an experiment with the
dernatoglyphic data, the finger-print pat-

If there is no a priori knowledge concerning the terns, the aid angle and the ab ridge-count of
interrelation of the attributes in the problem both the right and left hands of 126 subjects
domain, then this weight provided by all the were obtained [17] (Fig. 1). These 126 sub-
attribute values of obj in favor of it being jects had been divided into three groups. The
assigned to c,,,j as opposed to being assigned to first of these contisted of 51 myelomeningocele
other classes is equal to the suni of the weights patients drawn front a spinal dysfunction
provided by each individual attribute value of obj clinic. The second and third groups consisted
tltat is relevant for classifying it to c,,,pj~ 1):of 40 and 35 nomnal subjects, respectively,

that show different derutatoglyphic patternsW( ¢,,i-o,/¢ jc j vatq,.j, ,a1 ,,,) [17).

i,, 2. Medical Data I - For further performance

•.-V(',,=c~/(,,ci . ... . .,ali. (7) evaluation, we used two sets of medical data
j-1 obtained front an Intensive Care Unit (ICU)

[9]. The first set consisted of 120 patient
In brief, the classification strategy can be suni- records each of which was characterized by 12
=marized as follows. Given an object obj, the set attributes representing different symptoms
of classification rules is searched to determine derived from the monitoring of tite Central
which class descriptions are partially ntatched by Nervous System, the Respiratory System, the
that of obj. If a value satisfies the condition part Cardiovascular Systen, the Skin Signs and
of a rule, the positive and negative evidence pro- tlte Renal System of the patient [9]. Based on
vided by the attribute values of obj are quantita- the attributes, tite patients were classified into
tively measured and combined for comparison, two groups by the physicians - those that had
obj is assigned to cp when it has the largest par- to be placed under intensive care and those
tial match, that is: that could be discharged to the main floor.

The records of 66 patients were available for
the first group and 54 for the second.

> W(c,,t.=c,/Q,,,jc,,alt}, ,val[,,]), 3. Medical Data 11 - The second set of mtedical
data obtained front the same source consist of

h= 1, 2, .'., P attd hop (8) 99 records characterized front the sante 12

where P (<P) denotes the number of classes attributes [9]. Based on these attributes, each
that are partially mtatched by the attribute patient was diagnosed, by a group of physi-values of obj. ciants, into one of four disease types (9]: (i)

chest disease; (ii) abdoninal diseame; (iii) car-
It should be noted that if two different plausi- diac disease; and (iv) neurological disease. In

ble values have the satne greatest weight of evi- this experintent, the records of 15 patients
dence, there itay be more than one plausible were available for Group 1, 33 for Group 2, 25
class assignment for obj. Furthermore, if there is for Group 3 attd 26 for Group 4.
no evidence for or against any specific class
assignment, classification may either be refrained For performance evalationt, the classification
to avoid furnishing of ait inaccurate assignment accuracy of tte following systets for tte above
or that obj can be assigned to the class to which data sets were determined: (i) tle ID3 iethod
the majority of training objects belong. If it hap- which builds a decision tree for classification
pets that there is no relevant value for deterini- based on the TDIDT (Top-Down Induction of

ing the class membership of obj, then either the I)ecision Tree) algorithn described in [10]; (ii)
training data is completely non-deterinitistic or the 1D3 itethod with pre-pruning which ter-
there is insufficient training instances for tte Minaafe the hra,. hing p!ocess at a iode whente ..Tilisg iptocie t tthe attribute as.;ociated with the node is tested
Jt,.. .tutng process. (by the chi-squ.:re test) to be statistically

iudlependent of the cIas=,s [111; (iii) the ID3
3. Experimental Results ltethod with post-pruning which constructs a set

To evaluate the performance of the proposed of rules equivalent to a decision tree and then
probabilistic inductive learning method and cont- simplifies them by testing each termt of each rule
pare it with other classification methods, the fol- against the class, predicted by the conchlsion of
lowitg data sets are used: the rule, for statistical dependence (using Fisher's
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Exact Test) [12-13]; (iv) the Bayesian Classifier under such an assumption. Unfortunately, it did
which computes the class conditional probability not improve the classification accuracy of the
for every class by assuming, due to small sample algorithm by much.
size for training, that all the attributes are As for the ID3 method without pruning and
independent and then selects the class with the that with post-pruming, they are comparable in
highest probability; (v) the Default or Simple performauce in the sense that tile former is more
Majority- Classifier which simply assigns the most accurate ill experiments with tile first set of ed-
commonly occurring class in the training set to ical data hut not as accurate as in the other
all objects that are to be classified, with no refer- experiments.
ence to their attributes; and (vi) the proposed
method without rejection (i.e, an object is Of all the six methods, tpe percentage of
assigned to the most commonly occurring class correct classification of the proposed method was
when there is not enough evidence supporting it the highest in all experiments. Direct comparison
to be assigned to any specific one). In the between proposed method and the other
evaluation, ten different randomly selected train- decision-tree pruning methods are yet unavail-
ing (70% of total available data) and testing sam- able. However, while ID3 with post-pruning have
pies woje generated for each of the three sets of been shown to have superior performance when
data. The results, averaged over the ten ran- compared to the others [12], we only compared
doinly chosen training and testing samples, are the proposed method with 1D3.

given in Table 1.
As is expected, these results indicate that the 4. Discussions and Summary

classification accuracy of the Simple Majority In evaluating the performance of a learning
method, which served as a reference point for method, it is often necessary to consider its deci-
evaluating the various methods, was the-poorest. sion accuracy, the amount of training required to
The Bayesian Classifier performed much better achieve a specific level of perfornmance, as well=as
than tile Simple Majority method. However, it how costly that training is. One measure of
was, in general, not as good as the decision-tree- training effort is the complexity of the method
based algorithms except in the experiment with [3].
the-second set of medical data. Let M denote the size of the training set, -n

Of the three ID3- or decision-tree-based the total numher of attributes that describe each
methods, the use of a pre-pruning strategy during of the training instances. The critical component
the construction of decision trees did not seem to of tile ID3 algorithm is tile process of selecting a
improve the classification accuracy. In fact, it test attribute on which to branch. Each such
consistently nade more errors than the simple choice involves the following operations [3]:
ID3-ahgorithm in which no pre-pruning was per- 1. For each attribute, example counts are put in
formed. This was due to the use of the chi- an array, indexed by class and attribute. This
square test in deciding whether pruning at-a node takes time 0(n*M);
should be terminated. In order for the assump-
tions behind the chi-square test to be valid, a 2. The entropy function is calculated for each
very large training set for each class of objects attribute, taking time 0(n);
have to be available. This is because, as a deci- 3. Once the best attribute is found, the examples
sion tree is being built, the set of training sani- are divided into J different sets (where J is
ples is always being subdivided in tihe hope that the total number of values that the best attri-
no single exception remains. Therefore, the bute takes oil). This takes time O(M).
further down the tree, the smaller is the resulting Therefore, the overall titie for a single attribute
subset of training sample. Since, according to choice at each node ill a decision tree is 0(n*M).
(11], the expected frequencies of each cell in the ''he time taken to construct the complete tree
contingency table constructed for a chi-square depends very inucli on tlme structure of the tree.
test should be greater than four, unavailability of It general, it is 0(n*M. (Total no. of nodes in
a large training set for each class often result in the tree)).
the branching process terminating too early. As for tie ID3 algorithm with pre-pruning,

Recently, in the statistics community, it is the need to test for statistical dependence
discovered that the restriction for the expected between each attribute and tile classes at each
frequency in each cell to be at least four is too node does not affect the complexity for time criti-
conservative. It is suggested that, at least for cal component of time ID3 algorithm. In fact,
test conducted at a confidence level of 95%, tie since a simaller subtree with fewer number of
ininiinuni expected cell frequencies call be nodes is usually obtained as a result of tree-
approximately 1.0 (6]. In fact, the test for the pruniig, the overall rate of learning miay even be
ID3-algorithn with pre-prunilg was performed improved.
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The ID3 algorithm with post-pruning requires In summary, we have presented an efficient
a complete decision tree to be built first. The probabilistic inductive learning method for solv-
complexity for this process is O(n*Mo (Total no. ing classification problem even when (i) the data
of nodes in the tree)). The second part of the contains inaccurate, incomplete and inconsistent
post-pruning algorithm involves constructing a values; (ii) the a.sumption concerning any
set of rules equivalent to the decision tree. Each specific mathematical model for the data cannot
path in the tree is turned into a rule with the be made; (iii) the data is of high dimensionality
number of conditions on the left-hand side of the and (iv) the training sample size is relatively
rule equals to the path length. The conditions of sinall. The proposed method has been imple-
each rule are then examined in turn to deter- inented and tested using real-life data sets. The
mine, by Fisher's Exact Test for statistical test results showed that the proposed method
independence in two-by-two contingency tables, consistently outperformed, in terms of accuracy
the ones that are relevant for the classification and computational efficiency, many commonly
process. Conditions that are irrelevant are dis- used methods that were developed to handle
carded front a rule. The time complexity of this uncertainty in classification tasks.
process is, once again, very much dependent on
the structure of the tree and, therefore, the rules 5. References
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Table 1. Performance (% Correct) (!omparison of Different Classification Methods

Classification Methods

ID3 without ID3 with ID3 with Bayesian Simple PIT-Based
Data pruning pre-pruning post-pruning Classifier Majority APACS

Dernatoglyphic
Data 51.0% 48.2% 55.0% 44.7% 37.5% 68.2%

Medical data 1 89.2% 82.0% 85.0% 79.2% 51.1% 91.1%
Medical data 11 79.5% 59.5% 87.0% 81.0% 35.0% 94.0%
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Abstract of phonemes of length k and a string of stresses of

The performance of the error backpropaga- length k. For example, i
tion (BP) and ID3 learning algorithms was f(Ioiiypop") = ("lal-ipap , 1>1<>0>2<1).

compared on the task of mapping English Notice that letters, phonemes, and stresses have all
text to phonemes and stresses. Under the dis- been aligned so that silent letters are mapped to the
tributed output code developed by Sejnowski silent phoneme /-/.
and Rosenberg, it is shown that BP consis- As defined, f is a very complex discrete mapping
tently out-performs ID3 on this task by sev- with a very large range. If we assume no word contains
eral percentage points. Three hypotheses ex- more than 28 letters, this range would contain more
plaining this difference were explored: (a) than 1070 elements. Existing learning algorithms focus
ID3 is overfitting the training data, (b) BP primarily on learning Boolean concepts-that is, func-
is able to share hidden units across several tions whose range is the set {0, 1}. Such algorithms
output units and hence can learn the output cannot be applied directly to learn f.
units better, and (c) BP captures statistical Fortunately, Sejnowski and Rosenberg developed a
information that ID3 does not. We conclude technique for converting this complex learning prob-
that only hypothesis (c) is correct. By aug- lem into the task of learning a collection of Boolean
menting ID3 with a simple statistical learn- concepts. They begin by reformulating f to be a map-
ing procedure, the performance of BP can be ping g from a seven-letter window to a single phoneme
approached but not matched. More complex and a single stress. For example, the word "lollypop"
statistical procedures can improve the per- would be converted into 8 separate 7-letter windows:
formance of both BP and ID3 substantially. g"_---_1o11") = ("1", ">°1)

A study of the residual errors suggests that g("__lolly") = ("a", "1i")
there is still substantial room for improve- g("IlolIyp") = ("i", 10<")
ment in learning mctH'da for text-to-speech g("lollypo") = (".-", ">")
mapping. g("ollypop") = ("i", "0")

g("llypop_") = ("p", ,,>")
gC"lypop__.") = ("a", "02"1)

1 Introduction g(,ypop___,,) = (,,p,, 11<10)

The task of mapping English text into speech is quite The function g is applied to each of these 8 windows,
difficult (see Klatt, 1987). One particularly difficult and then the results are concatenated to obtain the
step involves mapping words (i.e., strings of letters) phoneme and stress strings. This mapping function g
into strings of phonemes and stresses. In this paper, now has a range of 324 possible phoneme/stress pairs,
we compare two machine learning algorithms applied which is a substantial improvement.
to the task of learning this text-to-speech mapping. Finally, Sejnowski and Rosenberg code each possible
We employ the formulation developed by Sejnowski phoneme/stress pair as a 26-bit string, 21 bits for the
and Rosenberg (1987) in their widely known work on phoneme and 5 bits for the stress. Each bit in the code
NETTALK. corresponds to some property of the phoneme or stress.

Let L be the set of 29 symbols comprising the letters This converts g into 26 separate Boolean functions,
a-z, and the comma, space, and period (in our data hl,..., h26 . Each function hi maps from a seven-letter
sets, comma and period do not appear). Let P be window to the set {0, 1}. To assign a phoneme and
the set of 54 English phonemes and S be the set of stress to a window, all 26 functions are evaluated to
6 stresses employed by Sejnowki and Rosenberg. The produce a 26-bit string. This string is then mapped
task is to learn the mapping f : L* -- + P* x S*. to the nearest of the 324 bit strings representing legal
Specifically, f maps from a word of length k to a string phoneme/stress pairs. We used the Hamming distance
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between two striigs to measure distance. (Sejnowski The error backpropagation algorithm (Rumelhart,
and Rosenberg used the -gle between two strings to Hinton & Williams, 1986) is widely applied to train
measure distance, but they report that the Euclidean artificial neural networks. We replicated the network
distance metric gave similar results. In tests with the architecture and training procedure employed by Se-
Euclidean metric, we have obtained results identical to jnowski and Rosenberg (1987). This network is a fully-
those reported in this paper.) connected feed-forward network containing 203 input

With this reformulation, it is now possible to ap- units, 120 hidden units, and 26 output units (one for
ply Boolean concept learning methods to learn the hi. each mapping hi). We employed the same input and
However, the individual hi must be learned extremely output encodings described above.
well in order to obtain good performance at the level Unlike ID3, it is only necessary to apply BP once,
of entire words. This is because errors aggregate. For because all 26 output bits can be learned simultane-
example, if each hi is learned so well that it is 99% cor- ously. Indeed, the 26 outputs all share the collection of
rect and if the errors among the hi are independent, 120 hidden units, which may allow them to be learned
then the 26-bit string will be correct only 77% of the more accurately. However, while ID3 is a batch algo-
time. Because the average word has about 7 letters, rithm that processes the entire training set at once,
whole words will be correct only 16% of the time. BP is an incremental algorithm that makes repeated

In the remainder of this paper, we describe a series passes over the data. Each complete pass is called an
of experiments comparing the performance of the error "epoch." During an epoch, the training examples are
backpropagation algorithm (BP) to the decision-tree inspected one-at-a-time, and the weights of the net-
learning algorithm ID3. We begin by comparing BP work are adjusted to reduce the squared error of the
and ID3 on the task described above. Having estab- outputs. We used a learning rate of .25 and a mo-
lished that BP significantly outperforms ID3 on this mentum term of .9. The weights of the network were
task, we formulate three hypotheses to explain this initialized to random values between -. 3 and +.3. In
difference. We test these hypotheses by performing ad- all cases, we trained for 30 epochs, since this was the
ditional experiments. These experiments demonstrate training regime followed by Sejnowski and Rosenberg.
that ID3, combined with some simple statistical learn- We used the implementation provided with (McClel-
ing procedures, can nearly match the performance of land and Rumelhart, 1988).
BP. Finally, we present data suggesting that there is Because the outputs from BP are floating point
still substantial room for improvement of learning al- numbers between 0 and 1, we had to adapt the Ham-
gorithms for text-to-speech mapping. ming distance measure when mapping to the nearest

legal phoneme/stress pair. We used the following dis-
2 A Simple Comparative Study tance measure: d(x, y) = "i 1xi- i 1. This reduces

to the Hamming distance when x and y are Boolean
In this study, ID3 and BP were both applied to the vectors.
learning task described above. We begin by briefly
reviewing these two learning algorithms and the data 2.2 The Data Set
set.

Sejnowski and Rosenberg provided us with a dictio-
2.1 The Algorithms nary of 20,003 words and their corresponding phoneme
ID3 is a simple decision-tree learning algorithm de- and stress strings. This dictionary was randomly par-
veloped by Ross Quinlan (1983; 1986b). The version titioned into a testing set of 1000 words, and a training
we employed used the information gain criterion to set of 19,003 words. This training set was further sub-
choose which feature to place at the root of each deci- divided to extract smaller training sets of 1000, 800,
sion tree (and subtree). We did not employ windowing 400, 200, 100, and 50 words. Each smaller training set
(Quinlan, 1983), CHI-square forward pruning (Quin- was extracted by randomly sampling from the next
lan, 1986a), or any kind of reverse pruning (Quinlan, larger set.
1987). We did apply one simple kind of forward prun-
ing to handle inconsistencies in the training data: If
all training examples agreed on the value of the chosen Table 1 shows percent correct (over the 1000-word test
feature, then growth of the tree was terminated in a set) as a function of the size of the training set for
leaf and the class having more training examples was words, letters, phonemes, and stresses. Virtually ev-
chosen as the label for that leaf (in case of a Lie, the cry diffcr.ncein the table at the word, letter; phoneme.
leaf is assigned to class 0). and stress levels is statistically significant (using the

To apply ID3 to this task, the algorithm must be test for the difference of two proportions). Hence, we
executed 26 times-once for each mapping hi. Each conclude that there is a substantial difference in per-
of these executions produces a separate decision tree. formance between ID3 and BP on this task.
The seven-letter window was represented as the con- To take a closer look at the performance difference,
catenation of seven 29-bit strings. Each 29-bit string we can study exactly how each of the 7,242 windows
represents a letter (one bit for each letter, period, in the test set are handled by each of the algorithms.
comma, and blank), and hence, only one bit is set to Table 2 categorizes each of these windows according to
1 in each 29-bit string. This produces a string of 203 whether it was correctly classified by both algorithms,
bits for each window. by only one of the algorithms, or by neither one.
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Table 1: Percent correct over 1000-word test set

Sample Level of Aggregation (o correct)
Size Method Word Letter Phoneme Stress Bit (mean)
50 -IT3 0.8 41.5 60.5 60.1 93.1

BP 1.8' 48.4*** 59.4 72.9*** 93.5
100 1D3 2.0 47.3 64.1 65.8 94.0

BP 3.7* 55.2** 66.1* 75.5** 94.4
200 ID3 4.4 56.6 70.5 72.2 95.1

BP 6.0 61.4"** 71.9' 78.6*** 95.3
400 ID3 6.2 58.7 73.7 72.1 95.5

BP 10.5"** 65.7*** 76.0*** 79.9*** 95.9
800 ID3 9.6 63.8 77.8 75.6 96.2

BP 12.2' 68.7*** 78.9 80.7*** 96.31000 ID3 9.6 65.6 78.7 77. 96.4

BP 14.7' 70.9*** 81.1"** 81.4"** 96.6
ifference in the cell significant at p < .05*, .01", .001"w

with modifications to the two algorithms that enhance
Table 2: Classification of test set windows by ID3 and or eliminate the differences between them. All of these
Backpropagation, decoding to nearest legal phoneme experiments are performed using only the training set
and stress. and test set from Table 1.

Back Propagation
Correct Incorr ect 3 Three Hypotheses

ID3Correct 4231 520 What causes the differences between ID3 and BP? We

Incorrect 907 1584 2491have three hypotheses:

Hypothesis 1: Overfitting. ID3 has overfit the
5138 2104 training data, because it seeks complete consistency.

This causes it to make more errors on the test set.

Hypothesis 2: Sharing. The ability of BP to share
The table shows that the windows correctly learned hidden units among all of the hi may allow it to reduce

by BP do not form a superset of those learned by the aggregation problem at the bit level.
ID3. Instead, the two algorithms share 4,231 cor-
rect windows, and then each algorithm correctly clas- Hypothesis 3: Statistics. The numerical parame-ters in the BP network allow it to capture statistical
sifies several windows that the other algorithm gets in th B no capturestatistica
wrong. The net result is that BP classifies 387 more
windows correctly than does ID3. This shows that These hypotheses are neither exclusive nor exhaus-

the two algorithms, while they share substantial over- tive.

lap, have learned substantially different text-to-speech The following two subsections present the experi-
mappings. ments that we performed to test these hypotheses.

The information in this table can be summarized as
a correlation coefficient. Specifically, let X!D3 (XDP) 3.1 Tests of Hypothesis 1 (Overfitting)
be a random variable that is 1 iff ID3 (BP, respectively) The tendency of ID3 to overfit the training data is
makes a correct prediction at the letter level. In this well established in cases where the data contain noise.
case, the correlation between XJD3 and XBp is .5508. Three basic strategies have been developed for address-
If all four cells of Table 2 were equal, the correlation ing this problem: (a) criteria for early termination
coefficient would be zero. of the tree-growing process, (b) techniques for prun-

A weakness of Table 1 s that it sho..s pc -.mc img trccs to rcm overfitting branches, and (c) tech-
values for one particular choice of training and test niques for converting the decision tree to a collection

sets. We have replicated this study four times (for of rules. We implemented and tested one method for
a total of 5 independent trials). Table 3 shows the each of these strategies. Table 4 summarizes the re-
average performance of these 5 runs (each, of course, sults.
on a different randomly-drawn 1000-word test set). All The first row repeats the basic ID3 results given
differences are significant below the .0001 level using above, for comparison purposes. The second row
a t-test for paired differences. shows the effect of applying a X2 test (at the .90

In the remainder of this paper, we will attempt to confidence level) to decide whether further growth
understand the nature of the differences between BP of the decision tree is statistically justified (Quinlan,
and ID3. Our main approach will be to experiment 1986a). As other authors have reported (Mooney et
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Table 3: Average percent correct (1000-word test set) over five trials.

Sample Level of Aggregation (% correct)
Size Method Word Letter Phoneme Stress Bit (mean)
1000 ID3 10.2 65.2 79.1 76.5 96.4

BP 14.3" 70.7* 81.2 81.0" 96.6*
Difference in the cell significant at p < .0001

Table 4: Results of applying three overfitting-prevention techniques.

Level of Aggregation (% correct
Method Data set Word Letter Phoneme Stress Bit mean
a 3 as TEaTo 9.6 65.6 8. 77.2 96.4

cb) ID3 (X Cutoff) TEST: 1 9.1 64.8 78.4 77.1 96.4
(c) ID3 (pruning) TEST: 9.3 62.4 76.9 76.1 96.1
(d) 03 (rules) TEST: 8.2 65.1 78.5 77.2 96.4

al., 1989), this hurts performance in the Nettalk do- Surprisingly, we were unable to train successfully
main. The third row shows the effect of applying the separate networks to the target error level on any
Quinlan's technique of reduce-error pruning (Quinlan, training set other than the 50-word set. For the 100-
1987). Mingers (1989) provides evidence that this is word training set, for example, the individual networks
one of the best pruning techniques. For this row, a de- often converged to local minima (even though the 120-
cision tree was built using the 800-word training set, hidden-unit network had avoided these minima). This
and then pruned using the additional words from the shows that even if shared hidden units do not aid clas-
1000-word training set that do not appear in the 800- sification performance, they certainly aid the learning
word training set. Other trials using words from a process!
1600-word training set produced similar results. Fi- As a consequence of this training problem, we are
nally, the fourth row shows the effect of applying Quin- able to report results for only the 50-word training
Ian's method for converting a decision tree to a collec- set. Table 5 shows the performance of these 26 net-
tion of rules. Quinlan's method has three steps, of works on the training and test sets. Performance on
which we performed only the first two. First, each the training set is virtually identical to the 120-hidden-
path from the root to a leaf is converted into a con- unit network, which shows that our training regime
junctive rule. Second, each rule is evaluated to remove was successful. Performance on the test set, however,
unnecessary conditions. Third, the rules are combined, shows a loss of performance when there is no sharing
and unnecessary rules are eliminated. The third step of the hidden units among the output units. Hence, it
was too expensive to perform on this rule set, which suggests that Hypothesis 2 is at least partially correct.
contains 6,988 rules. However, examination of C.o zorrelation between 1D3

None of these techniques improved the performance and BP indicates that this is wrong. The correlation
of ID3 on this task. This suggests that Hypothesis between XID3 and XBpj (i.e., BP on the single net-
1 is incorrect: ID3 is not overfitting the data in this work) is .5167, whereas the correlation between XID3
domain. This makes sense, since the only source of and XBP26 is .4942. Hence, the removal of shared
"noise" in this domain is the limited size of the 7-letter hidden units has actually made ID3 and BP less simi-
window and the existence of a small number of words lar, rather than more similar as Hypothesis 2 suggests.
like "read" that have more than one correct pronunci- The conclusion is that sharing in backpropagation is
ation. Seven-letter windows are sufficient to correctly important to improving its performance, but it does
classify 98.5% of the words in the 20,003-word dictio- not explain why ID3 and BP are performing differ-
nary. ently.
3.2 A Test L. J._t..-. , 3.3 Tests of Hypothesis 3: Statistics

To test the sharing hypothesis, we attempted to train We performed three experiments to test the third hy-
26 independent networks, each having only one out- pothesis.
put unit, to learn the h, mappings. Jf Hypothesis 2 In the first experiment, we took the outputs of the
is correct, then, because there is no sharing among back-propagation network and thresholded them (val-
these separate networks, we should see a drop in per- ues > .5 were mapped to 1, values < .5 were mapped to
formance compared to the single network with shared 0) before mapping to the nearest legal phoneme/stress
hidden units. Furthermore, the decrease in perfor- pair. Table 6 presents the results for the 1000-word
mance should decrease the differences between BP and training set.
ID3. The results show that thresholding significantly
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Table 5: Performance of 26 separate networks compared with a single network having 120 shared hidden units.
Trained on 50-word training set, tested on 1000-word test set.

Level of Aggregatio i5 correct
Method Data set Word Letter Phoneme Stress it mean1
(a) ID -1TE~i 0.8 41.5 60.5 60.1 92.6
(bP 26 separate nets TRIN: 82.0 97.6 98.4 99.2 99.9

TEST: 1.6 45.0 56.6 71.1 92.9
(c) BP 120 hidden units TRAIN: 82.0 97.4 98.2 99.2 99.9

TEST: 1.8 48.4 59.4 72.9 93.5
Difference (b)-(c) TlAINT 0.0 +0.2 +0.2 0.0 0.0

TEST: -0.2 -3.4*0* -2.8** -1.8" -0.6
Difference (a)-(c) TEST: -1.0 -6.9 +1.1 -12.8 -0.9

Table 6: Performance of backpropagation with thresholded output values. Trained on 1000-word training set.
Tested on 1000-word test set.

Level of Aggregation (o correct
Method Data set Word Letter Phoneme Stress Bit (mean)
(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1
b) BP (legal) TEST: 14.7 70.9 81.1 81.4 96.6

BP (thresholded) TEST: 12.1 67.9 78.6 80.3 96.6
fience (c)-(b) TET -2.6 -3.0" -2.5" -1.1 0.

drops the performance of back-propagation. Indeed, this decoding method leaves the performance of BP
at the phoneme level, the decrease is enough to push virtually unchanged while it substantially improves the
BP below ID3. However, at the other levels of ag- performance of ID3. Indeed, it eliminates a substantial
gregation, BP still out-performs ID3. Nevertheless, part of the difference between ID3 and BP. Mooney et
the results support the hypothesis that the continuous al. (1989), in their comparative study of ID3 and BP
outputs of the neural network aid the performance of on this same task, employed a version of this decod-
BP. A comparison of correlation coefficients confirms ing technique (without the tie-breaking by frequency),
this. The correlation between XID3 and XBPthreh is and obtained very similar results when training on a
.5598 (as compared with .5508 for XBp). set of the 808 words in the dictionary that occur most

While this experiment demonstrates the importance frequently in English text.
of continuous outputs, it does not tell us what kind An examination of the correlation coefficients
of information is being captured by these continuous shows that "observed" decoding increases the simi-
outputs nor does it reveal anything about the role of larity between ID3 and BP. The correlation between
continuous weights inside the network. For this, we XIDsoberved and XBPoberved is .5705 (as compared
must turn to the other two experiments, with .5508 for "legal" decoding). Furthermore, "ob-

In the second experiment, we modified the method ferved" decoding is almost always monotonically bet-
used to map a computed 26-bit string into one ter (i.e., windows incorrectly classified by "legal" de-
of the 324 strings representing legal phoneme/stress coding become correctly classified by "observed" de-
pairs. Instead of considering all possible legal coding, but not vice versa).
phoneme/stress pairs, we restrict.d attention to those From these results, we can conclude that BP was
phoneme/stress pairs that had been observed in the already capturing most of the information about the
training data. Specifically, we constructed a list of ev- frequency of occurrence of phoneme/stress pairs, but
ery phoneme/stress pair that appears in the training that ID3 was not capturing nearly as much. Hence,
set (along with its frequency of occurrence). During this experiment strongly supports Hypothesis 3.
testing, the 26-b it vof, prA, ,rp, either by !D3 or The final expcriment concerning Hypothesis 3 fo-
BP is mapped to the closest phonme/stress pair ap- cused on extracting additional statistical information
pearing in this list. Ties are broken in favor of the from the training set. We were motivated by Klatt's
most frequent phoneme/stress pair. We call this the (1987) view that tltimately letter-to-phoneme rules
"observed" decoding method, because it is sensitive to will need to identify and exploit morphemes (i.e.,
the phoneme/stress pairs (and frequencies) observed commonly-occurring letter sequences appearing within
in the training set. words). Therefore, we analyzed the training data to

Table 7 presents the results for the 1000-word train- find all letter sequences of length 1, 2, 3, 4, and 5, and
ing set and compares them to the previous tech- retained the 200 most-frequently-occurring sequences
nique ("legal") that decoded to the nearest legal of each length. For each retained letter sequence, we
phoneme/stress pair. The key point to notice is that formed a list of all phoneme/stress strings to which
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Table 7: Effect of "observed" decoding on learning performance.

Level of Aggregation (o correct)
Method Data set Word Letter Phoneme Siress Bit (mean)
a ID3 (legal) TEST: 9.6 5.6 78.7 77.2 96.1
b) (legal TEST: 14.7"** 70.9*** 81.1 81.4"** 96.6
c) ID3 (observed) TEST: 13.0 70.1 81.5 79.2 96.4
d) BP (observed) TEST: 14.9"** 71.6" 81.8 81.4"** 96.7

3 mprovement: (c)-(a) TEST- " 4.5.. 2.8 . 2.0" 0.3
BP Improvement: (d)-(b) TEST: 0.2 0.9 0.7 0.0 0.1

that sequence is mapped in the training set (and their hence that this experiment also supports Hypothesis
frequencies). For example, here are the five pronunci- 3. The experiment suggests that the block decoding
ations of the letter sequence "ATION" in the train- technique is a useful adjunct to any learning algorithm
ing set (Format is ((phonemestring) (stressstring) applied in this domain. It also suggests that the per-
(frequency))). formance of block decoding could be improved if somre

(("eS-xn" ">0<<" 22) way could be found to avoid losing windows that were

("@S-xn" 11<0<" 1) correctly classified without ilock decoding. One tech-

("eS-xn" 12>0<<" 1) nique we are exploring is to combine the constraints of
("S-xn" "2<0>>" 1) blocks that overlap.

("QS-xn" "1<0>>" 1)) 4 Discussion

During decoding, each word is scanned (from left to
right) -to see if it contains one of the "top 200" letter The results shown in previous sections demonstrate
sequences of length k (varying k from 5 down to 1). that ID3 and BP, while they attain similar -levels of
If a word contains such a sequence, it is mapped and performance, still do not cover the same set of testing
decoded-as follows. First, each of the k windows in the examples. In particular, an analysis of the 7,242 7-
sequence is evaluated and the results concatenated to letter windows in the test set reveals that there are 917
obtain a bit string of length k .26. Then, this bit string windows that are incorrectly classified by one of the
is mapped to the nearest of the bit strings observed algorithms and correctly classified by the other. This
for this sequence in the training set (ties are broken suggests that an inductive learning algorithm should
in favor of the more-frequently occurring bit string), be able to label correctly all of these 917 windows.
After decoding a block, control skips to the end of the This would yield a performance of 79.9% at the letter
matched k-letter sequence and resumes scanning for level, which would be quite good.
another "top 200" letter sequence of length k. After Other directions for improving these algorithms in-
this scan is complete, the parts of the word that have elude (a) design of better error-correcting- codes, (b)
not yet been matched are re-scanned to look for blocks block decoding using overlapping blocks, (c) direct
of length k - 1. We call this technique "block" decod- analysis of the training set to identify morphemes.
ing. Klatt (1987) points out three properties of the do-

Table 8 shows the performance results on the 1000- main that present special challenges to inductive learn-
word test set. Block decoding significantly improves ing methods:
both ID3 and BP, but again, ID3 is improved much
more (especially below the word level). Further- (1) the considerable extent of letter con-text that can, influence stress patterns in amore, the correlation coefficient between XD3b&ock long word (an hence a tvel aty in
and XBPbIock is .6747, which is a substbntial increase long word (and hence affect vowel quality in

compared to .5508 for legal decoding. Hence, block words like "photograph/photography"), (2)

decoding also makes the performance of ID3 and BP like CoH, which function as a single letter in
much more similar. lide s, hich unctio n a relet

Curiously, these summary numbers hide substantial a deep sense, and thus misalign any relevant
shifts in performance caused by block decoding. To letters occurring further from the vowel, anda d i. (3) the difficulty of dealing with compound
demonstrate this, consider that there is only a.7153 words (such as "houseboat" with its silent
correlation between XJD3ego and XDabjock. This re- "e"), i.e., compounds act as if a space were
fleets the fact that while "block" decoding gains 736 hidden between two of the letters inside the
windows previously misclassified by 'legal" decoding, word.
it also loses 181 windows that were previously correctly
classified by "legal" decoding. Similarly, there is only a Long-distance interactions pose a difficult problem
.7746 correlation between XBPlegal and XBPblock (re- for BP, since capturing them presumably requires a
fleeting a gain of 433 and a loss of 226 windows), very wide window. This in turn requires a very large

The conclusion we draw is that block decoding fur- network with many weights, and these will be much
ther reduces the differences between ID3 and BP, and more difficult and time-consuming to train. ID3 scales
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Table 8: Effect of "block" decoding on learning performance.

Level of Aggregation (7 correct)
Method Data set Word Letter Phoneme Stress Bit (meanL
a ID3 (legal) 'I~F 9.6 65.6 78.7 7.2 96.1

(b) BP (legal) TEST: 14.7"'" 70.9"" 81.1"" 81.4"'" 96.6
c) ID3 (block) TEST: 17.5 73.2 83.8 80.4 96.7
d) BP (block) TEST: 19.9' 73.8 83.9 81.5" 96.7
13 Improvement: (c)-(a) TEST 5.9".. 7 " 1 3 7.2'"' 0.6"
BP Improvement: (d)-(b) TEST: 5.2" 2.9* 2.8"* 0.1 0.1

very well as the number of irrelevant features grows, levels). Consequently, in tasks similar to the text-
so it should be able to handle much wider windows to-speech learning task, ID3 with block decoding is
without problems. clearly the algorithm of choice-particularly for initial

General solutions to the other two problems men- exploratory studies, where its speed is a tremendous
tioned by Klatt appear to be quite challenging. In- advantage.
deed,-machine learning techniques have some distance
to go before they match the .,;formance of the best 6 Acknowledgements
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Abstract a learning system can search through the space of concept
definitions that correctly classify either the original data, orThis paper presents an approach to concept learn- small perturbations of the data. The definition that does best

ing from inconsistent data that foregoes a solution can be taken as the result of learning.
to the full-blown problem rud instead considers a This is the approach taken here, and is implemented us-
subcase, called bounded inconsistency. Data are ing a generalization of Mitchell's [1978] version-space ap-
said to have bounded inconsistency when some proach to concept learning. Mitchell defines a version space
small perturbation to the description of any bad to be the set of all concept definitions in a prespecified Ian-
instance will result in a good instance. The key guage that correctly classify training data-the positive and
idea to learning in the presence of bounded in- negative examples of the unknown concept. The gener-
consistency Is to not only consider concept defi- alized approach [Hirsh, 1989b; 1990), called incremental
nitions that correctly classify all the training data, version-space merging, removes the assumption that there
but also those that miss some of the data by only a is always some concept definition that correctly classifies
small amount. The approach is implemented us- all the given data.
ing a generalization of Mitchell's version-space The paper begins with a description of bounded incon-
approach to concept learning. sistency, the form of inconsistency considered by this pa-

per. The paper continues with the general solution-to this
1 Introduction problem, followed by its implementation with incremental

version-space merging. Experimental results are then pre-
The problem of inductive concept learning-forming gen- sented, followed by an overview of related work and a gen.
eral rules from specific cases-has been well-studied in ma- eral discussion. A formal analysis of how the quality of
chine learning and artificial intelligence. In the simplified results is influenced by the amount of data used in learn-
case that is often studied the concept learning problem is ing concludes the paper. Further details are presented else-
to find some general description in a concept description where [Hirsh, 1989b].
language that covers all given positive examples of an un-
known concept, and includes no negative examples of the 2 Bounded Inconsistency
concept. However, in real-world applications data are of-
ten subject to error, and there may be no concept that cor- This paper addresses the problem of learning from incon-
rectly classifies all the data. When data are inconsistent, sistent data by solving a subease of the problem called
the learner will be unable to find a description classifying bounded inconsistency. The underlying assumption for this
all instances correctly. In general, learning systems must class of inconsistency is that some small perturbation to the
generate reasonable results even when there is no concept description of any bad instance will result in a good in-
consistent with all the data. stance. Whenever an instance is misclassified with respect

Much of the past work on learning from inconsistent to the desired final concept definition, some nearby instance
data forms concept definitions that perform well but not description has the original instance's classification.
perfectly on the data, viewing those instances not coy- Figure 1 shows a simple way to view this. Concepts
ered as anomalous (e.g., [Michalski and Larson, 1978; (such as C) divide the set of instances (I) into positives and
Quinlan, 1986]). Instances are effectively thrown away, negatives. 11 is an example of a representative positive ex
even if they are merely slightly errant. The approach taken ample. It is correctly classified with respect to the desired

here.to.le.r.ing.fro in o t data i . -- concept C. Similarly. i is a correctly classified represen-
tion to the full problem, and instead solve a subcase of the tative negative example. I+ however is incorrectly classi-
problem for one particular class of inconsistency that can fled as p' sitiveeven though the desired concept would label
be exploited in learning. The underlying assumption for it negative. However, a neighboring instance description,
this class of inconsistency, called bounded inconsistency, is I+, is near it across the border, and is correctly classified.
that some small perturbation to the description of any bad Similarly for the incorrectly classified negative instance 1
instance will result in a good instance. When this true, and its neighbor I'. Roughly speaking, if misclassifica-
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ions only occur near the desired concept's boundary, the concept definitions that correctly classify as much of the
data have bounded inconsistency, data as possible.'

4 Implementation

The method used to implement this approach is based on

version spaces [Mitchell, 1978]. However, version spaces
assume the data to be noise-free, and therefore some modifi-
cation of the method is necessary The approach taken here

++  is to use incremental version-space merging [Hirsh, 1989b;
1+ 13 13 19901, a generalization of version spaces [Mitchell, 1978]

that removes its assumption of strict consistency with data.
A version space is generalized to be any set of concept def-
initions in a concept description language representable by
boundary sets.3 The key observation is that concept learn-
ing can be viewed as the two-step process of specifying
sets of relevant concept definitions and intersecting these
sets. For each piece of information obtained-typically an
instance and its classification-incremental version-space

Figure 1: Pictorial Representation of Bounded Inconsis- merging forms the version space containing all concept def-
tency. initions that are potentially relevant given the information

(determined as appropriate for the given learning task). The
For example, if instances are described by conjunctions resulting version space is then intersected with the version

of features whose values are determined by measuring de- space based on all past data. This intersection takes-place
vices in the real world, and the measuring devices are in boundary-set form (using the version-space merging al-
known to only be accurate within some tolerance, bounded gorithm [Hirsh, 1989b; 1990]), and yields the boundary-set
inconsistency can occur. Consider an instance that is classi- representation for a new version space that reflects all the
fled as positive, with a feature whose value is 5.0 (obtained past data plus the new information.
by the real-world measuring device). If the tolerance on the The general algorithm proceeds as follows:
measurement of the feature's value is 0.1, the instance could 1. Form the version space for the new piece of
really have been one with feature value 4.9. If the "true" information.
positive instance were 4.9, and the instance that really has 2. Intersect this version space with the version
value 5.0 would have been negative, a misclassification er- space generated from past information.
ror has occurred. If the tolerance information is correct, for 3. Returneto the first step for the next piece of
every incorrect instance there is a neighboring correct in- information.
stance description, all of whose feature values are no more
than the tolerance away from the original instance's value The initial version space contains all concept descriptions in
for that feature. This is an example of bounded inconsis- the language, and is bounded by the S-set that contains the
tency. empty concept that says nothing is an example, and the G-

set that contains the universal concept that says everything
3 Approach is an example.

Use of incremental version-space merging requires a
The approach taken to solve this problem of learning from specification of how the individual version spaces should be
data with bounded inconsistency is most easily described formed in the first step for each iteration. For example, us-
through the classic view of concept learning as search [Si- ing simple consistency with instances (i.e., forming the ver-
mon and Lea, 1974; Mitchell, 1978; 1982], namely that the sion space of all concept definitions that correctly classify
goal of learning is to determine some concept definition out the current instance) results in an emulation of Mitchell's
of a space of possible definitions as the desired result of [19781 candidate-elimination algorithm. This and other
learning. For consistent data this problem is simply one of examples are presented elsewhere [Hirsh, 1989b; 1989a;
finding a description that correctly classifies all the data. 1990], as are further details of the generalized version-space
When data are inconsistent, however, there is no such defi-
nition. The approach taken here is to select concept defini- 'This is only one possible criterion for selecting a concept.
tions that correctly classify either all instances or, for those Other criteria might consider the amount of "blurring" required
it does not, some other object in the instance language near to get an instance that matches the concept, and select the concept
the missed instance. Each instance is effectively "blurred," that minimizes the sum (or some other function) of the "blurs."
and the concept definitions to be considered are those that 2However, Mitchell [1978] describes one possible way to ex-tclassification for at least one instance in tend his technique to learn from inconsistent data. This is dis-generate a corrct lcussed in Section 6.
each "blur." 3The boundary sets S and G contain the most specific and gen-

Note, however, that in general there will be many possi- eral concept definitions in the set. These bound the set of all con-

ble definitions that correctly classify some instance in each cept definitions in the version space-the version space contains
blur. The preferred result of-learning is the description that all concept definitions as or more general than some element in S
requires the fewest instances to be blurred, that is, those and as or more specific than some element in G.
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approach (includinga discussion of the computational com- generous to include too many things (or in the worst case,
plexity of the method). The key idea in this work is to in- everything).
clude in the instance version space concept definitions that In addition, often it will take too long to wait for enough
are consistent with either the instance or some other term in instances to lead to convergence to a single concept defini-
the instance language near the given instance (where prox- tion. As each instance throws away candidate concept def-
imity is defined as appropriate for the given learning task). initions, the version space gets smaller and smaller. As the
The version space of concept definitions to be considered version space decreases in size, the probability that a ran-
for each instance will then be those concept definitions con- domly chosen instance will make a difference-will be able
sistent with the instance or one of its neighbors within the to remove candidate concept definitions-becomes smaller
region. The net effect is that all instances are "blurred," and and smaller. The more data processed, the longer the wait
version spaces reflect all instances within the blur. for another useful instance. Therefore it will sometimes be

The general technique can be viewed as follows: desirable due to time considerations to use the small but
Given: nonsingleton version space (before converging to a single

concept) to determine a usable result for learning.
Training Data: Positive and negative exam- Thus a situation can arise in which the final version space
ples of the concept to be identified. after processing data has multiple concept definitions. Not

* Definition of Nearby: A method that deter- all of the remaining concept definitions are equal, though.
mines all instances near a given instance. Some may be more consistent with neighboring instances

* ConceptDescription Language: A language than given instances-for the concept definition to be con-
in which the final concept definition must be sistent with ground data more instances require "blurring."
expressed. An additional technique is therefore used to obtain a single

Determine: final concept definition: When a nonsingleton final version
space is generated, all candidate concept definitions in the

* A set of concept definitions in the con- version space are checked for their coverage of the raw, un-
cept description language consistent with perturbed data.4 The concept definition with best coverage
the data or nearby neighbors of the data. is then selected as the final generalization. This is computa-

The method proceeds as follows: tionally feasible as long as the version space is reasonablysmall in size.
1. (a) Determine the set of instances near a

given instance.
(b) Form the version space of all con- 5 Example

cept definitions consistent with some in-stance in this se n s To demonstrate this technique Fisher's iris data [Fisher,
stane this sae w1936] is used. In addition to providing a test of the quality

2. Intersect this version space with the version of the technique, it has been in use for 50 years, and thus

3. Return to the first step for the next instance, permits a comparison to the results of other techniques.

If an instance is positive the version space of all concept 5.1 Problem
definitions consistentwith some instance in theset of neigh- The particular problem is that of classifying examples of
boring instances has as an S-set the set of most specific con- different kinds of iris flowers into one of three species of
cept definitions that cover at least one of the instances, and irises: setosa, versicolor, and viginica. The goal is to
as a G-set the universal concept that includes everything. If learn three nonoverlapping concept definitions that cover
the single-representation trick holds (i.e., for each instance the space of all irises; this requires a slight extension to
there is a concept definition whose extension only contains the version-space approach, which is described in the next
thatinstance) [Dietterichetal., 1982], the S-set contains the subsection. There are 150 instances, 50 for each class; in-
set of neighboring instances themselves. If an instance is stances are described using four features: sepal width, sepal
negative the S-set contains the empty concept that includes length, petal width, and petal length. The units for all four
nothing and the G-set contains all minimal specializations are centimeters, measured to the nearest millimeter. For ex-
of the universal concept that excludes the instance or one of ample, one example of setosa had sepal length 4.6cm, sepal
its neighbors. width 3.1cm, petal length 1.5cm, and petal width 0.2cm.

4.1 Seirchin, the Version Space The concept description language was chosen to be con-junctions of ranges of the form a < n < b for each fea-
Ideally the result of this learning process would be a sin- ture, where a and b are limited to multiples of 8 millimeters.
gleton version space containing the desired concept defini- An example of a legal concept description has [0.8cm <
tion. However, if not given enough data the final version petal length < 2.4cm] and [petal width < 1.6cm]. The
space will have more than one concept definition. This also range for defining neighboring instances was taken to be
happens if the definition of nearby is too generous, since 3 millimeters for each feature-that is, as much as 3 mil-
it will allow too many concept definitions into the version limeters can be added to or subtracted from each feature
space, and no set of instances will permit convergence to a _ _

single concept definition. The definition of nearby should 4 his, of course, requires retaining all data for this later check
be generous enough to guarantee that the desired concept of coverage. An alternative strategy would be to retain only some
definition is never thrown out by any instance, but not too subset of the data to lessen space requirements.
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value for each instance (defining a range of size 6 millime- classes, replacing the use of the 100 negative instances with
ters centered on each feature value). There is no restriction two generalizations that include the negative instances plus
on the number of features that may be blurred-anywhere additional instances that must also be excluded. Thus, for
from all to none may require blurring, example, all positive data are processed for the setosa class,

Note that although this means that each instance could and the result in the S-set is taken as a single generalized
be blurred to be any of an infinite number of instances negativeinstanceforversicolorandviginica. It summarizes
within the range specified by the nearness metric (or if val- the setosa data, as well as additional instances that will also
ues are limited to the nearest millimeter, feature values can be included by the final definition for setosa.
be blurred to any of a large number of nearby values), many The second extension is that, since the three concept def-
of the instances are equivalent with respect to the concept initions that are formed must cover the space, many of the
description language. Two feature values, although differ- more specific definitions for each class can be removed,
ent, can still fall in the same range imposed by the con- since no combination of definitions in the version spaces for
cept description language. Thus only a much smaller set of the other two classes will cover the space of irises. Instead
nearby instances need be considered and enumerated, one of applying the technique for searching the version space to
from each grouping of values imposed by the concept de- find the best concept definition (Section 4.1), only the sub-
scription language. set of the versi.on space that could lead to class definitions

that cover the space of irises is considered. The search then
5.2 Method takes place in the cross products of the three much smaller

version spaces. Furthermore, selection of a hypothesis inThe general approach of Section 4 was used to find rules. one space allows usingit as a generalized negative instance
All neighboring instances for each instance are generated, for theotherversion spaces, so not all triples of concept de -
by perturbing the instance in all ways possible-0.3 is initions from the three version spaces need be considered.
added to and subtracted from each feature value, and the
concept definitions consistent with each combination of po- 5.3 Results
tential feature values were formed. The union of all theseconcept definitions forms the version space for individual Since there is only a fixed amount of data, the learning tech-instances. For example, the positive instance of setosa nique was evaluated by dividing the data into 10 sets ofgiven earlier (with sepal length 4.6c, sepal width 3.1mea, 15 instances, five from each of the three classes. Learningtook place by processing nine of the 10 data sets combinedpetal length 1.5cm, and petal width 0.2cm), has four el- and testing on the tenth data set. This was done for each
ements in its S-set. All have [2.8cm < sepal width < possible group of nine data sets, and the resulting classi-
3.6cm] and [0.0cm < petal width < 0.8cm]. They fication rates were averaged across all 10 runs. A typical
differ, however, on their restrictions on sepal length and final result for a run is a rule set that classifies irises with
petal length: the different concept definitions correspond (petal length < 2.4cm] as setosa, irises with (petal length >
tothe four different combinations obtainable by choosing 2.4cm] and [petal width < 1.6em] as versicolor, and hise
one of [4.0cm < sepal length < 4.8cm] and [4.8cm < with [petallength > 2.4cm] and [petal width > 1.6cm] as
sepal length < 5.6cm],and one of [0.8cm < petal length < wi al 2m d1.6cm] and [1.6cm < petal length < 2.4cm]. The G-set for viginica.

The average overall classification rate on the test datathe instance contains the universal concept that includes ev- was 97%--on average 97% of the test cases were placed
erything as positive. in the proper class. For the setosa class alone the rate was

The goal of learning is to form three disjoint concept def- 100%, as the class is separable from the other two. For
initions that cover the space of instances, and this requires versicolor alone the rate was 93%, and for viginica 94%.
two extensions to the technique described above. The first These rates are comparable to those obtained with other
exploits the fact that the learned concept definitions must techniques: for example, Dasarathy's pattern-recognition
not overlap. The simple approach would be to take the 100 approach [Dasarathy, 1980] obtained 95% accuracy (100%
examples of two of the classes as negative examples for the for setosa, 98% for versicolor, and 86% for viginica); Aha
third class. However, not only must the concept definitions and Kibler's noise-tolerant nearest-neighbor method NT-
for the third class exclude these instances, they must ex- growth [Aha and Kibler, 1989], also obtained 95% ue d-
clude all instances included by the final concept definition racy (100% for setosa, 94% for versicolor, and 91% for
for each of the other two classes. It is not known what the vica and C4 [Quia, 987], Quinln' an tviginica); and C4 (Quinlan, 1987], Quinlan's noise-tolerant
final definitions will be, but it is known that they must be version of ID3, obtained 94% accuracy (100% for setosa,
more general than some element of the S-set for its class. a-d 91% for versicolor and viginica),s The results are sum-
That is, whatever the concept definition, it must at least in- marized in Table 1. NTgrowth and Dasarathy's method are
dlude all instances covered by some most specific concept both instance-based; C4 is the only other learning method
definition generated from the positive data for that class. In that can be said to use a concept description language. For
the iris domain the S-set for each class after processing the example, on one run it generated the decision tree that de-
positivedata for that class was always singleton, so the final fines irises with [petal length < 2.5cm] as setosa, irises with
concept definition for each class must include all examples [petal length < 2.5cm] and [petal width < 1.8cm] as ver-
included by the final S-set element. Therefore, rather than sicol ndthos reman (petal lenth < .cm] and

takig te 5 exmpls o eah clss s ngatve atafor siolor, and those remaining ([petal length > 2.5cm] andtaking the 50 examples of each class as negative data for [pea width > 1.8cme]) as viginica. Note that, unlike this
the other two classes, first only positive data are processed
for each class, and the resulting generalization in the S-set "These latter two results are due to Aha (personal
is taken as a generalized negative i- itance for the other two communication).
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work, C4 decides for itself where attribute values should be the use of a linear number of boundary sets by keeping the
divided, boundary sets for multiple version spaces in a single bound-

ary set).

Le arning A significant distinction can be made between this work
Algorithm Setosa Viginica Versicolor Overall and Mitchell's approach, as well as much other work in

S1 3.33 9 learning from inconsistent data (e.g. [Michalski and Lar-
M 100% 93 80% 9. son, 1978; Quinlan, 1986]. These approaches form con-

Dasarathy 1 % 6 cept definitions that perform well but not perfectly on the
NTgrwth 16% 93.50% 91.13% 94.77% data, viewing those instances not covered as anomalous.
C4 100% 91.07V 90.61% 94.0T Instances are effectively thrown away, whereas here every

instance is viewed as providing useful information, and the
Table 1: Predictive Accuracy of Learning Systems. final concept definition must be consistent with the instance

or one of its neighbors. The approach presented here works
on data with bounded inconsistency. Other approaches han-
dle a wider range of inconsistency, but cannot utilize any

6 Comparison to Related Work instances thatare justa small ways off from correct; they in-
This paper describes one approach to learning from in- stead throw out such instances as nonhelpful. Furthermore,dIbispatar desbs ony adr g thea e fof d- unlike other approaches that degenerate as more inconsis-consistent data by only addressing the subcase of data tency is imposed on the data, the incremental version-space
with bounded inconsistency. Drastal, Meunuer, and Raatz
[Drastal et al., 1989] have proposed a related method that merging approach described here still succeeds even when
works in cases where only positive data have bounded in- all of the data are subject to bounded inconsistency.
consistency. Their approach is to overfit the inconsistent To further demonstrate this point a series of runs of the
data, using a learning technique capable of forming mul- learning method were done on a simple, artificial domain.
tiple disjuncts, some of which only exist to cover anoma- There are three attributes that take on real values in the
lous instances. After learning, they remove disjuncts that range of 0 to 9. The concept description language parti-
only cover instances that can be perturbed to fit under one tions attributes into three regions: greater than or equal to
of the other disjuncts, in effect removing the disjunctions 0 and less than 3, greater than or equal to 3 and less than 6,
that only exist to cover the anomalous data. One benefit of and greater than or equal 6 and less than or equal to 9. A
their technique is that it is applied after learning, focusing concept definition is a conjunction of such ranges over the
on only those instances covered by small disjuncts, whereas various attributes. A single preselected concept definition
here all instances must be viewed as potentially anomalous, serves as the target of learning.
However, they make the stronger assumption that all such Data were created by randomly generating some value
inconsistent data fall into small disjuncts. They furthermore for each attribute in its legal range (0 to 9). This instance
only handle positive data. was then classified according to the preselected target con-

As mentioned earlier, Mitchell 1978] presented an al- cept definition for learning. The identity of each instance
temative approach to learning from inconsistent data with is then perturbed by up to one unit-a random number be-
version spaces. The key idea was to maintain in parallel tween -1 and 1 is added to the given value of each attribute.
version spaces for various subsets of the data. When no This new instance is given the classification of the instance
concept definition is consistent with all data, Mitchell's ap- on which it is based. Training data generated in this manner
proach considers those concept definitions consistent with have bounded inconsistency, since any incorrect instance is
all but one instance. As more inconsistency is detected, the never more than 1 away from a correct instance on any at-
system uses version spaces based on smaller and smaller tribute.
subsets of the data, which the system has been maintaining The test runs perturb different percentages of the data,
during learning. The number of boundary sets that need to test the sensitivity of the approach to this factor. The
be maintained by this process is linear in the total number definition of "nearby" used by the learning method defines
of instances to be processed (in the worst case). This is one instance to be near another if the value of each attribute
still unacceptably costly. In the ins domain, assuming that of the first are within I unit of the corresponding value for
at most 10% of the data should be discounted, this would the second (i.e., the appropriate definition of nearby was
have required updating 30 boundary sets for each instance, selected). All attribute values for a single instance may be
Even using the less reasonable assumption that only 4% of perturbed. 80 randomly generated instances were used.
the data need be ignored will result in an order of magni- Tble 2 summarizes the results of the test. The amount
tude slow down. Furthermore, Mitchell's approach requires of data that was perturbed was allowed to vary from 0% (no
knowing the absolute maximum number of incorrectly clas- data perturbed--data are consistent) to 100% (all data per-
sified instances, in contrast to allowing unlimited number turbed). In all cases learning used a definition of "nearby"
of errors as done here (replacing it with a bound on the that added I to and subtracted 1 from the value of each at-
distance any instance may be from a correct instance). Fi- tribute. The result of the experiment was that, in all cases,
nally, the boundary sets for Mitchell's approach are much incremental version-space merging (with the additional step
larger than for the noise-free case, since Mitchell modifies of selecting the best classifier from the version space) con-
the candidate-elimination algorithm S-set updating method verged to the target concept definition that was used to
to ignore negative data, and similarly positive data are ig- generate the data. Unlike most other learning algorithms
nored by the modified G-set updating method (this allows that degenerate as more noise is introduced to the data, the
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technique was able to correctly learn the desired concept a definition of nearby of 3 millimeters resulted in too many
definition even when all data are perturbed within known neighbors for each instance, making the process too corn-
bounds. One way to interpret these results is that the ap- putationally expensive (the program ran out of memory).
proach described here provides a way to use the knowledge Since measurements were only given to the nearest mil-
that bounded inconsistency exists, which permits success- limeter, there was no intermediate definition of nearby to
ful learning even when all the data are incorrect (within the try. Since adjusting the definition of nearby failed to work,
known bounds). the next step was to adjust the language, and 8 millimeter in-

tervals were chosen. Fortunately the first attempt using the
% I Correct new language with a definition of nearby of 3 millimeters

Yes yielded nonempty version spaces of reasonable size. Crite-

20 Yes ria for selecting appropriate description languages and def-
40 Yes initions of nearby is an area for future work.
60I Yes lb further demonstrate this issue a number of runs were
60 Yes made on the artificial learning task of the previous section.
80 Yes In these experiments the concept description language was
100 Yes fixed (using the same language as in the previous section)

and the definition of nearby (the amount of inconsistency
Lble 2: Correct Concept Identification for Different assumed present by the learning method) was varied. 100%

Amounts of Inconsistency. of the attribute values were perturbed by up to 1 unit. This
set of experiments explores how the definition of nearby af-
fects the size of the final version space, as well as the sizes of

7 Discussion the boundary sets for each instance version space. The com-
putational complexity of incremental version-space merg-The general approach described here is to consider concept ing is sensitive to boundary-set size [Hirsh, 1989b; 1990].

definitions consistent with the instance or some neighbor
of the instance. The technique requires a method for gen-
erating all i stances near a given instance, but it does not [ A v ge A verage1
constrain a priori the particular definition of "nearby." For LeabyL ITS1 # Neighbors
example, in tree-structured description languages one such m l 0 1
definition would be that two feature values are in the same 1
subtree: rhombus and square might be close whereas rhom- 2 4 6A8
bus and oval might not. 3 38 12.91

However, the approach described here is extremely sen-
sitive to both the concept description language and the defi-
nition of "nearby." For a fixed language, if the notion of Table 3: Version Space Size and Number of Neigh' -,,
nearby is too small, the version space will collapse with Different Definitions of "Nearby."
no consistent concept; if it is too large, each instance will
have many neighbors, and instance boundary sets will be The results of these experiments are summ',
quite large, which makes the approach computationally in- bles 3 and 4. There are three attributes, and altoge. .
feasible. Furthermore, the final version space will likely are 216 concept definitions in the language. The different
be too big to search for a best concept after processing the rows correspond to different definitions of nearby-how
data. Similarly, for a fixed definition of nearby, if the con- much is added to or subtracted from each instance. This
cept description language is too coarse, instances will have was varied from 0 to 3-the maximum distance apart the
no neighbors, whereas if the language is too fine, then in- feature values of two instances can be so that the instances
stances will have too many neighbors. The choice of lan. are still considered neighbors (column 1 in the tables). Note
guage and definition of nearby affects the size of version that the real amount of variance imposed on values when
spaces and the convergence rate for learning (how many generating data was at most 1-no more than 1 was added
instances are required to converge, if it is even possible), to or subtracted from the randomly generated value for the

The ideal situation for this approach would be when the feature. The second column of Table 3 summarizes the size
definitionof nearby is given or otherwise known for thepar- of the final version space after all 80 instances have been
ticular domain, as well as when the desired language for processed. Note that, while learning is impossible here if
conCep" IQ proide_ However, it is often the cose 0hat one the data are assumed consistent, and convergence is possi-
or both are not known, as was the case for the iris domain ble using the 80 instances if the definition of nearby adds
of the previous section, which required a few iterations be- or subtracts only 1 to each value (the actual value used in
fore a successful concept description language and defini- generating the inconsistent data), as the value for nearby in-
tion of nearby was found. The first description language creases to 2 and 3 the final version-space size increases. The
chosen used intervals of size 4 millimeters, rather than 8 third column presents the average number of neighbors for
as was finally selected. The first definition of nearby con- each instance. As would be expected, this number increases
sidered instances with feature values within 2 millimeters significantly (exponentially) as the amount by which values
of given feature values as "nearby," but the version space may be perturbed increases. The values are close to their
collapsed-no concept definition remained after processing expected values (obtainable by case enumeration) of 1.0,
the data-for the versicolor and viginica classes. However, 3.0 (= (13/9)'), 6.7 (= (17/9)3), and 12.7 (= (7/3)').
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Table 4 summarizes the average size of boundary sets for to this new notion of consistency-it is the probability that
each instance. Since positive instances always have a sin- h and C disagree:
gleton G-set, and similarly negative instances always have Definition. Error(h, C) = the probabil-
a singleton S-set, averages are also given for the S- and G- ity that for a randomly chosen instance x
sets when excluding these cases. As expected, as the defini- clpsifiedor a positive or negative example
tion of nearby grow3 more generous, the various quantities of C, itis not the case that Consistent(x, h).
increase. With these definitions it is possible to map over Lemma

Averag Average Average Average 2.2 from Haussler's [1988] Al. Journal paper:

[SI1 I Pos SJ IGL Neg IGI Lemma 1: The probability that some ele-

0 1 1 3 434 ment of the version space generated from m

1 1.51 2.71 3 5.11 examples of C has error greater than e is less

S 2 6.13 4 than IHIe-er, where IHI is the number of

3 4.01_ 11.04 5.06 6.85 expressions in the concept description lan-
guage H used by incremental version-space

Table 4: Boundary Set Size for Different Definitions of rgg

"Nearby." Proof: Assume that some set of hypotheses hl,..., h in
the concept description language H have error greater than

These results emphasize the need for a sufficiently gen- c with respect to C. This means that the probabilit that

erous, but not overly generous, definition of nearby. They an example of C is consistent with a particular hi is less

furthermore suggest a method for automating the selection than (1 - e). The probability that hi is consistent with m

of an appropriate definition of nearby given a fixed con- independent examples of C is therefore less than ( -
Finally, the probability that some hi E hl,..., hA, is consis-cept description language. The method would begin by tent with m instances is bounded by the sum of their indi-

assuming consistency, then slowly increase the amount of tn ihmisacsi one ytesmo hi ni
inconsistency assumed to be presto in the data (i.e., in- vidual probabilities, thus the probability that some hi with
iconasiteenrsiy audof bep the definitio ea tl ihe., i error greater than e (with respect to C) is consistent with mcrease the generosity of the definition of nearby) until either examples of C is less than k( 1 - e),m. Since A, < IHI, and

a nonempty version space is generated or enough time has (1 - C < es tha pbl - e ince hypoand

passed to believe that the approach is not computationally eiwt e grt e the oitn getin ephypot
feasible on the given data with the given concept descrip- examples of C is less than HIerni. 0
tion language.

A simple corollary of this Lemma says how many exam-
8 Formal Results ples are necessary to guarantee with high probability that

Recent theoretical work on concept learning (e.g., [Haus- all concept definitions in the version space have low error:

sler, 1988]) has developed techniques foranalyzing how the Corollary 1: The probability that all ele-
quality of results is influenced by the amount of data used ments of the version space generated from
in learning. This section gives such an analysis for learning at least
from data with bounded inconsistency. ln(IHI) + ln(X)

To do this a number ofdefinitions are necessary. First, the e
function Neighbors(x) gives the set of examples in the in- examples of C will have error less than e is
stance description language that are near a (for the learning- 1 - 6.
task specific definition of nearby): Proof: Solving 6 < jHIe-em for m gives the desired re-

Definition 1: suit. 0

Neighbors(x) = I y is near ax}. At first these results may appear somewhat surprising,

Furthermore, since data may have bounded inconsistency, since they give the same guarantees as Haussler, yet ad-
it is necessary to redefine what it means for a concept defi- dress learning from inconsistent data. The reason for this
nition to be consistent with an instance. A concept is con- is that these results use a weaker definition of consistent,
sistent with an example if it cor. xtly classifies the example and hence use a weaker notion of error, than the traditional
or one of its neighbors: definition used by Haussler.

Definition 2: An instance x is said to Finally, note that these results do not only apply to
be consistent with a concept C (written the version space approach presented here. Any learning
Consi8tent(a, C)) if, when a is positive, method that generates concept descriptions "consistent" (in
3p E Neighborm(a) with p E C, and when the sense of Definition 2) with m examples of some concept
a is negative, 3n E Neighbors(x) with C will have these guarantees.
n V C (where p E C means C would have
classified p as positive, and n 0 C means C 9 Summary
would have classified n as negative). This paper has described an approach to learning from

The definition of the error of a concept definition h with inconsistent data that focuses on a subase of the prob-
respect to a desired target concept C is now defined relative lem, when data have bounded inconsistency. The key
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idea to learning from such data is to find concept defi- [Hirsh, 1989b] H. Hirsh. Incremental Version-Space
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Conceptual Set Covering: Improving Fit-And-Split Algorithms
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Abstract The fit-and-split learning method is used by many machine
learning systems of every type. For example, it is used by

Many learning systems implicitly use the fit-and- operator learners [Kadie, 1989; Shen and Simon, 19891, by
split learning method to create a comprehensive automatic programmers [Summers, 1977], by discovery
hypothesis from a set of partial hypotheses. At the systems [Falkenhainer and Michalski, 19861, and by inte-
core of the fit-and-split method is the assignment of grated empirical/explanation-based systems [Drastal et al.,
examples to partial hypotheses. To date, however, 1989]. All thcse systems concentrate on step one of the
this core has been neglected. This paper provides method (partial-hypothesis creation) or step three
the first definition and model of the fit-and-split (decision-rule creation). Extant systems typically neglect
assignment problem. Extant systems perform
assignment nearly arbitrarily, implicitly using, for step two, example assignment; they do the assignment
example, greedy set covering. This paper also without regard to the effect on the final hypothesis using,
presents Conceptual Set Covering (CSC), a new for example, the greedy-set-covering algorithm.
assignment algorithm. An extensive empirical This paper describes a new assignment algorithm called
evaluation over a wide range of learning problems Conceptual Set Covering (CSC). CSC tries to assign
suggests that CSC can improve any fit-and-split examples to partial hypotheses so as to minimize the total
learning system. number of disjuncts in the decision rules of the final

hypothesis. The result is a final hypothesis that is usually
1 Introduction simpler and more accurate than that produced by alterna-

tive methods. Empirical evidence suggests that the adop-
One way to solve a complex learning problem is to tion of CSC can improve any fit-and-split learner.

decompose it into simpler learning problems. Thefit-and-
split learning method is perhaps the most direct way to do 2 Fit-and-Split Learning Problem
such a decomposition.

FIT-AND-SPLIT LEARNING METHOD This section illustrates the fit-and-split learning problem
Input: Examples and learning problem called the partial with an example, defines the learning problem, and then

learner uses a larning-problem generator to specify a parameter-
Procedure: ized model of typical fit-and-split learning problems. Later

t) Fitting - Use the partial leamer to find a set of the model will be used to motivate a heuristic method.
partial hypotheses such that each example is covered
by at least one partial hypothesis. 2.1 Example
2) Splitting, part 1 - Assign each example to one of
the partial hypotheses that covers it. Consider an example from the domain of empirical
3) Splitting, part 2 -For each partial hypothesis, discovery. The target function (unknown to the learner) is:
create a general decision rule that covers the assigned If x > 1 then sin(2
examples.

Output: A final hypothesis in the form of a decision ?? else if x 5-4 then I
listsis de else -x.

if decision rule, In addition, suppose that the learning program is given fivethen apply partial hypothesis, example input/output pairs: (-5,1),(-2,2),(-1,1), (2,0),
else decision rule, and (5,1). Figure la shows the target function and the

then apply partial hypothesis2  examples. As the learner's first step, it calls the partial
els d learner to create a set of partial hypotheses. Suppose the[else decision rule, h partial learner creates the functions shown in figure lb.
1then apply partial hypothesis.

I Support was provided by tihe Fannie and John Hertz Foundation and ONR grant N00014-88-K 124.
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None of these partial hypotheses cover all examples, so
a) they must be combined in a decision list. The decision rules

o for the decision list are typically formed by a concept
learner such as AQ, ID3, or PLS [Michalski and Chilausky,

41980; Quinlan, 1986; Rendell, 19861. Such a concept
learner takes as input a set of positive and negative exam-
ples. It returns a decision rule that covers (that is, returns

2 true when applied to) each positive example but does not
cover any negative example.

o The assignment problem is thus two-fold. First, the
assigner must decide where in the decision list each partial

-2 hypothesis will appear.2 Second, for each partial hypothesis
occurrence, the assigner must decide which examples are

-4 to be covered by that occurrence. The next section shows
how the choices made by the assigner can affect the
complexity (and thus the accuracy) of the final hypothesis.

-5 -4 -3 -2 -1 0 1 2 3 4 5 2.2 Fit-and-Split-Assignment Problem
b) A geometric interpretation of the assignment problem

6 will help illustrate how good assignments lead to good final
fhypotheses and how bad assignments lead to bad final

4 hypotheses.
A decision list, such as the final hypothesis, can be

2 plotted as an ordered set of orthogonal rectangles? Each
-1 rectangle represents a disjunct within a decision rule of thef r~~~ectage erset

decision list. The desire for a simple final hypothesis
o "yXn(piI2x) translates into a preference for the decision list plotted in

f(x)=-l figure 2b over the one plotted in figure 2a, because figure b
-2 - uses fewer rectangles and, thus, fewer disjuncts.

The fit-and-split problem can be formalized in terms of
-4 :the geometric interpretation:

FIT-AND-SPLIT PROBLEM

-6 Given: A set of examples and a partial learner
-5 -4 -3 -2 -1 0 1 2 3 4 5 Find: A set of covering partial hypotheses and a set of
Figure 1: a) The Target Function and Example rectangles (disjuncts) such that:
Points - From the example points the learner tries • Every rectangle is labeled with a partial hypothesis.
to create an accurate approximation of the function. • The set of rectangles is ordered. (The relative priority
b) The partial learner is used to create a set of partial of rectangles with the same label is not important.)
hypotheses such that each example is covered by at Every example must be inside at least one rectangle.
least one partial hypothesis. Here, each example is * Every example must be compatible with the first
an input/output pair and each partial hypothesis is a rectangle that it lies within. An example is said to -be
nin.tu paia hypothesis covers an example if compatible with a rectangle if the example is coveredfunction. A partial hypbyhthesrectangle'sxalabel.

it includes the point defined by the example. by the rectangle's label.•The number of rectangles is as small as possible.

2 A partial hypothesis can appear more than once in the decision list.
3 The term rectangles, as used here, includes hyper-reclangles and open-ended rectangles which extend to infinity along
one or more axes.
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Rather than looking directly for the ordered set of
a) rectangles, a learner can look for an assignment list. Table

................................................................. 1 shows the assignment list corresponding to figure 2. An
2.ft )-x assignment list is an ordered set of two pairs. The first
It., _ l _ , .,component of each pair is a partial hypothesis. The second

I. component is the set of examples that are assigned to that,) 0- *" ) r .. _. , partial hypothesis. An example, (x, y), is represented by its
" 2 -" -" x component. Although not illustrated here, a partial-5 -4 - -2 1 2 3 4 5 hypothesis may appear in a list more than once (or not at

- -all). Examples, however, appear exactly once. In addition,
an example must be assigned to a partial hypothesis that

................................................................................ covers it. Rectangles are formed from assignm ent lists
b) according to the procedure listed in figure 3.

ft, ..0-, ........................................................................

2. f(x).thflp2 I x)

,. 1 -X 1. For each element,
,,. 0 ., <PARTAL HYPO,x-set > in the assignment

') ) ' - .) table (fn order) :
M

- - 0 la. Let POS =x..sel4. Let NEG = U. xset,
where n is the length of the assignment

................................................................................ table .
Figure 2: Geometric Interpretation - Examples lb. Use a concept learning program to
are represented by labeled points. Disjuncts are create a set of rectangles REC..SET,
represented with rectangles. Examples are labeled that distinguishes POS from NEG.
with the partial hypotheses that cover them. Rect- 2. Output
angles are labeled with a single partial hypothesis "if RECSET, then PARTIAL HYPO
and a number. Low-numbered rectangles have
priority over high-numbered rectangles. Figure a else if REC-SET2 then PARTIALHYPO2
shows the examples covered with five rectangles . •
(and three partial hypotheses). Figure b shows the else if REC_SET, then PARTIAL_HYPO,"
examples coveied with three rectangles (and three
partial hypotheses). Because figure b covers the Figure 3: The Assignment-List-to-Decision-List
examples with fewer rectangles, it is preferred. Algorithm - For each row of the table, the algo-

rithm produces a decision rule that distinguishes the
examples on the row from the examples onsubsequent rows.

Table 1: The Assignment Lists Corresponding to

Figure 2.
Now the fit-and-split-assignment problem, a subprob-

a) lerm of the fit-and-split problem, can be defined:
Partial Hypothesis Assigned Examples FIT-AND-SPLIT-ASSIGNMENT PROBLEM

1. f(x) = x f-5,-1,5) Given: A set of examples and a covering set of partial
2. f(x) = -x {-2} hypotheses.
3. f(x) = sin (!)  '2Find: An assignment list such that the decision list pro-3 f duced by the assignment-list-to-decision-list algorithm

will contain as few rectangles as possible.
Partial Hypothesis Assigned Examples In the one-dimensional case the problem does not look

difficult. The example space, however, can be n -dimen-

1. f(x)=-x j{-2,-} sional and non-Euclidean. In general the problem is
2. fx) = sinixI 122,5) "wiFard (because any set-covering problem [Garey and

2x) ~Johnson, 19791 can be reduced to a fit-and-split assignment
3. f(x) = 1 f{5} problem with an example space consisting of one nominal

dimension).
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Because the problem is NP.hard, it is natural to look for 1. Start with an example space. In
-heuristic methods with good performance on typical cases, general, any example space is permis-
but first, typical fit-and-split-assignment problems must be sible. (For the tests of section 4,
characterized. This will be done by modeling fit-and-split- the example space is
assignment problems with a parameterized problem gen- [1,101 x [0.0,10.01 X {rnr4gn, lue) x [1,20].)
erator. 2. Randomly partition the space into

regions. The space is split by rep-
2.3 Model of Fit-and-Split-Assignment Problems eatedly dividing the space with a

hyperplane. The hyperplane is defined
The first step toward describing a model of assignment with a randomly chosen value on a

problems is to introduce some new terms. In the example randomly chosen axis. The random
problem, three examples are unambiguous, that is, each is choices are made according to uniform
covered by exactly one partial hypothesis, called its true distributions. The number of splits
partial hypothesis. Unambiguous examples constrain to be made is specified by the prod-
assignment algorithms because each unambiguous exam- uct of two parameters, number of
ple must be assigned to the example's true partial hypoth- disjuncts per true partial hypotheses
esis.Ambiguous example are those that are covered by two and number of true partial hypoth-
ormore partial hypotheses: one true partial hypothesis and eses.
one or more coincidental partial hypotheses. A look back 3. Partial hypotheses are randomly
at the target function of the example problem (figure la), selected from a finite set of possi-
shows that example (-1,1) is covered by its true partial ble true partial hypotheses, PT. The
hypothesis, f(x) = -x, and one coincidental partial hypoth- selection is done according to the
esis, f(x) = 1. Likewise, example (5, 1) is truly covered by uniform distribution. A parameter
f(x)= sin(!x) and coincidentally covered by f(x)= 1. In called number of true partial hypoth-

eses specifies the size of PT.
general, every example will be assumed to have one true 4. Example points are selected from the
partial hypothesis, and zero or more coincidental partial 4 p e pontsmar selected f te
hypotheses. The success of an assignment algorithm will on each axis. Values are chosen

depend in part on how well it can distinguish true partial according to the uniform distribu-
hypotheses from coincidental partial hypotheses. tion.

With these terms in mind, a typical fit-and-split- 5a. If the point has been generated
assignment problem can be characterized by describing a before, the partial hypothesis that
problem generator. The generator is listed in figure 4. covered it before covers it now.

5b. If the point is new, it is always
2A4 Related Learning Problems covered by the true partial hypoth-

The fit-and-split-assignment problem is a specialization esis I-f The region from which it
of the overlapping-concept-learning problem [Michalski, comes and may be covered by
1983; Cohen and Feigenbaum, 19821, where a class corre- coincidental partial hypotheses.
sponds to a partial hypothesis. It differs from standard Coincidental partial hypotheses come
overlapping concept learning in two ways. First, examples from PC, a set formed by randomly
are labeled with every class (that is, partial hypoth 'sis) that adding between 0 and I PT 12 -1 new
covers them. In the standard problem, examples an labeled partial hypotheses to the set PT. The
with only one covering class at a time. SeconG, every probability that a partial hypothesis
example is covered by one true class and zero or more in PC will cover an example is a
coincidental classes. In other words, examples are always parameter called chance of coinci -
correctly labeled with their true class, but because of dence.
noise/coincidence, they may also be labeled wito zero or
more coincidental classes. Unlike other noise models, Figure 4: Assignment Problem Generator - This
coincidence is consistent, that is, if an example comes up generator provides a parameterized model of typi-
again, it will be labeled the same way. In the standard cal assignment learning problems. The parameters
problem, overlap is caused by examples having two or are number of true partial hypotheses, number of
more true classes. disjuncts per true partial hypotheses, and chance of

coincidence.
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3 Conceptual-Set-Covering Algorithm

The most straightforward way to try to solve a fit-and- 1. Use greedy set covering to find a
split assignment problem is with the greedy-set-covering small, covering set of partial
algorithm shown in figure 5. hypotheses. Attach an empty assign-

ment set, f, to each partial hypoth-
esis.

1. Let i=l. 2. Give each example an ambiguity score
2. Find, BEST-PARTALHYPO, the partial equal to the number of partial
hypothesis that covers the most exam- hypotheses that cover it. (Unambigu-
ples. ous examples will have an ambiguity

2a. Let PARTIALHYPO =BESTPARTAL_HYPO. score of 1.)
3. Of all the partial hypotheses thatLet xset be the x components of all
cover an example with the best (low-

the examples that BEST_PARTIALHYPO est) ambiguity score, pick one that
covers. Remove all the covered exam- covers the most examples. Call this
ples from consideration. BESTPARTJALHYPO.

2b. Increment i and repeat at step 1 4. Every example is an input/output
until all examples are removed, pair, (x,y). Create a list of all

3. Return the assignment list examples that 1) are covered by
BEST_PARTIAL HYPO and 2) have the
best ambiguity score. Let POS be the

Figure5: The Greedy-Set-Covering Algorithm x components of this set. Let NEG be
a list of the x components of all
examples not covered by

The problem with the greedy-set-covering algorithm is BEST..PARTAL HYPO.
that it does not go far enough. It tries to minimize the 5. Use a concept learner to create a
number of decision rules in the final hypothesis, but does preliminary decision rule that dis-
not try to minimize the number of disjuncts within those tinguishes the examples in POS from
decision rules. those in NEG.

When research on the clustering problem faced a similar 6. Add the x component of examples
situation, conceptual-clustering algorithms were devel- covered by this preliminary decision
oped. These are algorithms that look for a solution that can rule to BESTPARTIAL HYPO 's assign-
be expressed simply [Pitt and Reinke, 1988; Stepp and ment set. Remove these examples from
Michalski, 1989]. In a similar manner, the Conceptual- consideration. Note that
Set-Covering algorithm (CSC) tries to find a solution that BESTPARTIALHYPO is not removed from
can be expressed simply. consideration because a partial

The CSC is listed in figure 6. The algorithm's applica- hypothesis can become
tion on the example problem is illustrated in figure 7. BESTPARTIAL HYPO more than once.

7. Until no examples remain, repeat at
step 2.

8. Create an assignment list by order-
ing the partial hypotheses according
to the size of their assignment sets
(that is, a partial hypothesis to
which two examples has been assigned
is listed before a partial hypothesis
to which one example has been
assigned). Return this assignment
list.

Figure 6: The Conceptual-Set-Covering Algorithm
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1. Greedy set covering finds three partial hypotheses, problem. Targets were generated according to the methods
f(x) = -1, f(x) = x, and fx) = s x and distributions described in section 2.3. A validation test

) = 7iset containing 100 examples was generated. Multiple
2. The ambiguity score of each example is computed. training sets of size 5, 10, 20, 50, 100, 150, and 250 were

Examples (-5,1), (-2,2), and (2,0) are covered by generated. For each size, 29 training sets were generated.
one partial hypothesis each, and so, have ambiguity Four learners were tested. They are listed in table 2. The
score 1. 95% confidence intervals were determined using the

3. CSC chooses fRx) = 1 as the best partial hypothesis t -distribution. Figure 8 shows the results of one such test.
because it covers an example, (-5, 1), with ambiguity With training sets of size 100 and larger, CSC performed
score 1 and because it covers a total of three exam- significantly better than the other learners.
ples.

4. POS is {-5}. NEG is {-2, 2}. Table 2: The Four Learners Tested - Each con-
5. PLS-LISP, a concept learner, is given POS = {-5} sists of an assignment algorithm and a concept

and NEG = {-2,2}. It returns preliminary decision learner.
rulex <-3.

6. Example (-5,1) is added to the assignment set of Name Assigner Concept Learner
partial hypothesis f(x) = 1. Because the assignment CSC CSC Decision-tree learner with no
set was empty, it is now {-51. Example (-5,1) is pruning [Quinlan, 1986; Ren-
removed from consideration. dell, 1986]

7. The second time around: BEST-PARTIAL HYPO is Greedy0 greedy set coy- Decision-tree learner with no
f(x)=-x. POS is {-2}. NEG is {2,5}. PLS-LISP ering pruning
returns x < 0. So, (-2,2) and (-1,1) are assigned to Greedy3 greedy set coy- Decision-tree learner with
f(x) = -x and removed. ering pruning parameter r, set to

The third time around: BESTARALHYPO is Most al3.0 [Rendell, 1986]
Most all examples to Decision-tree learner with no

f(x) = sin!2xJ. POS is {2}. NEG is {}. PLS returns Freq the most cover- pruningto ing partial
TRUE. Examples (2,0) and (5,1) are assigned tohyptis

f(x) = sin(!x), 
hypothesis

8. The result is the assignment list shown in table IV.
The assignment-list-to-decision-list algorithm (fig- The first test seiies showed that CSC could perform
ure 3) is run on this assignment list. The output is: better than greedy set covering. The second test series was

if x < 1 and x > -3 then -x designed to find where each algorithm was best. The space
esh ix of possible targets was surveyed. The number of truealso if x >: -1 then smn ) partial hypotheses was set to 2, 5, or 10. The expected

else 1 number of additional coincidental partial hypotheses was
thus 3.5, 17.0,59.52, respectively. The number of disjuncts

Figure 7: The Conceptual-Set-Covering Algorithm per true partial hypothesis was set to 1, 3, or 5. And the
Applied to the Example Problem of Figure 1. coincidence probability was set to 0%, 5%, 10%, 20% or

50%. At each point in target space, three targets were
generated. For each target, training sets of size 5, 10, 20,
50, 100, 150, and 250 were generated. Thus, altogether 945

4 Evaluation (3 x 3 x 5 x 3 x 7) tests were conducted.4
Because the complexity of the targets varied widely, the

The hypotheses produced by CSC are as simple or average learning curve had high variance. Instead of corn-
simpler than those produced by greedy set covering. Two puting the average, a better statistic can be computed from
series of tests were used to see if this increased simplicity the rank ordering of the four learners on each learning
(as measured by the number of disjuncts is the final problem (that is, which learner did best, which did second
hypothesis) would translate into more effective learning (as best, which did third best, and which did worct). The
measured by accuracy on validation test sets). The first test
series I..a designed to tet W hth e k"* .. V,.,

significantly better than greedy set covering. Every test in
the first test series started with a randomly generated target

4 In fact, each test was repeated with 5 different tests sets. The results from these 5 subtests were averaged to produce a
single result for each of the 945 tests.
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0 5D 10o ISO 200 250 74% of the tests. The second best learner, Greedy0,
uolTrr Eins was ranked first or tied for first on about 36% of the
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Figure 8: Learning Curves for Four Assignment
Algorithms - The target was randomly generated
with 5 true partial hypotheses, 3 disjuncts per tre Table 3: Observed Points in Target Space Where
partial hypothesis, and a 20% coincidence proba- CSC Did Significantly Better than the NumberTwo
bility. Rated Learner - At no point in target space did

another learner perform significantly better than
CSC.

statistical significance of the ranking can be evaluated with
the Friedman F, -test for randomized block design with a # of disjuncts per true partial hypothesis

1985].~# of trueset to 5% [McClave and Dietrich, 1985p.t pril 1 3 5
Figure 9 shows that CSC did best, followed by GreedyO, ypothes 1es5

Greedy3, and Most Freq. Under the assumption that the
tests are representative, the Friedman F, -test indicates that 2 - 10-20% 5%,20-50%S 5-50% 5-20% 5%,50%
the performance difference between CSC and Greedy0 is 10 10-20% 5% 5-20%

significant to at least the 99.5% level.
The performance of the learners was also analyzed at

each surveyed point in target space. As section 2.3 detailed,
target space is described with three parameters the number
of true partial hypotheses in the target, the number of 5 Discussion and Conclusion
disjuncts per true partial hypothesis, and the coincidence
probability. At no surveyed point in target space did This paper identifies the assignment problem as an
another learner do significantly better than CSC. At many important but overlooked part of fit-and-split learning. It
points CSC was ranked first and did significantly better contributes both a definition and a model. The character-
than the second ranked learner (see table 3). ization explains why poor assignments result in a poor final

hypothesis.

5 This statistical test is often used to decide if a new medical treatment is significantly better than an established treat-
ment. It is nonparametric, that is, it requires no assumption about distribution.
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Concept Set Covering (CSC) is a new algorithm that [Falkenhainer and Michalski, 1986] Brian Falkenhainer
tries to make intelligent fit-and-split assignments. It works and Ryszard S. Michalski. Integrating qualitative and
first with the most unambiguous examples (that is, those quantitative discovery: the ABACUS system. Machine
examples covered by the fewest partial hypotheses). The Learning, 1(4):367-401, 1986.
resulting preliminary decision rules often remove ambigu- [Garey and Johnson, 1979] M. R. Garey and D.S. Johnson.
ous examples from consideration. Computers and Intractability: A Guide to the Theory of

CSC was evaluated on hundreds of learning problems. NP-Completeness. W.H. Freeman, San Francisco, 1979.
The complexity of the learning problems was varied sys- [Kadie, 1989] Carl M. Kadie. Diffy-S: Learning Robot
tematically along three axes: 1) the number of true partial Operators from Examples of Operator Effects. Techni-
hypotheses, 2) the number of disjuncts per true partial cal Report UIUCDCS-R-89-1550, Computer Science
hypothesis, and 3) the coincidence probability. At many Department, University of Illinois, Urbana, IL, October
points in problem space, CSC did significantly better than 1989. Masters Thesis.
alternative methods. It never did significantly worse. Thus, [McClave and Dietrich, 1985] James T. McClave and
the empirical evaluation suggests that (at least to the extent Frank H. Dietrich. Statistics. Dellen Publishing Coin-
that the hundreds of learning problems were representa- pany, San Francisco, third edition, 1985.
tive) CSC is the better algorithm. [Michalski, 1983] R. S. Michalski. A theory and method-

Several limitations of the fit-and-split method and the ology of inductive inference. In R. S. Michalski, J. G.
CSC algorithm should be kept in mind. First, although the Carbonell, and T. M. Mitchell, editors, Machine
fit-and-split method is a simple way to decompose a Learning: An Artificial Intelligence Approach,
learning problem, it may not always be the best. Sometimes chapter 4, pages 83-134, Palo Alto: Tioga Press, 1983.
it might be better to first split and then fit [Tcheng, et al., [Michalski and Chilausky, 1980] R. S. Michalski and R. L.
1989]. Also, because the choice of partial hypotheses Chilausky. Learning by being told and learning from
(fitting) can affect the quality of the decision rules (split- examples: an experimental comparison of the two
ting), it might sometimes be best to integrate the fitting and methods of knowledge acquisition in the context of
splitting processes. The CSC algorithm also has developing and expert system for soybean disease
limitations. It is heuristic; its performance is not guaran- diagnosis. Policy Analysis and Information Systems,
teed. Indeed, the empirical evidence indicating that it 4(2), 1980.
performs well assumes that the model produces [Pitt and Reinke, 19881 L. Pitt and R. E. Reinke. Criteria
representative assignment problems. The model was cho- for polynomial time (conceptual) clustering. Machine
sen for its simplicity and because it seems to fit, at least as Learning, 2(4):371-396, 1988.
a first approximation, problems such as scientific [Quinlan, 19861 J. Ross Quinlan. Induction of decision
discovery. Study of other fit-and-split problems might lead trees. Machine Learning, 1(1), 1986.
to different models and different heuristic algorithms. [Rendell, 1986] Larry Rendell. Induction, of and by prob-
Also, CSC works only on all-or-nothing partial hypotheses. ability. In L. Kanal and J Lemmar, editors, Uncertainty
It does not work with probabilistic partial hypotheses ("the in Artificial Intelligence, pages 429-443, New York:
probability that this partial hypothesis covers this example North Holland, 1986.
is 0.9"). Probabilistic partial hypotheses is an area of future [Shen and Simon, 1989] Wei-Min Shen and Herbert A.
research. Simon. Rule creation and rule learning through envi-

Despite these limitations, the fit-and-split method and ronmental exploration. In Proceedings of the Eleventh
CSC offer important benefits. The fit-and-split method is a International Joint Conference on Artificial
straightforward and efficient way to simplify learning Intelligence, pages 675-680, Detroit, MI, 1989.
problems. CSC, according to the empirical evaluation, [Stepp and Michalski, 1986] R. E. Stepp and R. S
works significantly better than assignment methods cur- Michalski. Conceptual clustering: inventing goal-
rently in use. In addition, CSC is .. idely applicable. Thus, oriented classifications of structured objects. In R. S.
the use of the CSC assignment algorithm is likely to Michalski, J. G. Carbonell, and T. M. Mitchell, editors,
improve any fit-and-split learning system. Machine Learning, Volume 11, chapter 20,

pages 471-498, Los Altos: Morgan Kaufmann, 1986.
References [Summers, 1977] P. Summers. A methodology for LISP
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baum. The Handbook of Artificial Intelligence. uary 1977.
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Abstract The only assumption we make is that this algo-
rithm is able to produce deliberatly under-

Thisresents a general optimal solutions (rules are redundant, admit
inremengscheme : a single exceptions,...). So, the learning problem is given

generalization algorithm can both an approximate solution, and the next step is to
learn a set of rules from a set of refine thisapproximatesolution.
examples, and achieve the refinement * The second step performs the transition
of a previous set of rules. This toward another learning problem, namely the
approach is based on a redescription refinement of the previous set of rules. This
operator called reduction : from a set transition is performed by a redescription
of examples and a set of rules, we opeator called reduction : given a set of rules
derive a new set of examples and a set of examples describing the learning
describing the behavior of the rule set. domain, we derive a set of examples descri-
New rules are extracted from these bing the behavior of the rule set over the
behavioral examples : those rules can learning domain.
be seen as meta-rules, as they control In this new context, generalization appliesprevious rules in order to improve again : a new set of rules is learnt in order to
their predictive accuracy. correct previous rules. Successive applications of

this 2-steps process (generalization, reduction)
allow more accurate and more complex (because

1. Introduction, disjunctive) rules to be discovered ; moreover,
this process can sequentially handle subsets of
examples. So, both sequential and iterative

This paper deals with incremental learning from incrementality can be achieved by this learning
examples. Two kinds of incremental processes process, called multi-layers learnin,.
are distinguished: We outline that reduction applies whatever

First, an algorithm that sequentially handles the generalization algorithm : it transforms the
the examples is incremental {Lebowitz 87}. This refinement of a learning output into another
sequential incrementality is useful in case of (boolean) learning problem.
huge amount of data, in order to avoid This paper is organized as follows:
exponential explosion. In section 2, some incremental learning

A second kind of incrementality aims at processes are briefly reviewed. We discuss some
gradually refining the computed knowledge : problems raised by incrementality, such as the
or instance, learning by discovery gradually convergence of these iterative techniques, and

learns numerical laws from examples {Langley the stability of the learning output.
& al. 1984, 1986 ; Falkenhaimer Michalski 1986}. Section 3 introduces the notion of symbolic
In neural networks, the knowledge encoded approximati'r, ; the definition of an appro-
within the network coefficients is also gradually ximate learning output refers to the defects of a
refined and optimized {Rumelhart & al. 1986 ; knowledge base, as stated in {Rajamoney DeJong
Fogelman & al. 1986}. This iterative incre- 1987}. The reduction operator is then given : it
mentality is useful when the search space is enables to describe the behavior of a rule set
huge (such as the space of polynoms of several over a learning domain.
.... ;e) and/or when the pr....lc.m is Success..." applications of gencralisation-
untractable by direct ways. reduction can be done. But the worthiness of

Our aim is to study a general learning scheme, this iterative process depends on the ability of
leading to both sequential and iterative incre- the generalisation to produce under-optimal
mentality. A 2-steps process is presented: solutions, in terms of conciseness and exactness.
- In a first step, a set of rules is learnt from a The end of section 3 presents a generalisation
set of examples by a generalization algorithm. algorithm that fullfills these requirements, and

that we used to experiment our approach.
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Finally, two applications of the reduction are 2.1.2 Non Monotonous Learning.
detailed in section 4 : reduction allows to gradu-
ally learn a complex knowledge from the whole An instance of non monotonous learning process
set of examples. It also allows to sequentially is the incremental conceptual classification
learn from subsets of a large learning set. {Decaestecker 1989). This approach gradually

builds a tree of concepts ; the examples are
considered one by one. Four operators are used :

2ExamplesOfIncrementalProcesses creation/deletion of a node, splitting of a node
This section does not attempt to give an exhaus- into several nodes, fusion of several nodes into
tive state of the art (see for instance {Kodratoff one. It is clear that these operators are inversi-
1989}). Our purpose is to point out on some well- ble: hence the learning process may undo what
known learning processes, which problems are was done, delete a node previously created, etc.
solved and which are raised by incrementality. This process is theoretically reversible : it

Sequential incrementality mainly addresses the shoud better handle noisy domains than monoto-
problem of exponential explosion : examples are nous processes. On the other hand, it follows

andled one by one, as a direct global learning is from its reversibility that it is not ensured to
impossible for material reasons. converge : oscillations of the knowledge (here

Iterative incrementalitv applies when no direct the tree of concepts) may appear. This problem is
learning algorithm is known : a good solution is solved via statistical criterions. The operators
gradually built without any new external (creation, deletion, etc...) are trigg-ered only
information, when some numerical thresholds are reached

those thresholds depend on past examples.
The consequence is that, as process goes on and

2.1 Sequentialncrementality. thresholds increase, the examples have less and
At each step of a sequential learning process, less effects on the structure of the tree: they
current knowledge evolves by considering one induce only peripheral evolution of the know-
new example. We focus on the generality of this ledge. In other words, the learning output may
current knowledge, and more precisely, we depend on the order of the learning input. This
consider the evolution of this generality during can be seen as the inertia of the learning process
the learning process. {Cornuejols 1989}.

In short, if non monotonous learning is more
2.1.1 Monotonous Learning. adapted to noisy domains, it is not guaranteed to

converge. A way to ensure convergence is to gra-
If this generality is monotonous (increasing or dually decrease the influence of examples, that
decreasing), the process is said to be monotonous. is increase the inertia of the learning process.
An instance of monotonous incrementality is

iven by the Version Space {Mitchell 1982}. We 2.2 Iterative Incrementality.
riefly recall the main features of this famous

approach. The space of the most specific versions The main concern of this type of incremental
of the concept to learn, (respectively of the most learning is to gradually provide more accurate
general versions) denoted by S (resp. G), is knowledge. A learning phase includes two steps :
initialized to "nothing" (resp. "everything"). S is first, current knowledge is elaborated ; second
then continuously generalized to cover new step achieves the transition to the next learning
positive examples of this concept while G is phase.
continuously specialized in order to reject new
negative examples. G and S are ensured to be 2.2.1 Neural Networks.
equal as soon as enough gact positive and In neural networks, the knowledge is encoded by
negative examples have been encounteredi.

Note that this monotonous approach does not numerical coefficients {Rumelhart & al. 1986,
allow any revision of the knowledge : as this Fogelman & al. 1986). The coefficients are
process involves no backtrack, no error is gradually optimized ; examples are taken into
allowed. The process is ensured to converge account in a cyclic way2. This process fits into
but the quality of the result is guaran- the above scheme : the first step computes new
bteoly the quaita ofa he resu t is ga values for the coefficients from current values
teedn eataae ofreen and current example. The transition step just setsAnother example of incremental monotonou.sadcreteape h rniinse utst

process is the incremental acquisition of concepts the coefficients to the computed values.
y analogy {Vrain Lu 1988). Similaly, the gene- In this case, incrementality is a purely

rality of the current knowledge continuously mathematical method, which ensures the almost
increases, and same remarks about convergence sure convergence of the process.
and error apply.

1The Version Space is adapted to the characterization 2. For this reason, neural networks have been
classified as iterative systems : after a while theyof conjunctive concepts ; moreover it can be adaptd to handle no new information, strictly speaking.

disjunctive concepts as shown in (Manago 1988).
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2.2.2 Learning By Discovery. A solution is to be refined, only if it is an
e g by discovery gradually discovers ximate solution : we first discuss what we

Learning laws from vge s (ali r & al. linean by approximation (§3.1). The transition we
1984, 1986 ; Falkenhainer & Michalski 1986}. propose from one learning phase to the anotherinstance,6 ondiovers t hel i 1 . is detailed in §3.2. Conditions of application areFor instance, one discovers the law PV =nRT studied in §33. We outline that the presented
from examples of perfect gaz described could work with any generalization
according to their pressure P, their volume , algorithm satisfying hypotheses §3.3. But we
their temperature T and the number of moles n. briefly recall the generalization we used to

Data and knowledge are represented using two illustrate the value of our approach (more
levels the first level is a set of descriptors (P, V details may be found in {Sebag Schoenauer
n, 7) ; the second level is a set of examples, 1988, 1989)).
which are points belonging to this description
space (here in 4 dimensions).

In the first step, some descriptors are built P 3.1 Symbolic Approximation.
in the example above) because of their A solution to a learning-from-examples problem
steadiness on some subset of examples ; those is provided by a set of discriminant rules
new descriptors are functions of the previous {Quinlan 1986 ; Michalski 1986}. We suppose
descriptors, and hence are computable on the set this solution needs to be refined, and call it an
of examples. approximate solution. This notion refers to the

In the transition step, the set of descriptors is defects of a knowledge base, as stated by
updated, and so is the description of the {Rajamoney & DeJong 1987).
examples. We now have examples belonging to For instance, let a very approximate knowledge
the 5 dimensions space, described by (f, V, n, T, base be given by the four rules:
P11), and a next learning phase is possible, ri: If I walk on a snake, danger
leading to PV/T, and finally to PV/nT. r2 : If I see 3 black crows, danger

The process is data-driven : the descriptor r3 : If I walk on a grass snake, no danger
PV/nT induces a law, as it takes the constant r4 : If I have my mascots, no danger.
value 8.32 = R on the data (if only perfect gaz This knowledge base has all kinds of defects:
are described). In this case, incrementality allows * It is incomplete, as no conclusion is delivered
to heuristically explore a huge search space, the (no rule is fired) if I see only 2 black crows.
polynomial fractions of several variables and of * It is inconsistent, as contradictory conclusions
any degree. are delivered if I walk on a cobra and I have my

mascots (ri concludes to danger and r4 concludes
2.3 Some Remarks. to no danger).

On sequential learning : we notice that the s It includes errors : no danger if I walk on a
processes we have reviewed only handle one dead snake, in spite of rule ri.
example at the time. For the sake of robustness, - It is redundant : I may both walk on a snake
a (small) subset of examples could be considered and see 3 black crows.
in each learning step : the effects of noise would An approximate rule set is just a set of
be diluted. incomplete, inconsistent, erroneous and/or

On iterati.- learning : finding a solution and redundant rules. Notice these defects are not
refining this previous solution are achieved by a independent : when the number of rules
single algorithm. This approach relies on the increases, then the incompleteness of this rule
transition step which transforms the initial set is likely to decrease. But unfortunately
problem by use of current knowledge. This inconsistency and errors are likely to increase in
method is well-known in the field of arithmetic this case : the chance for an example to fire at
calculus ; so it is not surprising, if it is applied least one rule increases, but the chance to fire
to learn numerical knowledge. In the symbolic two contradictory rules increases too.
field, the question is : what could be the Many recent works attempt to find a balance
semantics of such a transition ? How examples between incompleteness and inconsistency ; see
could be transformed using current knowledge, {Quinlan 1986, Michalski &al. 1986, Clark
in order to refine this current knowledge ? Niblett 1987, Ganascia 1987} for generalization

.T: paper... , to ........ ...... ur.as a of rules with exceptions : see {Ouinqueton 1983;puj.td ULS,, . *,,.. L,, ,ot ,..o,.,. tv. ..... ,

transition mechanism, inspired from the learning Cestnik & al. 1987 ; Gains 1988} ; see also §3.4.
by discovery, is adapted to the learning from From the incrementality point of view,
examples {Michalski 1984; Kodratoff 1988). inconsistency seems to be a more tractable defect

than incompleteness. As a matter of fact, when
an example fires no rule, no supplementary
information about this example is provided by

3 Learning And Approximation. previous learning results. On the opposite when

Our aim is to use the same generalization an example fires contradictory rules, some
algorithm, both to find a solution at one effective work is made, though not yetlearning phase, and to refine this solution at the sufficient. New information is given about this
next learning phase.
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example (the list of fired rules), and a next 3.2.3 Definition of Reduction.
learning problem can be set : learning to solve
the previous rules inconsistencies. Let us more formally define the redescriptionabove. Let 11 denote the current description

space of the learning domain, and B be a set of
3.2 Resolution O Inconsistencies, rules expressed within fQ. We wish not to depend

on the actual formalisation of Q (boolean logic,
3.2.1 Numerical Resolution. multi-valued propositionnal logic, predicate

logic, symbolic objects,..)
A simple way to solve inconsistencies is nume- We only assume that for any rule expressed
rical : the final conclusion is given by a majority within f0, for any example expressed within f0,
vote, where every fired rule votes for its we are able to know if this example fires this 2

conclusion. This method can be refined by rule, i.e. if the description of the example
weighting the rules. Statistical criterions can be satisfies the premises of the rule (this
used in order to optimize the reliability of this requirement is fulfilled if the rule is to be of
decision process {Lerman 1989, Perron 1989 any use). In other words, a rule defines a

Obviously, weights give a partial order on the boolean descriptor on for any example, the
rule set. However, this numerical representation premises of the rule are or aren't satisfied.
of priorities is not adapted : priority is not
necessarily a transitive property (a rule ri may Definition 1.
be preponderant over a rule r2, which may be The reduction is defined according to a rule set
preponderant over a rule r3, which may in turn B, and denoted 71B. The reduction is a
be preponderant over rule rl...). More generally, redescription operator defined fron 1 into the
priorities of rules heavily depend on the con- boolean space of dimension L, if L is the
text : a symbolic treatment should better suit number of rdes in B.
our purpose. 7rB : f0 > {0, l} L

3.2.2 Symbolic Resolution. fB:ssE fl -> frB(s) = {rj(s),j = 1..L}
where the r'ducddecztor rj is given by:

Let us see how this can be done, using rj(s)= 1 ifs satisfies thepremises
generalization again. of the j-th rule in B

Let us go back to our approximate rule set O ther le i
about snakes and danger, and consider an 0 otherwise.
example described by: This redescription allows to transform any
I walk on a cobra, and it is full moon, and I example set A, expressed within Q. An example
have my mascots (if the conclusion is known, it in A is given by its description s belonging to f0,
is likely danger). and its conclusion Conc(s).

The above description may be trans' med
according to the rule set. It gives: Definition 2

" rl applies (I waik on a snake) From the learning set A according to the rule set
"r3 does not apply (I do not walk on a grass B, the leaming reduced set denoted AB is given

snake) by :
- r4 applies ( have my mascots). AB = { (7B(Si), Conc(si)) / (s., Conc(si)) E A}

So, from an example of the learning domain,
(with known description and conclusion) an The reduced learning set AB describes the
example of the behavior of the rule set is behavior of B on the examples in A ; it is
derived: expressed in boolean logic, whatever the initial

(description) rl applies, r3 does not, r4 does, representation of A and B. The next move is
( i obviously to generalize the reduced learning set
conclusion)daanger. AB ; but it requires the reduced set to be a

From such new examples, new rules can (and valuable learning set.
will) be learnt, for instance :

If ri applies and not r, then danger (in other 3.3 Conditions Of Application.
words, if I walk on a snake which is not a grass
snake dange). A learning set is valuable if it enables to learn a

good set of rules : a learning set is found to be
Remark : this redescription mechanism provides valuable a posteriori. A priori, one could just say
an alternative to asking the experts to solve that a valuable learning set ought to be
inconsistencies. As the original conclusion of the sufficiently consistent, and to include enough
example remains unchanged by the redes- information ; those characteristics are vague
cription, we now have examples of conflicts indeed.
arising among rules, together with the actual So we have to suppose that the initial learning
conclusion. So, resolution of inconsistencies is set A does fulfill those good properties. The
learnt from reduced examples by the system, question now is : does the reduced learning set
rather than asked to the experts. still have those properties, or, in other words,
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how does the reduction affect the consistency attempts to find maximally discriminant rules,
and the quantity of information of the data ? rejecting counter-examples.

Notice that the reduction is not necessarily Let us consider example 1 ; we restrict to the
injective : distinct examples can have the same dropping rule generalization for the sake of
redescription through 7rB. So reduction can simplicity. We want to know which conditions
create inconsistencies, if examples of distinct can be dropped or, as well, which conditions
conclusions are given the same image. cannot be dropped. From example 2, it follows
Consistency is easy to check : two examples of that conditions My name is Arthur and my
distinct conclusions must be discriminated by at favorite color is red cannot be dropped
least one rule in B, i.e. there must exist a rule simultaneously : the rule If I am good then
which covers exactly one of both examples. quest is right does not reject example 2.

The number of examples in the reduced Given example 2, example 3 gives no
learning set AB is less than the number of information if conditions My name is Arthur
examples in the initial learning set A. But the Dr my favorite color is red are kept, it ensures
reduced learning set must still contain enough the reject of example 3, whose name is not
information, in order to enable a further Arthur and whose favorite color is not red. In
learning phase : the number of examples should short, if example 2 is discriminated by a rule
not decrease too much. (This rough criterion generalizing example 1, then example 3 is
about sufficiency should be refined with respect discriminated too : example 3 is useless for the
to the size of the description space). discriminant generalization purpose, and it can

One shows that both conditions are fulfilled if be pruned.
the rule set is sufficiently redundant : as the
number of rules increases, the reduction beomes More formally, let s be an example of an
injective ; it follows that the number of example base A. Any counter-example t of A,

examples remains and that reduction causes no gives a constraint over the generalization of s
inconsistency. the descriptors which discriminate t from s c

In the following, we suppose that the reducion not be dropped simultaneously. The constraint
71B preserves the consistency and the amount of C(s,t) is a subset of integers, given by
information of the learning set : this is ensured C(s,t) = {i / attribute i discriminates s and t}
by tuning the redundancy of the rule set B, as We say a counter-example to is a maximal near-
allowed by several heuristics of generalization miss to s in A if the constraint C(s,to) is minimal
{Cestnik & al. 1987, Gains 1988}, and by the for the set inclusion, among all C(st), t counter-
generalization below. example of A.

We then search all minimal subsets of integers
M, such that M intersects every constraint C(st).

3.4 Generalization And Heuristics. From such a set M, a rule rs,M is defined as
follows : its premises are the conjunction of allOur approach of incrementality does not conditions in s regarding attributes in M ; its

depend on the generalization algorithm conclusion is the conclusion of s. We prove that
provided that sufficiently redundant rules can rs M is a maximally discriminant generalization
be learnt. Nevertheless, we briefly recall here o? s : by construction, for any counter-example t
the generalization we used, as the whole process discriminated from s, there exists an element in
generalisation-reduction actually works with it, C(s,t) which belongs to M : the corresponding
as will be presented in the last section. A attribute allows to discriminate s and t ; this
detailed presentation is given in {Sebag condition is kept from s to rs,M, hence rs,M still
Schoenauer 1988, 1989}. discriminates t.

The search of subsets M is achieved by a graph
3.4.1 Generalization By Elimination, exploration, exponential with respect to the
The following algorithm is a star-like number of constraints. However, it is enough for
generalization {Michalski 19841, which handles a subset M to intersect all constraints C(s,t), for t
multi-valued propositionnal logic. Its main maximally near-miss to s. This generalization by
originality is a logical pruning of counter- elimination so reduces the size of exponential
examples, based on the near-miss notion exploration by a preliminary (polynomial)
{Winston 1975, Kodratoff & Loisel 1984}. pruning.

Let us take an example ; a toy learning bet
about right and wrong quests is given by: 3.4.2 Heuristics.

Ex 1 : My name is Arthur, and my favorite Two problems are raised by the above algorithm.
color is red and I am good; quest is right. First, it finds out perfectly discriminant rules
Ex 2 : My name is Triboulet, and my favorite this is useless and undesirable if the example set
color is blue, and I am good; quest is wrong. is noisy, as stated in {Clark Niblett 1987}.
Ex 3 : My name is Ganelon, and my favorite Second, many maximally discriminant rules are
color is yellow, and I am bad; quest is wrong. found and some selection is required.

The star-like generalization handles the Four heuristic parameters are introduced to
examples one by one ; from one example, one overcome these problems. Those heuristics are
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parameterized by the expert, according to the 4.1.1 Refinement Of Previous Rules.
eatures of available data:
- The exception rate E is related to the noise We claim that the generalization on reduced

of the data. A uniform forgetting rate of E is learning set AB implicitly achieves the
applied, when constraints are built and explored refinement of rule set B:
to fird discriminant rules. By this way, rules • First, if a rule in B has a good predictive
which admit exceptions (do not reject counter- accuracy, this information is implicitly available
examples), may be found. One requires the ratio from the reduced learning set AB. As a matter
of exceptions for a rule to be less than E of fact, if a rule has a good predictive accuracy,
(criterion 1). E belongs to [0, 11. it is often fired : the reduced descriptor often

- The sigificance threshlold Ct is related to takes the value 1, and in this case, the actual
the redundancy of the d.',!a. One requires a rule conclusion is often equal to the rule conclusion.

oethan 1 examples (criterion Hence, there is a correlation in AB between a
to generalize morei value of this descriptor and a value of the2). ak is an integer.
- The redundancy rate T is related to the conclusion. So the rule will be discovered again
sufficienc of the data. The idea is that, if data by next generalization. This process is stable, as
are suicient, only the 'best" rules should be
kept ; one then requires the number of a Second, the same argument ensures that
examples covered by a rule r to be the maximal irrelevant rule are dropped : if a rule is
nur'ber of examples, covered by a rule irrelevant, the associated reduced descriptor is
generalizing the current example s. But this irrelevant with respect to AB too. As
criterion leads to instability when data are generalization is supposed to detect and forget
insufficient. So we require the number of irrelevant descriptors, this guarantees that the
covered examples to be greater than the product rules learnt from AB do not mention previous
of 7" by this maximal number of examples irrelevant rules.
covered by a rule generalizing s (criterion 3). 7"
belongs to [0,1]. • Third, generalization discovers links among

- Finally, a more technical parameter, the descriptors and conclusion. In the reduced
patience rate F (like Forget), enables to control learning set AB, examples are described
the computational effort. When a given number according to the rules in B they trigger. Hence,
of failures consecutively occur during the gene- the triggering of rules can be generalized from
ralization of an example (a rule fails because of AB : the generalization solves conflicts arising
criterion 1, 2 or 3), then the exploration is spee- among previous rules.
ded up by randomly forgetting of constraints.

Criteria 1 and 2 are largely used in the 4.1.2 Approximation Requirements.
litterature; criterion 3 is also well studied. In multi-layers learning, rules have a double
Criterion 4 is inspired from simulated annealing part : they are provided by a learning phase, as a
{Davis Steenstrup, 1987) (the patience of the solution to the current learning problem ; then
learner stands for the temperature of the they derive descriptors, and at next phase those
cristal); as far as we know, this is a new feature descriptors are inputs to the next learning
to generalization area. problem. Desirable properties about learning

solution and means are rather different : one
wants to learn concise and general rules ; but to

4. Multi-Layers Learning. this aim, one needs sufficient, precise, various
descriptors... From an incremental point of view,

In this section, we define a general incremental we obviously prefer to enable the further
learning scheme which uses two operators, learning phase, than to optimize the current
generalization and reduction (§4.1). This scheme learning output : hence in a learning step, the
allows to gradually learn more accurate and generalization must be able to provide
complex (disjunctive) rules (§4.2). It also allows redundant and inconsistent rules.
to sequentially handle the examples (§4.3). Some This is a general strategy of approximation : as
comparative results are presented on a well- shown in genetic algorithms or simulated
studied learning set {Michalski & al. 1986, Clark annealing (Holland & al. 1985}, non-optimal
Niblett 1987, Cestnik & A. 19871. solutions must be kent especially in first steps, in

order to avoid local optima.
4.1 A Learning Layer. 4.2 Iterative Incrementality.

The reduction gives from a learning set A and a We suppose here the data can be handled by the
rule set B, a new learning set AB. On the other generalization in a reasonnable time (which
hand, many generalization algorithms provides a depends on the available machine, the available
rule set B from a learning set. Reduction and generalization and the patience of the experts...).
generalization may then be seen as operators,
and combined ; the 2-steps process (genera-
lization of a rule set, reduction according to this
rule set) is called a learning layer.
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4.2.1 Outline. station. It uses the generalization algorithm
described in §3.4. The results obtained on a well-An iterative learning is performed by multi- studied medical learning set (about prognosis of

layers learning as follows: breast cancer) are given below. The referenceLearning phave 1: results are predictive results obtained by
1.1- Generalize a rule set Bi from the initial algorithms AQR {Michalski & al. 1986},

learning set A. Assistant 1986 {Cestnik & al. 19871 and CN2
1.2- Reduce A according to Bi :Al = AB1. {Clark Niblett 1987} ; those results are found in

Learning phase 2: the latter paper, as well as the results of a
2.1- Generalize 3  a rule set B2  from reduced simple bayesian classifier, denoted Bayes.

learning set Al.
2.2- Reduce Al according to B2: Table 1 : Reference Results.

A2 = (Ai)B2 = ABI1.B2
Leaming phase 3:

3.1- Generalize B3 from A2, and so on. Results on: Training set Test set
obtained by (200 ex.) (86 ex.)

The only condition for this scheme to apply is
for the rule set Bi to be sufficiently redundant Bayes 70% 65%
so that the reduction derives a sufficient and AQR 100% 72%
consistent learning set Ai from As-I : as CN2 72-76% 70-71%
mentionned in §3.3, the generalization must be ssa 82% 62-71%
able to provide sufficiently redundant rules. Assistant 86 85-92% 62-68%

This process leads to a sequence of rule sets,
called multi-layers rules : premises of rules in
Bi+i are conjunction of litterals, those litterals The results of ML2 are estimated the same
being the premises of rules in Bi, or negation way. A n-layers rule set is said to be optimal if
of theses premises. Rules in Bi+i may be its predictive accuracy on the test set is maximal
seen as meta-rules with respect to Bi, as they among n-layers rule sets.
perform some control over Bi : Here are the results obtained for optimal 1-

:If r, and r, are fired, and rk is not, then,... layer rule set B, for optimal 2-layers rule sets
where rl belongs to Bi +1, (Ci, C2) and for optimal 3-layers rule sets (Di,

ri, r and rk belong to Bi. D2, D3).
Obviously rules in Bi can always be expressed Those rule sets are learnt with given

with respect to the original descriptors used in parameters of exception rate E and redundancy
Bi ; however, rules in Bi, i > 1, may be "
disjunctive with respect to the original descrip-
tors, because negation of previous conjunctive Table 2: Optimal Results Of Multi-Layers
premises are used. Learning

We point out that there is no generality
relation among rules in Bi and rules in Bi+l, Train. set Test set 7
hence this learning process is not monotonous
(see §2.2.1) : premises of rules in Bi+i are not B 66% 62% .7 .3
necessarily more general nor more specific thanpremises in Bi. peieinB.C2 93% 75% .2 .4

Evolution of this process is both expert- and C2 79% 58% .5 .3
data-driven. The expert adjusts the parameters at
each generalization step, especially the D3 94% 78% .3
redundancy rate (this adjustment is discussed in D2 83% 60% .4 .7
the following). The process stops when the Di 62% 48% .7 .6
current learning layer gives no improvement,
with respect to the predictive accuracy on a test
learning set. In the experimentations we made, One notices that the best n +1-layers rule set
predictive accuracy can significantly increase are based on a n-layers rule set which is not the
from 1 to 2-layers rules, can still increase from 2 best one among n-layers rule set.
to 3-layers rules, and then usually decreases as The tuning of generalization parameters is
the number of layers increases, exponential with the number of layers. But some
4.2.2 explorations of these possibilities leads to the

Validation. following (experimental) conclusions : to build
Multi-layers learning (ML2) has been an optimal n-layers rule set, one must admit a

high exception rate and redundancy at theimplemented in Language C on a Unix work- beginning ; generalization must gradually look
for' more concise and exact rules. As in3. The same generalization algorithm applies than is, simulated annealing again, optimality require-first phase z the reduced learning set is expressed in

boolean logic. Any generalization algorithm should be ments must be gradually raised to final give a
able to cope with this minimal representation. good solution.
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4.3 Sequential Incrementality. Multi-layers learning allows to gradually learn
more accurate rules. Validation on a well-

In this section, we suppose the learning set is studied learning set shows a slight predictive
very large. The problem is then to avoid improvement, compared to some famous non-
exponential explosion. Multi-layers learning can incremental learning algorithms.
perform sequential incrementality as follows : This process also enables to sequentially handle

- Some subsets Ai, .AL are extracted from the subsets of examples. Compared to handling the
initial learning set A by the experts. Those examples one by one, this sequential
subsets may be a partition, or may overlap. incrementality is more flexible (the size of those
Leamingphase 1: learning subsets is controlled by the expert) and

- Generalization of learning set Al gives a rule suited to noisy domains.
set Bi. The limitation of this approach comes from the

- All subsets Ai are reduced according to Bi. roughness of the reduction. The transition to
One sets: boolean logic is a bit abrupt, when the initialAl = (Ai)B1 data are expressed within predicate logic : many

Learningphase 2: i s' order rules are required to give a sufficient
- Generalization of reduced learning set Al 0th order description. An extension of reduction,gives a rule set B2. from boolean to muiti-valued propositionnal

More generally, one has at phase j + 1: logic {Michalski 1975}, is planned.
Al = (Ai)B1.B2... BjBi+ 1 = Generalization (AJ + 0).4..Acnwegm ts

This approach of sequential learning allows to
consider a set of new examples at each learning We thank J. Zarka, L.M.S., Ecole Polytechnique,phase (see §2.3), and the size of these sets is here who made this study possible. Long discussions

controlled by the expert. with Y. Kodratoff L.R.I Orsay, and E. Diday,
The limitation of this process is the following: Paris-IX & I.N.R.IA., greatly helped to clear andif two consecutive subsets are too different, then improve this paper. The data about breast cancer

rules learnt from the first subset fails to provide have been gathered by the Universisty Medical
a good description of second subset. This problem Center, Ljubljana, Yugoslavia. Thanks to M.is encountered whenever consecutive learning Zwitter and M. Soklic ; many thanks also to D.

subsets are non-homogeneous ; in this case, some Aha, University of California, Irvine, who kindly
initial descriptors must be added to reduced broadcasts these data and many more.
descriptors, in order to p reserve consistency of

the reduced description. This is done by experts 4.4.2 References.
at the moment.
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Abstract algorithm (Utgoff, 1988) to handle ordered variables,
but are central to research on decision-tree inductionDecision trees that are limited to testing a in general.

single variable at a node are potentially much

larger than trees that allow testing multiple 2.1 Splitting Criterion
variables at a node. This limitation reducesthe ability to express concepts succinctly, A significant shortcoming of decision-tree algorithms
which renders many ss c oes sccncepts dif- such as ID3 (Quinlan, 1986) is that the space of le-
wichlt rer m anysible claexss o nTs dr gal splits at a node is impoverished. A split (Moret,
ficult or impossible to express. This paper 1982) is a partition of the instance space that results
presents the PT2 algorithm, which searches from placing a test at a decision node. Each subset of

for a multivariate split at each node. Because

a univariate test is a special case of a mul- the partition corresponds uniquely to one outcome of

tivariate test, the expressive power of such applying the test to the instance. ID3 and its descen-

decision trees is strictly increased. The algo- dants only allow testing a single variable (attribute)

rithm is incremental, handles ordered and un- and branching on the outcome of that test.

ordered variables, and estimates missing val- In order to facilitate generalization, one would like

ues. to avoid a large number of branches at a node. This
means that a variable should not have a large number
of possible values. This is typically the case for non-

1 Introduction numeric variables. However, numeric variables, both

For inductive learning, decision-tree methods are at- continuous and integer-valued, are problematic due to

tractive for three principal reasons. First, the meth- the unlimited range of possible values. A more funda-

ods find trees that generalize well to the unobserved mental distinction among variables is whether a vari-

instances, assuming that the instances are described able's values are ordered or not. Accordingly, an or-

in terms of features that are correlated with the target dered variable is one whose possible values are totally

concept. Second, the methods are efficient, generally ordered. This class includes continuous and integer-

requiring a total amount of computation that is pro- valued variables. An unordered variable is one whose

portional to the number of observed training instances, values are not totally ordered. One standard technique

Finally, the resulting decision tree provides a represen- for handling an ordered variable with a large number

tation of the concept that appeals to humans because of possible values is to map its values onto a small
it renders the classification process self-evident, set of intervals. Another technique is to partition the

This paper presents a new decision-tree algorithm, values of a numeric variable into two open-ended inter-

named PT2, that is designed to provide a richer space vals: those values that are greater than a dynamically

of possible tests at a node and to provide a uniform determined constant and those that are not (Breiman,

treatment of ordered and unordered variables. Sec- Friedman, Olshen & Stone, 1084; Quinlan, 1987).
tion 2 lays out the issues that motivated the design of In general, one would like to allow a richer space of

PT2, which is presented in Section 3. Following this, possible splits than those afforded by testing just one

Section 4 illustrates the algorithm on three standard variable at a time (Pagallo & Haussler, 1988; Pagallo,

learning tasks. Finally, Section 5 draws conclusions 1989). For example, as shown in Figure 1, if the con-
about the algorithm and identifies new problems that cept to be learned is the set of points in the half-plane

require further research. {(Z, y) ly < 2x + 3), then a decision tree based on uni-
variate tests must approximate it with a disjunction

2 Issues for Decision-Tree Induction of quarter-planes, e.g. {(z, y)I(x > -1 A y < 1) V (z >
1 A y < 5)). This example illustrates the well known

This section discusses the principal issues that moti- problem that a univariate test can only split a space
vated the design of the PT2 algorithm. These issues with a boundary that is orthogonal to that variable's
arose from attempting to extend the perceptron tree axis. This limits the space of regions in the instance
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with a small number of possible values, so that the
Ynumber of possible branches at a node is kept small.

(Z > 1) A (y <5) Techniques exist for mapping an ordered variable to
an unordered variable, thereby reducing the number
of possible values for the ordered variable from many
to as few as two. These techniques are special cases

(z > -1) A (y < 1) of the more general approach of partitioning an n-
z dimensional Euclidean space into regions, defined by

inequalities. For example, a region in x-y space might
y< 2z -3- be a disc defined by {(z, y)[Z 2 + y2 < 3}. In general,

one can map an n-dimensional point to a region and
then treat containment within the region as a two-
valued unordered variable.

Figure 1: Limitations of Univariate Splits

How can one mix ordered and unordered variables
freely? There are two standard approaches. First, as

space that can be represented succinctly, which can already discussed, one can map each ordered variable
result in a large tree and poor generalization to the to an urordered variable, and then find a Boolean com-
unobserved instances. The bias imposed by allowing bination that represents the concept. The principal
only univariate tests may be inappropriate for a target problem with this approach is that Boolean combina-
concept. tions of intervals can only define regions via bound-

2.2 Incremental Tree Revision aries that are each orthogonal to one of the coordinate
axes. This renders the class of concepts that requireFor learning tasks in which training instances are pro- other boundary orientations difficult to represent. Al-

vided serially, one would like to be able to revise the ternatively, one can map each variable, ordered or un-
existing decision tree, if necessary, instead of rebuild- ordered, to a numeric variable and then find a nu-
ing it from scratch. One does not want a new train- merical combination that represents the concept. This
ing instance to render previous learning obsolete. In latter approach allows an accurate and succinct rep-
particular, one would like to be able to conduct the resention for a large class of concepts. For decision-
search for a multivariate test incrementally. Several tree induction, one would like to be able to consider
groups, including Qing-Yun and Fu (1983), Breiman boundaries in any orientation and then form regions
et al. (1984), Pagallo and Haussler (1989), Clark and by splitting the space in terms of these boundaries.
Niblett (1989), and Chan (1989) have devised methods
for searching for multivariate tests, but these methods
are not incremental. In order to map an unordered variable to a numeric

variable, one needs to be careful not to impose an or-
2.3 Sequential Testing and Understandability der on the values of the unordered variable. For a
There are two important advantages of decision-tree two-valued variable, one can simply assign 1 to one
classifiers that one does not want to lose by permitting value and -1 to the other. If the variable has a range
multivariate splits. First, the tests in a decision tree of more than two values, then each variable-value pair
are performed sequentially by following the branches of can be mapped to a propositional variable, which is
the tree. Thus, only those variables that are required TRUE if and only if the variable has the paritucular
to reach a decision are evaluated. On the assump- value in the instance (Hampson & Volper, 1986). This
tion that there is some cost in obtaining the value of avoids imposing any order on the unordered values of
a variable, it is desirable to test only those variables the variable. With this mapping, one can represent
that are needed. Second, a decision tree provides a concepts over unordered variables, ordered variables,
clear statement of a sequential decision procedure for or a mix of such variables. Mapping many-valued
determining the classification of an instance. A small variables to two-valued variables has been observed
tree with simple tests is most appealing because a hu- to result in trees with higher classification accuracy
man can understand it. There is a tradeoff to consider (Cheng, Fayyad, Irani & Qian, 1988; Mooney, Shavlik,
in allowing multivariate tests; simple tests may result Towell & Gove, 1989). There are two reasons. First,
in large trees that are difficult to understand, yet mul- the two-valued variables provide a finer-grained repre-
tivariate tests may result in small trees with tests that se~tation, which makes it possible to find a better de-
are difficult to understand. cision tree. Cheng et al. point out that this approach

also eliminates the irrelevant values of a variable. Sec-
2.4 Mixing Variable Types ond, a binary split of the instance space leaves just two
One of the well-known problems with decision-tree subspaces, placing a larger proportion of the available
methods is how to handle ordered variables. As dis- training instances in each subspace (Pagallo & Haus-
cussed above, such variables are problematic because sler, 1988). Because learning in each subspace is based
they may have many possible values, e.g. a continu on a larger number of instances, the subtree found illI
ous variable. For a decision tree, one requires variables be better determined.
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2.5 Missing Values

For some instances, it may be that not all variable Table 1 The PT2 Decision-Tree Update Algorithm.
values are available. In such a case, one would like 1. If TREE is empty, then set TREE to new answer node
to estimate the missing values. This is true for both containing class name of training instance, return.
training and classification. Quinlan (1989) describes 2. If TREE is an answer node, then
a variety of approaches for handling missing values of (a) If class name of instance is same as TREE, then
unordered variables. These include ignoring any in- return.
stance with a missing value, filling in the most likely (b) Set TREE to new decision node, initialize cur-
value, and combining the results of classification us- rent LTU to one based on all n original variables,
ing each possible value according to the probablility of set W 4- 0, set list of alternate LTUs to empty,
that value. initialize other bookkeeping variables.

Another approach for handling a missing value is to 3. Update decision node at root of TREE, i.e.
estimate it using the sample mean, which is an unbi-ased estimator of the expected value. For a numeric (a) Update the active weight vector W of every LTU

(ordered) variable, one need only maintain a running at the node via the absolute error correction pro-
cedure. Also update the pocket vector P, andtotal of the values seen and a running count of the other LTU variables as necessary. If P of cur-

number of values seen. This approach can also be ap- rent LTU has changed, then discard its subtrees
plied to missing values of unordered variables. If, as if they exist. Use the rample mean for any miss-
suggested above in Section 2.4, one has mapped ev- ing value. Whenever P changes, also save the

cry nonnumeric variable to a numeric variable, then sample means that correspond to P.
this single mechanism also estimates a missing value (b) If the current LTU is not yet determined (see
for a nonnumeric variable. There are two types of text), then return.

mappings to consider. First, if the original variable (c) If some alternate LTU is determined and is at
is two-valued, then it is mapped to a single numeric least as good (see Table 2) as the current LTU,
variable, with one value corresponding to 1 and the then

other to -1. For a missing value, one simply uses i. Replace the current LTU with a best such
the sample mean. Second, if the original variable is alternate LTU.
many-valued, then it is mapped to a set of proposi- ii. Remove from the current LTU all original

tional (two-valued) variables, with each one treated as variables for which all the associated -weights
above. For a missing value, one uses the sample mean of the encoded variables are 0.
for each of the propositional variables. One would like iii. Reset Lhe list of alternate LTUs to those
to use the sample mean so that the location of the in- based on all n - I variable combinations ofto usethose in the new current LTU. For each al-
stance in the encoded Euclidian n-space is estimated tente ne t W bst eachternate LTU, initialize its W by setting each
as accurately as possible. Note that the sample mean w, to the corresponding pi of the new current
of a variable at one node can differ from the sample LTU, update the LTU via the absolute error
mean of the same variable at a different node due to correction procedure. Use sample mean for
the different sets of observed instances on which each any missing value.
is based. (d) Descend recursively along branch below P of cur-

rent LTU as per instance, return.
3 The PT2 Decision Tree Algorithm

This section presents the PT2 algorithm for inducing a
decision tree from a stream of training instances. The ables. As training instances are observed at an LTU,
design of the algoithm was motivated by the issues its weights are adjusted as necessary in order to move
discussed above. The algorithm maintains the deci- its hyperplane in an attempt to separate the positive
sion tree as a global data structure, and revises it in- instances from the negatives. Second, the algorithm
crementally, as necessary, in response to each received attempts to find an LTU at a node that is based on
training instance. A legal decision tree is either NIL, a reduced set of the original input variables. To this
for the empty tree, or an answer node containing a end, a set of LTUs ;s fra;,anAt e n de in an at-
class name, or a decision node containing one or more tempt to identify those variables that can be removed
Boolean variables, each of which defines a binary split without sacrificing classification accuracy at the node.
of the instance space. One of these variables is desig- The rest of this section describes this search in greater
nated as current, and has a branch to a decision tree detail and discusses the basis on which one split is
for each of its two possible values. The initial tree is judged better than another.
empty.

Table 1 specifies the PT2 algorithm, which is de- 3.1 Training an LTU
signed to learn single concepts over two classes. At
each decision node, it searches for a binary split of the A linear threshold unit can be used as a Boolean vari-
instance space. This search proceeds on two fronts. able, specifically as a test at a decision node, because
First, a possible binary split is represented as a lin- it is a predicate over its inputs. The LTU maps its
ear threshold unit (LTU) over the original input vari- variables to either the positive or negative side of its
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hyperplane. All original variables are encoded as nec-
essary, as described in Section 2.4, to achieve a set of Table 2: Procedure to Determine Whether LTU1 is
numeric variables, called the encoded variables. These Better than LTU2.
are normalized d)namically so that the maximum ob- 1. If either of LTU1 or LTU2 is undetermined then re-
served value a of a variable maps to 0.5 and the mini- turn FALSE.
mum observed value maps to -0.5. The variables aremumnobseved vtalueah mas t -0. e iblese aure 2. If the pocket count of LTU1 is higher than that of
normalized so that each has the same influence during LTU2, then return TRUE.
the error computation for the absolute error correction
rule. The mapping M(a) is a function of the histori- 3. If the pocket count of LTU1 is identical to that of
cal minimum and maximum observed for the variable. LTU2, and LTUI is based on fewer original variables,
Let then return TRUE;

a = value of the encoded variable 4. Return FALSE.
hmin = historical minimum for variable
hmax = historical maximum for variable

Then role when searching for a separating hyperplane be-

-0.5 if hmax = hmin cause the classification accuracy of the LTU based on
Ma_-hn-' - 0.5 otherwise W is unpredictable when the instances are not linearly

As training instances are observed, each LTU is ad- separable (Duda & Hart, 1973).
justed as necessary via the absolute error correction One might simply assume that the LTU with the
procedure (Nilsson, 1965). Combining input features highest pocket count provides the best split, but there
to form multivariate splits is a form of constructive are two problems with such an assumption. The pro-
induction; new terms are created based on linear com- cedure shown in Table 2 was devised to decide whether
binations of subsets of the original variables, one LTU provides a better split than another, and it

depends on the definition of determined given below.
3.2 Eliminating Variables To understand the need for this procedure, consider
If, at a node, the designated current LTU based on the problems that would arise from using the pocket
n original variables is no better than one of the al- count alone.

ternate LTUs, each based on n - 1 of these variables, First, one cannot select an LTU if its pocket vector
then the set of LTUs being considered at the node is fails to discriminate among the instances. Consider a
changed. A best such alternate LTU is designated as learning problem in which the training instances be-
current, the others are discarded, and a new set of long predominantly to one class. An LTU can classify
alternate LTUs is created, based on leaving out one a long sequence of instances correctly if it always clas-
variable from those of the new current LTU. This is sifies each one as the more frequently occurring class.
done in order to find a test on fewer variables if pos- Indeed, such a split may result in higher classification
sible. The idea of removing one original variable at a accuracy than any split that actually discriminates in-
time is taken from CART (Breiman, Friedman, Olshen stances in one class from the other. However, a split
& Stone, 1984), and is based on the assumption that that does not discriminate is no split at all. If the space
it is better to search for a useful projection onto fewer of instances at a node is not split, then the space of in-
dimensions from a relatively well informed state than stances at one subtree will be identical to the space at
it is to search for a projection onto more dimensions the parent. Thus, the same null split would be found
from a relatively uninformed state. Note that when at the subtree, the process would repeat, and the tree
one original variable is removed, one or more encoded would become infiiitely deep. To avoid this, an LTU
variables are removed. with a pocket vector that is not based on having ob-

served instances from more than one class can never
3.3 Comparing Splits be considered better than another LTU.
How does one decide whether one split, as manifested The second problem is that if the current LTU is
by an LTU, is better than another, so that a best LTU not a perfect classifier, then subtrees will be needed
can be designated current? This is accomplished with to split the space further. It can be wasteful to try
a procedure that depends on Gallant's (1986) Pocket to grow subtrees before there is any strong indication
Algorithm. For a linear threshold unit, the algorithm that a given LTU is the best that can be found at
saves in P the best weight vector W that occurs dur- the node. This is because the algorithms calls for dis-
ing normal perceptron training, as measured by the carding both subtrees of a node whenever the pocket
longest run of consecutive correct classifications, called vector P of the current LTU is redefined. Such activ-
the pocket count, assuming that the observed instances ity will eventually cease because the pocket count of
are chosen in a random order. Gallant shows that the the current LTU increases monotonically. However, to
probability of an LTU based on the pocket vector P reduce lost effort, no subtrees are allowed to grow be-
being optimal approaches 1 as training proceeds. The low an LTU until enough evidence has accumulated to
pocket vector is optimal in the sense that no other indicate that an improved pocket vector is not apt to
weight vector visited so far is likely to be a more accu- be found anytime soon. The status of an LTU is con-
rate classifier. The Pocket Algorithm fulfills a critical sidered to be determined if and only if the following
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conditions are true:
1. At least kn, k > 2, instances must have been pre- a + b - I

sented to the LTU, where n is the number of orig-
inal variables. This is a minimal test based on the
capacity of a hyperplane (Duda & Hart, 1973); if >_ 0 < 0
fewer than 2n instances have been observed, then
the LTU is known to be underdetermined. + c - d + e - 2

2. As discussed above, the pocket vector for the LTU
must separate at least one instance from each > 0 " 0
class. /

3. Either; the pocket vector P is identical to the ac- +
tive weight vector W, or each and every weight
in W has been varying within its historical min-
imum and maximum for a number of weight ad- Figure 2: Tree for the DNF Task
justments greater than the log of the number of
weights in W (Utgoff, 1988; Utgoff, in press).

Note that the status of the LTU can change back and the sake of illustration rather than the complexity of
forth between determined and undetermined if a new the task. The three-bit multiplexor is a Boolean func-
historical minimum or maximum is established infre- tion over three Boolean variables. One variable, here
quently. Also note that one can raise k to cause the called f, is called the address bit, and it serves as a
algorithm to be more conservative about determining selector of one of the two variables g, and h, called the
the status of an LTU. In the current implementation data bits. The value of the function is the value of the
of PT2, the default value of k is . selected data bit. The simplest tree for this concept

4 Illustrations corresponds to the expression fg V 1h. The problem
is interesting because the address bit is the best test

This section illustrates the PT2 algorithm on three at the root, yet it is not correlated with the classifica-
standard learning tasks. The first is the DNF con- tion, although the data bits are. Thus, for algorithms
cept used to illustrate the FRINGE algorithm (Pa- that choose a split on such a basis, any data bit looks
gallo, 1989). This concept is expressed succinctly by like a better choice than any address bit. There ex-
allowing multivariate tests at a node. Second is the ists a split on all three variables that is correct for
multiplexor, both for the six-bit and three-bit cases. 7 of the 8 instances, and PT2 finds it, as the pocket
Decision-tree algorithms normally do very poorly on co'-nt is highest for this split. PT2 found a correct
this problem because the best variable to test at the tree after training on 480 instances, as shown in Figure
root is not correlcted with the classification. The final 3. This PT2 tree contains two tests and three leaves,
illustration is Quinlan's (1987) hyperthyroid concept, w'hereas the tree found by ID3 contains five tests and
in which instances are described by a mix of unordered six leaves respectively. Note that the test at the root
and ordered (numeric) attributes, some with missing evaluates all three variables, which is also suboptimal.
values. One would prefer a tree in which only necessary tests

are performed.
4.1 The DNF Task For the six-bit multiplexor task PT2 found a cor-
The DNF task was used previously to illustrate the rect tree of ten tests and eleven leaves after training
ability of FRINGE to find multivariate tests at a node, on 3,968 instancto from the full space of 64 possible
though by a much different mechanism from that cf instances. Total CPU time during training was 143
PT2. The concept to be learned is the Boolean func- seconds. A characteristic of the PT2 algorithm is that
tion ab v cde. Although there are only 32 possible in- the first crrect tree that it finds may not be the small-
stances, the algorithm ai::ays obtains its next training est that it would find if training were to continue. It
instance by selecting r,-ndomly from the full space of 32 is possible that the current LTU at a node will be re-
instances. Figure 2 shows the tree found by PT2 after placed by one that is better. Such improvements can
training on 775 instances. 1 or clarity, the weights have result either from an impruved pocket vector in the
been scaled by a constant factor. The tree consists of current LTU, or by replacing the current LTU with
two tests and three leaves, and is logically equivalent or, that is based on fewer of the original input var-
to that found by FRINGE. Recall that PT2 automat- ables. For the six-bit muitiplexor task, PT2 was left
ically encodes TRUE as 0.5 and FALSE as -0.5. The to continue training until it had seen 71,800 training
tree found by ID3 for this task consists of eight tests instances. Although the final tree was the same size
and nine leaves. as the first correct tree, in terms of tests and leaves,

some of the LTUs were replaced by LTUs based on
4.2 The Multiplexor Task fewer variables. The total number of variables in all
PT2 was run on both the six-bit and the three-bit ten LTUs of the first correct tree was 38, but this total
multiplexor tasks (Barto, 1985; Wiison, 1987: Quin- in the final tree was 25. The tree that ID3 produces
lan, 1988). The three-bit multiplexor is of interest for i'r thic task contains 25 tests and 26 leaves.
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Figure 3: Tree for the Three-Bit Multiplexor Task Itul 61.6ftival + 20.9t3val - 20.5onthy +
15.4tt4val + 8.5tt4 - 7.3t4uval +
6.5tb9 + 6.5hpit - 6.5psyc +

4.3 The Hyperthyroid Task 5.Sref.other - 5.5thsurg + 5.0ref.avi +

The hyperthyroid task (Quinlan, 1987) is of interest 4.5preg +4.5ref.avhc-4.5qhypo-
because its instances are described in terms of both nu- 4.5qhyper - 3.9thaval + 3.5ref.stmw +
meric and nonnumeric variables, and because there are 3.5lith - 3.5onanti - 3.Ssick +
training instances with missing values for both types 0.5goit + 0.5ths - 0.5qonthI -
of variables. The training set contains 2,800 instances, 0.5i131 + 6.5
each falling into one of four classes. Because PT2 cur-
rently handles only two-class problems, the task was
cast as learning the concept of "hyperthyroid". In- U2 38.7thsval + 20.9t4uval + 13.1ftival-
stances labelled as "hyperthyroid" were considered to -3.4thval + 0.g4uval +
be positive, and all other instances were considered ll.4tt4val +-4.Ssick + 4.5preg +
to be negative. Each instance is described by 28 vari- 4.5i131 + 4.5qhypo + 4.5t4u +
ables (one variable whose value is missing for all the in- 4.5f ti - 3.5ths + 3.Oref svhc -
stances is not included). Across all 28 variables for the 1.5qonthy - 1.5ref.other + 0.6age -

2800 training instances, there are 1,756 missing values, 0.5tbg + 0.St3val + 0.5tt4 +
for an average of 0.63 missing values per instance. The
independent test set contains 972 instances described 0.5thaurg + O.Sonihy + 0.5onanti +
in terms of the same variables, with a total of 536 0.Slith + 0.5goit + 0.5hpit +
missing values, for an average of 0.65 missing values 0.Spsyc - 0.5ref.avi - 0.5tum +
per instance. 0.5

Due to the lopsided distribution of the training in-
stances, with 97.79% being negative, a variation of
random sampling was used for selecting the next in- Figure 4: Tee for the Hyperthyroid Task
stance during training. Instead of sampling randomly
from the entire population of training instances, the
instances from the two classes were kept as two sepa-
rate populations. An instance was selected randomly
within a population but the choice of population al-
ternated each time. This training strategy supplies weights based on 22 original variables, and ltu 2 con-
an even distribution of instances at the root, but the tains 27 weights based on 25 original variables.
effect diminishes at the subtrees because the tree is at-
tempting to separate the positives from the negatives. it is unclear whether 99.07% correct classification
PT2 does not depend on this training strategy. The on the test data is good, especially given that sim-
rationale is simply that with a lopsided distribution, ply always guessing negative yields 98.25% correctly
most instances will come from one class and therefore classified. Precise classification accuracies of previous
be uninformative. solutions related to this task (Quinlan, 1987; Chan,

Figure 4 shows the tree found by PT2, having 1989) were not published. It is worth noting that both
trained on a total of 372,400 instances for approxi- C4 and PT2 chose ftival as the most important vari-
mately one clock week. The tree classifies 99.46% of able at the root. Also note that for PT2, one can rank
the training data correctly and 99.07% of the test data the relative importance of the variables by comparing
correctly. In the figure, the notation a.v indicates the magnitudes of their respective weights. It is mean-
a propositional variable corresponding to value v of ingful to compare weights because PT2 normalizes all
the original input variable a. Thus, ftul contains 25 the variable values.
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5 Discussion 5.3 Near-Term Extensions

This section identifies strengths and weaknesses of the The algorithm is being extended in three ways. First,

PT2 algorithm, and indicates the directions in which a better method for discarding variables at a node is

the research is proceeding. being investigated. Given that the encoded variables
are normalized, one can identify the most important

5.1 Strengths variables by the magnitudes of the weights. One could
base the LTU for the split on just those variables that

There are four strengths of the algorithm. First, it have sufficiently large magnitudes, compared to the
is incremental, which means that additional training largest magnitude among the weights..
instances received at a later time will not obviate pre- Second, the ability to discriminate more than two
vious learning by requiring that a new tree be built classes is being added. Several known methods are
from scratch. This is highly desirable for learning al- being considered, but the most promising is to sepa-
gorithms that are imbedded in systems that learn from rate the instances into two superclasses at each node
experience. (Breiman, Friedman, Olshen & Stone, 1984). Such a

Second, the algorithm finds a multivariate test at scheme finds "strategic" splits, in the sense that splits
a node by training a linear threshold unit. This al- near the top of the tree group together those classes
lows defining regions in the instance space that have that are similiar, while splits near the leaves isolate
boundaries in any orientation. This richer space of single classes.
splits, compared to allowing only univariate splits, en- Third, a pruning mechanism is being added that will
ables the program to find more compact trees. The attempt to prevent overfitting and underfitting prob-
algorithm attempts to find a linear split that is opti- lems.
mal in terms of classification, but that is based on a
small subset of the original variables. 5.4 Longer-Term Extension

Third, the algorithm treats all variable types uni- A longer term problem that may be addressed is how
formly by encoding their ranges numerically. The en- to detect when the piece-wise linear classification strat-
coded values are normalized by mapping each range egy is performing poorly and alter it automatically.
onto the interval [-0.5,0.5]. Encoding and mapping For example, if the members of the target concept de-
are determined dynamically. This encoding allows one fine a hyperregion with one or more curved boundaries,
to learn concepts over instances that are described by then a potentially infinite number of hyperplanes will
a mix of ordered and unordered variables, rather than be needed to approximate the hyperregion. This would
one or the other. lead to a very large tree, yet if the space were to be

Finally, the algorithm estimates missing values via split with hyperspheres or hyperellipses then the tree
sample mean, which is an unbiased estimator of the would be smaller, which would facilitate learning.
expected value. This is well defined for all vaiable
types because they are all encoded numerically. Acknowledgments
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Abstract

This paper proposes the notion of 'topological

relevance' as a means to formalize the
complexity of a decision tree representation of a
set of instances. It then presents an incremental
algorithm, called IDL, for the induction of 0
decision trees which are optimal according to
this notion. IDL relies on ideas from IN and A3
ID5 but searches using a statistical criterion for
expanding nodes and a tree topological one, 0 1 0 1 0 1 0
called topological relevance gain, for
transforming decision trees. The results of its N P N P N P N P
analysis and empirical validation show that,
with provisions, IDL rapidly finds the same or a In this paper I precisely define a notion of topological
better tree than top-down induction algorithms minimality of decision trees. The above tree is an
and their incremental versions ID4, ID5 andID5R. example of a topologically minimal tree. Intuitively

speaking, a decision tree which correctly classifies a set
1. Introduction of examples is topologically minimal if an attribute is

localized as much as possible in the tree avoiding, for
What is a good decision tree? Despite the fact that example, obsolete replications of subtrees. TDIDT
induction of decision trees is one of the best developed algorithms may find these topologically minimal trees A

subfields of machine learning (see e.g. [2,3,5,9]), this but in other cases, like for multiplexer concepts, fail to
question has not really been answered. Of course do so. So I go on to present an algorithm, called IDL,
'goodness' has multiple facets, some of them depending which was designed to incrementally construct such
on the application, but classification accuracy and tree optimal trees. IDL searches using a statistical selection
complexity are important factors. But could one measure like any of those TDIDT would use [2] for
recognize a good tree if one sees one? Our quality expanding nodes, but a new and topological measure,
measures are too vague to do so. It is a general called topological relevance gain, for transforming a tree
shortcoming of top-down induction of decision tree into a smaller one. Topological relevance is measured by
algorithms (TDIDT, [5]) that there is no intentional using the decision tree in a bottom-up (hypothesis-
description of the tree they construct. Starting from a set driven) fashion. It expresses the import of an attribute for
of examples, usually described as a set of attribute-value classifying an example based on tree topology and not, as
pairs annotated with a class TDIDT algorithms is usual, on statistics over a training set. Formal analysis
successively split the set using a good (e.g. most is preliminary but experiments show that IDL is good at
informative) attribute until sets of examples in a single finding a topologically minimal tree if it exists, and with
class are left. The splits become the nodes in the tree and less work than the other incremental algorithms IN [7],
the leaves are labeled with the class of the examples. The ID5 [9) and ID5R [11 which often find suboptimal trees.
tree such an algorithm is looking for is simply the one it Current IDL deals badly with noise but I will ignore that
happens to come up with. There is no reason why this problem in this paper.
should be in some sense the best one. Accuracy of the The paper is structured as follows. Section 2 motivates
trees tends to vary little across attribute selection and defines the notions of topological relevance and
measures [2]. However. size does vary and is often much topological minimality. Section 3 presents the IDL
larger than optimal. For example the following is one of algorithm and a detailed example. Section 4 presents the
the two smallest decision trees for the 6-multiplexer, and results of complexity analysis and some experiments
far beyond the capabilities of TDIDT algorithms ([6], see comparing IDL with ID5R. Section 5 describes related
also figure 2): and future work and some open problems.
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2. Topological Relevance classification process). I say that apatcors -0

Given a tree T with root N, what can be said about the example if all tests on it are satisfied by that example,
relevance of an attribute A for classifying an example E? including the class decision. Here a branch is interpreted
I propose to consider a topological notion of relevance as a test whether the test attribute at the parent node has
(i.e. based on the structure of the tree) instead of a as value the label of the branch. The classification path
statistical one (i.e. based on statistics over the training obviously covers the example and moreover it is the only
set). I will use the example domain from [5] to illustrate complete one through T, i.e. one connecting the root
the idea. The set of examples is shown in table 1. with a leaf. In addition, there are a number of partial

paths that also cover the example. Some of these are
Table 1: The Weather Concept from [5] found by using the tree in a bottom-up fashion: Starting

from all leaves in the tree which are labelled with N, the
Attributes example climbs the branches who's test it satisfies. In

this way the classification path and a number of partialOutlook Temperature Humidity Windy paths covering the example are reconstructed. These
partial paths have been highligh.ed in the previous figure2 sunny hot high true N with arrows pointing upwards (i.e. the direction in which

3 overcast hot high false P they are constructed). There are two such partial paths:
4 rain mild high false P
5 rain cool normal false P (N) and (humidity=high N)
6 rain cool normal true N The occurrence of the attribute humidity on the
7 overcast cool normal true P classification path as well as on one of the partial paths
8 sunny mild high false N can be interpreted as follows:
9 sunny cool normal false P (1) it confirms the relevance of humidity for the class-
10 rain mild normal false P membership of E because it plays a role in the
11 sunny mild normal true P hypothesis-driven confirmation of E's
12 overcast mild high true P classification result (N). Judged by tree structure,
13 overcast hot normal false P humidity=high is highly predictive for the class N.
14 rain mild high true N (2) the value of the closest common attribute above

the two humidity-nodes (windy) does not influence
Assume one has the following tree T: the role of humidity in E's classification.

Branching on windy does not change the way in
Outlook which humidity is used.

For a given tree T, attribute A and example E in class C,
sr let us call the number of occurrences of A on the

sun a in (complete or partial) paths reconstructed by hypothesis-["7 driven tree climbing using E and starting from T'~s leafs

Windy P Windy labeled C, the topological relevance TRT(AE) of A for
E. Thus, these are the scores for topological relevance:

t rue alse true alse TRT(outlookE)= I
lRT(temperaturecE)=O

Humidity Humidity N TRT(humidityE)=2

high ormal hig ormal The first observation above suggests that topological
relevance measures the import of an atuibute for
determining the class of an example (i.e. the predictive

N P N P power of the attribute-value for the class). The second
observation supports the hypothesis that testing

Consider example 1 (call it E). This example is classified humidity first may make the windy test obsolete.
correctly. The branches and the leaf node involved in the Therefore, if both attribitcs can he switched chances are
classification process starting from the root of the tree that the tree (actually its subtrees) can be pitned.
form the c1 £Ukatii~n path of E: A tree transformation technique which is also used in

ID5 and ID5R [9, 111 can be used to swap the attributes
(outlook=sunny windy=false humidity=high N) windy and humidity. This technique, which is justified

This classification path is highlighted with arrows by commutativity of attribute tests, interchanges the
pointing downwards (i.e. the direction of the windy and humidity attributes and regroups the subtrees
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at the second level down (in this case the four leaves), example is not the same as the number of oc- "fences of
One obtains the following tree: an attribute in the tree. For example, in the original tree

the topological relevance TRT(windyE) is I despite the

Outlook apparent symmetry of the tree with respect to that
I attribute. Also note that the topological relevance of an

sunn attribute is at least one for an attribute which is used onover ain the classification path.
It is easily verified that for the final tree the

Humidity P Windy topological relevance of all attributes for all examples in
table 1 is equal to 0 or 1. This means that there is no

ghm true topological redundancy in the tree: there is no replication
hial tlse of decision nodes with a similar role for classification.

Similar partial classification paths are represented by the
Windy Windy N P same branches.

I say that a tree T is topologically minimal with

true alse true false respect to a set of examples {Ei) i, if it is correct, cannot
be pruned without loss of correctness and TRT(A,Ei)_<1
for each attribute A and every i. (I also assume that a

N N P p decision tree is well-formed meaning that it has no
decision nodes with only one branch (infra)). So the final

The windy tests have now become obsolete and pruning decision tree shown above is topologically minimal with
at these nodes results in the following decision tree: respect to the training set from table 1. The optimal tree

for the 6-multiplexer which was shown before is also
topologically minimal in the above sense with respect to

Outlook the 64 instances.

sunny rain 3. IDL
live~ast .%.3IDL is a new incremental algorithm for the induction of

Humidity P Windy decision trees which are topologically minimal in the
sense explained in section 2. Earlier incremental decision

ia truls tree algorithms, in particular ID4 [7], ID5 [9] and ID5R
[11] are essentially incremental versions of TDIDT [5]:
they use backtracking (in ID4) or simulated backtracking

N P N P (in ID5 and ID5R) to recover as best as possible and with
minimal loss of training effort from deviations from
TDIDT's search path (general to specific hill-climbing

The classification path of E is highlighted in the pruned without backtracking) which is considered to be "ideal"
tree. The scores for the topological relevances of the and leading to the best tree. IDL builds on this previous
attributes for the example in this tree are now the work and uses two ideas which stem from ID4 and ID5
following: respectively:

TRT(outlook,E)=l ID4 one can maintain attribute-value and class counts
"RT(temperature,E)=0 for every potential test attribute at every node and
TRT(humidity,E)=l use these to find the best test attribute for splitting
"lRT(windy,E)=0 according to a statistical selection measure [2]

without re-examining the examples;
The topological relevance of the attribute humidity is ID5. a test attribute can be replaced by another one by a
now 1, which is as low as it can get if humidity is tree transformation technique which pulls up an
relevant at all. So in this case the transformation did attribute from below without re-examining the
minimize topological relevance, intuitively meaning that part of the examples which is implicit in the
an attribute's activity is localized as much as possible in decision tree. Moreover attribute-value and class
the tree (compare with the topological redundancy in the counts are easily recalculated.
original tree). This was achieved by pulling up IDL performs a heuristic search using three types of
topologically more relevant attributes in the tree. This is search steps, namely specialization by splitting,
the intuitive basis of the IDL algorithm which is generalization by pruning, and transformation by ID5's
described in section 3. pull-up technique [9,11]. IDL's increased power stems

Note that topological relevance of an attribute for an from two insights:
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Table 2: The IDL Tree Update Algorithm

Let T be the current tree and E the next example. To update the tree T using the example E do the following:
1.Classify

Classify E, updating the count information at each node on the classification path. Let N be the node where E ends
up (i.e. a leaf or a split node with a missing branch).

2. Expand
2.1. If E is incorrectly classified then expand N into a tree using TDIDT and the statistical criterion.
2.2. If E cannot be classified then add a new branch to N and label its leaf with the class of E.
2.3. Classify E in the subtree rooted at N (updating count information) and remember the part of E which is not

implicit in the classification path at the leaf L where E ends up in.
3. Restructure

Recursively update the test attribute of the nodes on the entire classification path of E from leaf L to root T.

3.1. IDL: Algorithm
1. search using these transformation steps can IDL starts with an empty tree and processes examples

potentially come up with better trees than TDIDT one by one. With the first example IDL creates a root-
because it lets hypotheses be reached in parts of node and labels it with the class of the example. Assume
the search space which are remote from TDIDT's a fixed statistical criterion for splitting nodes (e.g. any of
search path; those from [2]). The basic algorithm for processing an

2. a measure based on topological relevance (see example using the current tree is shown in table 2. This
section 2) can be used for selecting skeleton is very similar to ID5's, except that ID5 updates
transformations. It exploits the knowledge from test attributes from root to leaf.
the structure of the tree before transformation to IDL also uses the transformation technique from
create opportunities for pruning after ID5(R) [9,11] to pull up an attribute to a node. This
transformation. technique is based on an operation which switches the

Thus, instead of using transformations to stay close to levels of attributes in the tree while preserving (and
TDIDT's search path, IDL uses transformations to come possibly increasing) classification accuracy. In IDL the
up with better trees. It therefore uses two different pull-up technique requires one extra operation. Attribute
selection measures: a statistical one like any of those switching regroups subtrees and there is no reason why
TDIDT would use for splitting (specialization) and the this should result in groups with more than one subtree
topological one for selecting transformations. IDL prunes (see [9], [11] for details). In ID5(R) the resulting single
(generalization) wherever it finds obsolete splits.

Table 3: The IDL Attribute Revision Algorithm

Let M be a node on the classification path of E. Let Al... An be the attributes used on this path down from M and
excluding the test attribute at M.
3.1. For each leaf under M which is labelled with the same class a E, reconstruct the largest path starting from this leaf

and covering the example E, using only attributes among Al.. .An.
3.2. For each attribute Al... An compute its topological relevance TRM(Ai,E), which is simply the number of

occurrences on all the reconstructed paths. Note that TRM(AiE) > 0.
3.3. For each attribute A1.. .An also compute the topological relevance TRs(AiE) where S is the immediate son of M

on the classification path of E. Note that TRM(AiE) -> TRs(Ai,E)
3.4. For each attribute Al ... An, compute the topological relevance gain as the weighted increase in topological

relevance between S and N, i.e.:
TRGM(Ai,E) = (TRM(Ai,E) - TRs(Ai,E)) / TRM(Ai,E)

3.5. Ifsom attribute among A,..A.. h... . a positive topological relevance gain then pull up the one with the highest
score to M. Ties are resolved by choosing the attribute nearest to M.

3.6. Otherwise compute the best test attribute Abest at M according to the statistical criterion and assure its presence in
the tree with root M. To assure the presence of Abest in the tree with root M, do nothing if Abest is already used
in this tree. Otherwise, pull up Abest to M. (The pull-up process will make Abest appear).

3.7. Prune any subtree of M which is obsolete, i.e. all leaves under it are labeled with the same class.
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branch splits, being uninformative, will automatically 1) and IDL continues by revising the test attributes on
disappear through subsequent training (in ID5) or the classification path, from leaf to root (step 3). At the
recursive restructuring of the subtrees (in ID5R). In IDL temperature node no topological relevance gains are
this is not the case and they need to be explicitly computed (step 3.5 fails). Suppose that the statistically
removed. This is achieved by applying the same pull-up most relevant attribute at that node is humidity. It is not
technique to push the uninformative attribute down and present in the subtree (nothing is) so it is pulled up (step
eventually out of the tree (see also [12]). 3.6) by expanding two leaves using humidity, and

The crucial distinction between IDL and the other swapping humidity with temperature. Subsequent
algorithms is in the heuristic for applying tree pruning removes the obsolete temperature splits (step
transformations. The algorithm to select a better test 3.7). After revising one node the tree is as follows:
attribute is shown in table 3. IDL uses the example to
guide its search for useful transformations in the most Windy
relevant parts of the tree. The role of step 3.6 is to assure
enough diversity among the attributes. When a tree has
become fully accurate there will be no more expansions true false
of nodes (step 2) and the transformations (step 3.5) alone
will never lead to the appearance of a new and possibly
crucial attribute. As in ID5(R) it is useful to keep pruned Outlook
subtrees around (virtual pruning) because they embody sunny rain s rain
training effort which may be relevant for subsequent pull- i sunny rain
up operations.

Note that IDL may find the same tree as the other
algorithms. It does so however mostly based on Humidity Humidity p
topological considerations instead of on statistical ones. I
refer to figure 2 for a case in which this makes a high normal hig normal
substantial difference.

3.2. IDL: Example N

The activity of IDL in the early stages of training
consists mostly of node expansions (step 2) so that the The classification path of example 8 in the new tree is
tree becomes larger and more accurate. The larger the tree highlighted. IDL now revises attributes higher up on this
the higher the chance for topological redundancy. path. At the outlook node this generates no action. At
Suppose one has reached this tree which correctly the root node the paths are reconstructed using the
classifies all but one example (example 1 cannot be attributes outlook and humidity. 1 IDL finds that
classified): humidity and outlook both have a topological relevance

gain of .5. Outlook is the highest up in the tree and is
Wpulled up to the root (step 3.5). The subtree on the

branch outlook=overcast is pruned (step 3.7):
true false

outlook utlook

sunny rain sunny rain

I- Humidit E I Temperature

highA normal cool A mild

N hP 1 It is important to compute the set of attributes Ai at
each level of the tree aftei -evision of the lower parts of
the path. For example, before the previous

Suppose example 8 is next. It is classified correctly (step transformation humidity was not one of them, but now it
is.
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is important for IDL is the number of examples required
Outlook to converge to the optimal tree when examples arerandomly seen. Optimal means correct, topologically

n rminimal, cannot be pruned without loss of accuracy andsunn ai does not contain single-branch splits (see section 3).

Analysis is lacking here but experiments have shown
Windy pWindy that for some concepts and certain training histories,

IDL may fail to find the optimal tree even if it exists.
ttue f fal Elomaa [1] shows and explains cases of non-convergence

aon the 3-multiplexer. No case has been observed where
IDL never finds the optimal tree if it exists, so multiple

Humidity Humidity N runs of the algorithm may be a solution. It is easily seen
from the algorithm in table 3 that, if IDL ever generates

high ormal high normal a correct tree which is topologically minimal then it will
stop performing transformations. This and the
experimental results support the conjecture (as yet not

N P N P proven) that, if a topologically optimal tree exists then
with non-zero probability IDL finds it and in contrast to
ID5(R) sticks to it. If there exist multiple such trees then
IDL finds one of them, though not necessarily the

The next example is example 1. Note that it is now smallest in terms of number of nodes (use multiple
classified correctly: transformation did increase accuracy. runs). If no topologically minimal tree exists then IDL
The classification path goes in the highly symmetrical will not converge to a unique tree. Typically, with each
subtree with windy at the root. IDL detects the example the tree is reconfigured to lower the topological
topological relevance of humidity at that node for relevance of an attribute, thereby increasing it for another
example 1 and pulls it up (step 3.5). After this one. Some and possibly all trees in this limit cycle have
transformation, which was illustrated in section 2, lowest possible topological relevance for the set of
pruning is possible (step 3.7). IDL still has to revise the examples, though never all one or zero (which would
test at the root but finds no better attribute. The tree is mean convergence to a unique tree).
topologically minimal so that none of the examples leads
to further revisions. It should be stressed that, though in 4.2. Experimental Results
this case IDL finds the same tree (the best one) as the
other algorithms, it does so in a very different manner. I did experiments to compare IDL and ID5R 2.The results

are stated in terms of the evolution of tree complexity
4. Analysis and Empirical results (number of nodes and number of leaves) and accuracy

with increasing number of training examples. Training is
done in groups of examples randomly chosen with

4.1. Complexity and Convergence replacement. Measurements are averaged over 20 runs.
In [12] 1 analyze worst-case order of magnitudes for The characteristic behavior of IDL is to grow a tree
training cost. As in [11] this is decomposed as the which is far too large but then rapidly collapses.
number of instance-count additions (ica) and the number Figure 1 shows the results for the weather concept
of evaluations of the statistical criterion (E-score), and from table 1. There is a unique topologically minimal
expressed in the number of attributes IAI and the maximal tree (8 nodes, 5 leaves). IDL has 20 correct and
branching factor b. Table 4 summarizes the results of the topologically minimal trees after 70 examples. ID5R is
analysis of training cost per example for IDS, ID5R and equally fast in accuracy, but does not always find the
IDL. minimal tree (average of 8.7 nodes and 5.4 leaves). In

numerous runs on this concept IDL never failed to find
Table 4: Worst Case Training Cost per Example the topologically minimal tree.

Figure 2 shows the results for the 6-multiplexer. There
Icas E-scores are two topologically minimal trees which are essentially

115 O(b, ) OUiAi 2) equivalent (15 nodes and 8 leaves). For IDL all 20 trees
ID5R1 O(IAI.blAI) ocblA

IDL O(IAI.blA) O(IA12) - 21D5R is used with postpruning to remove

As with IDS and ID5R one pass over the examples is unnecessary splits after transformation (see [9] pIll).
sufficient to build a correct tree with IDL. However what The measurements for ID5 are hardly different from those

for ID5R.
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Figure 1: IDL (white marks) and ID5R (black marks) averaged over 20 runs on the weather concept (see table 1). Training
per 5. Left axis: tree size plotted in squares (number of leaves) and triangles (number of nodes). Right axis: accuracy with

respect to all examples, plotted with circles.

are fully accurate after 110 examples, and topologically after (less than) 650 examples and the minimal one after
minimal after 150 examples. After 200 examples ID5R (less than) 700 examples. Surprisingly IDL sometimes
has an average of 41.6 nodes, 21.3 leaves and 99.7 fails to find the minimal tree for the 3-multiplexer (about
accuracy. In numerous runs on this concept IDL never 40% hit-rate). Often it limit-cycles between the two
failed to find a topologically minimal tree. IDL has also smallest TDIDT equivalent trees (see also (1]).
been run on the 11-multiplexer which uses 3 address-bits The concept of 3-parity has 6 smallest trees with the
and 8 data-bits. There are 2048 examples. The optimal same topology, but no topologically minimal one (TR-
tree has 16 leaves and 31 nodes. IDL had a correct tree scores 1,1,2 for all examples). The graphs are similar to

50 100
45 A-,., 90 -W ID5R leaves
40 80

s 35 70 -0l DL leaves
i 30 60

25 50 A' ID5R nodes
z 20 40
e 15 30 IDL nodes

10 20
5 1 0 4- ID5R accuracy

1 2 3 4 5 6 7 8 91011121314151617181920 IDL accuracy

number of examples (*10)

Figure 2: IDL (white marks) and ID5R (black marks) averaged over 20 runs on the 6-multiplexer. Training per 10. Left
axis: tree size plotted in squares (number of leaves) and triangles (number of nodes). Right axis: accuracy with respect to

all examples, plotted with circles.



Incremental Induction of Topologically Minimal Trees 73

those in figure 1. However, IDL goes into a limit cycle example distributions). This is well illustrated by the
of three smallest trees (15 nodes, 8 leaves) with every weather concept where IDSR sometimes converges to a
example permuting attributes through the tree levels. tree with humidity as root. For the same training history,
ID5R goes to a slower cycle of all 6 trees. IDL is not distracted by these variations. Secondly IDL

I used IDL as a postprocessor for optimizing TDIDT uses individual examples to guide its search but actuallygenerated trees while in use for classification. The results reasons about classification paths which represent classes

for the 6-multiplexer are shown in figure 3. They show of examples. This may explain the fast convergence on
how IDL rapidly collapses the trees to a topologically the 6-multiplexer for which these classes are fairly large.
minimal form. Much the same effect can be achieved Note that IDL's reliance on individual examples likely
without using any statistical information or examples for makes it very sensitive to noise.
focus, but purely by analyzing the occurrences of the
attributes on a path from root to leave. Experiment like 5. Related and Future Work
this with a variant of IDL are reported in [1].

Table 5 shows the run-time improvement of IDL over 5.1. Related Work
ID5R expressed in icas, E-scores, expansions, prunings IDL is a direct descendant of earlier incremental decision
and attribute switches. The figures express reduction in tree algorithms I4 [7], ID5 [9] and ID5R [11]. In
total training cost, averaged over 20 consecutive exam- section 3 it was noted that these do not tackle the
pies, and averaged over 20 runs on weather concept problem of suboptimal trees, because they try to stick to
(examples 55-75) and 6-multiplexer (examples 130-150). the search path which TDIDT would follow and thusNote that IDL always found the same or a better tree, inherit from TDIDT the problem of suboptimality.

Selection measures for TDIDT algorithms have been
Table 5: Computation Reduction with Respect to ID5R improved to generate smaller trees without loss of

6-multiplexer accuracy [2,5]. However, Quinlan [6] shows why TDIDT
weather -algorithms have problems with concepts like the

Icas 11% 29% multiplexer. Seshu 18] shows that TDIDT algorithms are
E-prs 6% 32% fundamentally incapable of effectively learning a class of
Expansions 40% 66% generalized parity concepts. Remedies fall in two
Prunings 44% 66% categories: subsequent simplification of trees, or change
Transformations 37% 49% of language bias by introducing new attributes.

Pruning techniques [3] allow one to change a tree near
4.3. Discussion the. fringe. For concepts like the multiplexer this is not

Despite the fact that IDL sometimes fails to converge to sufficient. Quinlan [6] proposes to transform a tree into a
a topologically minimal tree it performs well on a set of rules which are subsequently simplified by
number of standard concepts. There may be two reasons selectively deleting conditions. For comparison, note that
for this. Firstly, the topological flavor of IDL makes it IDL works with one representation and that the pull-up
less sensitive to statistical variations (non-representative process modifies several rules at once and is capable of

55, 20
50 18

45 12
s 40. AN. 14 0U leaves

z 25 0 OO%, 10 -A-nodes

20 %%O--o ." -" 6 # collapsed
1 5011:- --, 0,. -. AmA A__2
10 ,.,p - W - ---- o- 2

5 , : . : . I . I . -. --.-. 0

0 2 4 6 8 10 12 i4 16 18 20
number of examples

Figure 3: IDL as a postprocessor for TDIDT-generated trees, applied to 20 identical trees for the 6-multiplexer. Left axis:
tree size plotted in squares (number of leaves) and triangles (number of nodes). Right axis: the number of fully collapsed

trees at that moment, plotted with black circles.



74 Van de Velde

both introducing and deleting attributes on a path. with non-convergence and noise.
Pruning and Quinlan's technique solve problems of
noise, while IDL's reliance on individual instances makes Acknowledgements
it sensitive to noise. Thanks to Johan Vanwelkenhuysen, Philip Rademakers,

The FRINGE algorithm [4] is designed to tackle the Jeff Schlimmer, Paul Utgoff, Giulia Pagallo and the
problem of replication of subtrees when learning decision Schlmm r Paul f, GuliPg adoth
trees for boolean Disjunctive Normal Form concepts by anonymous reviewers for suggesting various
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Abstract The Structure of the Environment
A rational analysis tries to predict the behavior It is an interesting question what kind of structure we

of a cognitive system from the assumption it is can assume of the environment in order to drive
optimized to the environment. An iterative prediction. The theory developed rested on the
c gategoriztion algoritlun has been developed structure of biological categories produced by the
of Whichattemptst get optimal Bayesianll eStimates phenomenon of species. Species form a nearly

various features. A prior probability is estimated disjoint partitioning of the natural objects because of
that an object comes from a category and the inability to interbreed. Within a species there is a
combined with conditional probabilities of common genetic pool which means that individual
displaying features if the object comes from the members of the species will display particular feature
category. Separate Bayesian treatments are values with probabilities that reflect the proportion of
offered for the cases of discrete and continuous that phenotype in the population. Another useful
dimensions. The resulting algorithm is efficient, feature of species structure is that the display of
works well in the case of large data bases, and features within a freely-interbreeding species is
replicates the full range of empirical literature in largely independent. Thus, there is little relationship
human categorization, between size and eye color in species where those

A rational analysis (Anderson, 1990) is an attempt to two dimensions vary. Thus, the critical aspects of
specify a theory of some cognitive domain by speciation is the disjoint partitioning of the object set
specifying the goal of the domain, the statistical and the independent probabilistic display of features
structure of the environment in which that goal is within a species.
being achieved, and whatever computational
constraints the system is operating under. The An interesting question is whether other types of
predictions about the behavior of the system can be objects display these same properties. Another
derived assuming that the system will maximize 'h common type of object is the artifact. Artifacts
goals it expects to achieve while minimizing approximate a disjoint partitioning but there are
expectc_: costs where expectation is defined with occasional exceptions--for instance, mobile homes
respect to the statistical ctructure of the environment, which are both homes and vehicles. Other types of
This approach is 4':%ferent from most approaches in objects (stones, geological formations, heavenly
cognitive psychology because it tries to derive a bodies, etc) seem to approximate a disjoint
theory from assumptions about the structure of the partitioning but here it is hard to know whether this is
environment rather than assumptions about the just a matter of our perceptions or whether there is
structure of the mind. any objective sense in which they do. One can use

the understanding of speciation for natural kinds and
We have applied this approach to human understanding of the intended function in

categorization and have developed a rather effective manufacture for artifacts to objectively assess the
algorithm for categorization. The analysis assumes hypothesis of a disjoint partitioning.
that the goal of categorization is to maximize the
accuracy of predictions about features of new objects. We have taken this disjoint, probabilistic model of
For instance, one might want to predict whether an categories and used it as the understanding of the
object is dangerous or not. This approach to structure of the environment for doing prediction
categorization noth.in g sp i-a about, category abuui vbjemi e.ure. To maximize tie prediction of
labels. The fact an object might be called a tiger is features of objects we need to induce a disjoint
just another feature one might want to predict about partitioning of the object set into categories and
the object. determine what the probability of features will be for

each category. The ideal prediction function would
be described by the following formula:

Pred4j = J PwxI,)Prob~v)
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where Pred.. is the probability an object will display a multiple possible partitionings as the ideal algorithm
value j on a dimension i which is not observed for would. In cases of strong category structure, there
that object, the summation is across all possible will be only one probable partitioning and the
partitionings of the n objects seen into disjoint sets, iterative algorithm will uncover it. In cases of weak
P(xlFn) is the probability of partitioning x given the .ategory structure, it will often fail to obtain the ideal
objects display observed feature structure F, and partitioning, but still the predictions obtained by
Probi (jlx) is the probability the object in question Equation I closely approximate the ideal quantity
would display value j on dimension i if x were the because of the weighting of multiple categories. We
partition. The problem with this approach is that the observe correlations about .95 between the
number of partitions of n objects grows exponentially predictions of our algorithm and the ideal quantities
as the Bell exponential number (Berge, 1971). in cases of small data sets.
Assuming that humans cannot consid,:r anAssuingtha huanscannt cnsi,., an It remains to come up with a formula for
exponentially explod.'g number of hypothesis we
were motivated to explore iterative algorithms such calculating Pk and P(ijk). Since P(ijk) proves to be
as those developed by Fisher (1987) and Lebowitz involved in the definition of Pk, we will focus on Pk.
(1987). In Bayesian terminology Pk is a posterior probability

P(k/F) that the object belongs to category k given that
The following is a formal specification of the it has feature structure F. Bayes formula can be used

iterative algorithm: to express this in terms of a prior probability P(k) of
1. Before seeing any objects, the category coming from category k before the feature structure is

partitioning of the objects is initialized inspected and a conditional probability P(Fk) of
to be the empty set of no categories. displaying the feature structure F given that it comes

2. Given a partitioning for the first m from category k.
objects, calculate for each category k P(k)PQFk)
the probability Pk that the m+lst object Pk = P(klF) )
comes from category k. Let P. be the P(k)P(Flk)
probability that the object comes from a k Equation 2
completely new category where the summation in the denominator is over allwith the m+lst object assigned to the categories k currently in the partitioning including thectrwith mm bject aiidty, tpotential new one. This then focuses our analysis oncategory with maximum piobability, the derivatioki of a prior probability P(k) and a

4. To estimate the probability of valuej on conditional probability P( k)an.
dimension i for the n+lst object conditional probabilityP(F/k).
calculate Prior Probability

Predij = I Pk P(ijlk) Equation 1 With respect to prior probabilities the critical
k assumption is that there is r f'-ed probability c that

where Pk is the probability the n+lst object comes any two objects come from ~: stone category and
from category k and P(ijk) is the probability of this probability does not depend on the number of
displaying value j on dimension i. objects seen so far. This is called the coupling

The basic algorithm is one in which the category probability. If one takes this assumption about the
structure is grown by assigning each incoming object coupling probability between two objects being
to the category it is most likely to come from. Thus, independent of the other objects and generalizes it,
a specific partitioning of the objects is produced. one can derive a simple form for P(k) (See Anderson,a spcifc prtitonig o theobjctsis podued. 1990, for the derivation):
Note, however, that the prediction for the new n+lst
object is not calculated by determining its most likely Cnk
category and the probability of j given that category. P(k) = (l-c) + n Equation 3
This calculation is performed over all categories.
This gives a much more accurate approximation to where c is the coupling probability. n, is the number
the ideal Predi, because it handles situations where of objects assigned to category k so far, and n is the
the new object is ambiguous between multiple total number of objects seen so far. N( te for large n
categories. It will weight approximately equally this closely approximates n,/n which means that we
these competing categoiies. have a strong base rate effect in these calculations

with a bias to put new objects into large categories.
The algorithm is not guaranteed to produce the Presumably the rational basis for this is apparent.

maximally probable partitioning of the object set
since it only considers partitionings that can be We also need a formula for P(O) which is the
incrementally grown. It also does not weight probability that the new object comes from an
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entirely new category. This is distribution of possible priors and as more and more
(1-c) data accumulates come up with a tighter and tighter

P(O) = (0-c) + Equation 4 posterior distribution.

In the case of a discrete dimension, the typical
For large n this closely approximates (1-c)lcn Bayesian analysis (Berger, 1985) is to assume that

which is again a reasonable form--i.e., the probability the prior distribution is a Dirichlet density. For a
of a brand new category depends on the coupling dimension with m values a Diri-.hlet distribution is
probability and number of objects seen. The greater characterized by m parameters o. We can define
the coupling probability and the more objects, the o= The mean probability of theth value is p
less likely it is that the new object comes from an = -, Th prbalt the jth vl islp.
entirely new category. a.. The value a0 reflects the strength of beliek

in these priors probabilities, p). The data after n
Conditional Probability observations will consist of a set of C. counts of
We can consider the probability of displaying observations of value j on dimension i. Te posterior
features on various dimensions given category distribution of probabilities is also a Dirichlet
membership to be independent of the probabilities on distribution but with parameters ox.+C.. This implies

)J Jother dimensions. Then we can write that the mean expected value of displaying value j in
dimension i is (a.+C)/X (o+Cj). This is P(ijlk) forP(Flk) = r- P(ijlk) Equation 5 Equation 5:

Where P(ijlk) is the probability of displaying value P(ijlk) Ci + cae Equation 6
j on dimension i given that one comes from category "k + a0
k. where nk is the number of objects in category k which

have a value on dimension i and Ci is the number of

This independence assumption does not prevent us objects in category k with the same value as the
from recognizing categories with correlated features. object to be classified. For large nk this approximates
Thus, we may know that being black and retrieving Ci nk which one frequently sees promoted as the
sticks are features found together in labradors. This rational probability. However, it has to have this
would be represented by high probabilities of the moie complicated form to deal with problems of
stick-retrieving and the black features in the labrador small samples. For instance, if one has just seen one
category. What the independence assumption object in a category and it has had the color red, one
prevents us from doing is representing categories would not want to guess that all objects are red. If
where values on two dimensions are either both one we assume there are seven colors and all the a. were
way or both the opposite. Thus, it would prevent us 1, the above formula would give 1/4 as the posterior
from recognizing a single category of animals which probability of red and 1/8 for the other six colors
were either large and fierce or small and gentle, for unseen as yet.
instance. However, this turns out not to be a very
serious limitation. What our algorithm does in this Continuous Dimensions
case is to spawn a different category to capture each Application of Bayesian inference schemes to
two-feature combination--it would create a category continuous dimensions is more problematic but there
of large and fierce creatures and another category of is one approach that appears most tractable (Lee,
small and gentle creatures. 1989). The natural assumption is that the variable is

distributed normally and the induction problem is toThe effect of Equation (5) is to focus us down on infer the mean and variance of that distribution. In
an analysis of the individual P(ij/k). Derivation of standard Bayesian inference methodology we must
this quantity is itself an exercise in Bayesian analysis. begin with some prior assumptions about what the
We will treat separately discrete and continuous mean and variance of this distribution is. It is
dimensions. unreasonable to suppose we can know in advance
Discrete Dhirieiisioiis what the precisely what either the mean and variance

will be. Our prior knowledge must take the form of
The basic Bayesian strategy for doing inference along probability densities over possible means and
a dimension is to assume a prior distribution of variances. This is basically the same idea as in the
values along the dimension, determine the discrete case where we had a Dirichlet distribution
conditional probability of tie data under various giving priors about probabilities of various values.
possible values of the priors, and then calculate a The major complication is the need to state separately
posterior distribution of possible values. The prior distributions for mean and variance.
common practice is to start with a rather weak
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The tractable suggestion for the prior distributions A second comment is in order concerning the
is that the inverse of the variance 12 is distributed output of the rational analysis. It delivers a
according to a chi-square distribution and the mean probability that an object will display a particular
has a normal distribution. Given these priors, the feature. There remains the issue of how this relates
posterior distribution of values x on a continuous to behavior. Our basic assumption will only be that
dimension i for category k, after n observations has there is a monotonic relationship between these
the following t distribution: probabilities and behavioral measures such as

response probability, response latency, and
fi(xlk) - ta (ga i 41 +I i) Equation 7 confidence of response. The exact mapping will

The parameters ai, , ai, and Xi are defined as depend on such things as the subject's utilities for
follows: various possible outcomes, the degree to which

individual subjects share the same priors and
experiences, and the computational costs of achieving
various possible mappings from rational probability

Xi = Xo+n Equation 8 to behavior. These are all issues for fiture
exploration. What is remarkable is how well we can
fit the data simply assuming a monotonic

ai = a0 + n Equation 9 relationship.

Application of the Algorithm
X + aY We have applied the algorithm to a number of

= X, + Equation 10 examples to illustrate its properties. The algorithm is
quite efficient. A Franz LISP implementation
categorized the 290 items from Michalski and
Chilausky's data set on Soybean disease (each with

2 o_ 36 values) in I CPU minute on a Vax 780 or a MAC
a0o 0 + (n-1)s2 + T, + " - po)2 II. This is without any special effort to optimize the

a1
2 = ao + n code. It also diagnosed the test set of 340 soybean

Equation 11 instances with as much accuracy as apparently didthe original system of Michalski and Chilausky.

where . is the mean of the n observations and s2 is

their variance. These equations basically provide us The algorithm has been applied to the full range of
with a formula for merging the prior mean and psychological experiments in categorization.

Detailed discussions can be found in Anderson (invariance, I o and a0
2, with the empirical mean and press) and Anderson & Matessa (in preparation).

variance, kand s2, in a manner that is weighted by our However, we will review here in varying detail the
confidences in these priors, X0 and ao. applications of the algorithm to 10 empirical

Equation 7 for the continuous case describes a phenomena. All these simulations were done with a
whicn7ose rs tcae croles a constant setting of the parameters: c from Equation 3probability density which serves the same role asfrom Equation 6 at 1, fom Equation

Equation 6 for the discrete case which describes a 8
probability. The product of conditional probabilities 8 at 1, ao from Equation 9 at 1, go from Equation 10
in Equation 5 will then be a product of probabilities at the mean of the stimuli, and q 0

2 from Equation 11
and density values. Basically, Equations (5), (6), and at the square of 1/4 the stimulus range. All of these
(7) give us a basis for judging how similar an object are plausiblt! settings and often correspond to
is to the category's central tendency. conventions for setting Bayesian non-informative

priors. The following are among the empirical
Conclusion phenomena we have successfully simulated:
This completes our specification of the theory of
categorization. Before looking at its application to 1. Extraction of Central Tendencies, Continuous
'"r'o -. Ia. .. en.m " , . "ord Of caut;on ; , i Dimensions The Bayesian model for continuous

order. The claim is not that the human mind dimensions implies that categorization should vary
performs any of the Bayesian mathematics that fills with distance from central tendency. This enables the
the preceding pages. Rather the claim of the rational model to simulate the data of Posner & Keele (1968)
analysis is that, whatever the mind does, its output on categorization of dot patterns and Reed (1972) on
must be optimal. The mathematical analyses of the categorization of faces. Let us consider the
preceding pages serve the function of allowing us, as experiment of Reed in a little detail:
theorists, to determine what is optimal. Reed (1972) had subjects learn to categorize the 10
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faces which are illustrated in Figure 1. The first row sufficiently different than the central tendency for its
of faces are in one category and the second row of assigned category, the model will form a distinct
faces are in another category. The two sets of faces category for it. This enables the model to account for
are deviations from underlying prototypes. After the data of Medin & Schaffer (1978) on discrete
studying these faces subjects went to a test condition dimensions and Nosofsky (1988) on continuous
where they had to try to classify these and other dimensions. Let us consider the experiment of
faces. The critical data concerns the probability with Nosofsky:
which subjects assigned faces to conditions. As a Figure 2
general characterization, their categorization varied
with distance of the face from the prototype. ob.rv Do%

Figure 1 1.0.

0.4- E

oo 0 00 1 2 3 4 5 4 7 $ 9 10 11 12

Prdcted Date

In our attempt to simulate these data we treated .
these faces as five-dimensional stimuli where the
dimensions are height of the forehead which ranged
from 54 to 88 mm, distance separation of the eyes o.6 0 Bp,.,

which ranged from 20 to 55 mm, length of the nose C Ep,,w

which ranged from 32 to 64 mm, height of the mouth 0.4- E7 P.ts
which ranged from 28 to 60 mm, and category label 0.21
wh ich was a binary-valued discrete dimension. Our
rational model identified two or more internal 0.0
categories, depending on presentation order, that 1 2 3 4 s * 7 S 9 10 11 12

corresponded to the experimenter's categories. That 00W
is, sometimes it subdivided the experimenter's
categories into subcategories but it almost never Nosofsky trained his subjects on 12 stimuli that
merged items from the two experimenter categories varied in brightness and saturation. The colors varied
into an internal category. Reed's subjects were asked in brightness on the Munsell scale from 3 to 7 and in
to classify 25 test stimuli and the major test of our saturation from 4 to 12. In the base condition
model was its classification of these test stimuli, subjects had four trials on each item and were then
Overall its confidence of category membership tested. In the first experiment there was a condition
(calculated by Equation 1) correlated .90 with Reed's E2 in which subjects saw stimulus 2 approximately 5
data. times as frequently and a condition E7 in which they

saw stimulus 7 approximately 5 times as frequently.
2. Extraction of Central Tendencies, Discrete Part (a) of Figure 2 illustrated probability of

Dimensions The model implies that stimuli should be classification in Category 2. As can be seen subjects
better categorized if they display the majority value are sensitive to the frequency manipulation. Part (b)
for a dimension. ni, enabled the model to simua,e of Figure 2 shows the probability our model assigned

the data of Hayes-Roth & Hayes-Roth (1977), for to a Category 2 response given the same experience.
instance. The overall correlation between data and theory is

.98.
3. Effect of Individual Instances If an instance is 4. Linearly Separable versus Non-Linearly

.Separable Categories Unlike some categorization
models this model is able to learn categories that

t We would like to thank Stephen Reed for making his data cannot be separated by a plane in a n-dimensional
available.
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hyperspace. This is because it can form multiple objects identified as examples of fictitious tools. The
internal categories to correspond to an experimenter's structure of the material, as encoded by Gluck and
category. This enables the model to account for the Cotter (1985), is illustrated in Table 2. There were
data of Medin & Schwanenflugel (1981) on discrete two superordinate categories which divided into 4
dimensions and Nosofsky, Clark, & Shin (1989) on intermediate categories, which divided into 8
continuous dimensions. Let us consider the subordinate categories. Table 2 gives the attribute
experiment of Medin & Schwanenfugel. They description of each category. Subjects were fastest to
performed an experiment where linearly non- classify the material at the intermediate level which
separable categories were learned better than linearly Murphy and Smith intended to be the basic level.
separable categories. Objects at this level had two attributes plus two labels

in common. Only one additional feature and label
Table I illustrates the material used by Medin & was gained at the subordinate level, and all features

Schwanenflugel (1981). In the case of the linearly were lost at the superordinate level except for their
separable categories our model formed separate feature of being a pounder or a cutter.
categories for each stimulus. In the case of linearly Table 2
non-separable, it merged the first 2 in category A into
an internal category, the second 2 in category A, and Gluck and Cotter$ Analysis of the Feature Structure of the Material fromMupy& Smith (1982)

the first, second, and fourth in category B. Thus, only Murp.4h&Sriu,

stimulus 3 in category B was in a singleton category su,. Ine. sub.
and this was the stimulus that produced the highest ite omW e media, odrine Handle Shaft Hed Size

error rate in the non-separable condition. t. Pounder Hammer Hanrrl 2 2 0 0
2. 2 2 0 I

Table 1 3. Ham.r Z 2 2 I 0
4. 2 2 2 0
5 Brick+ Bricki 0 3 4 0

LINEARLY SEPARABLE ATEGORIES 6 0 3 4 17. Brck 2 I 3 4 0

8. I 3 4 I

A C&T9GORY 8 9. Cutter knife Knuel 3 4 2 0
gi I0 O 3 4 2 t0IONSO 4 3 0

nluff It, Kntur2 3
UMPLA, O0304 EXEMPLA 01 02DS0 N z. 3 4 3 1

13. Pis C. PC.1 4 0 5 0

A I  I I1O0a, 10 1 0 . 4 0 5 I
I'. P.C.2 4 , 3 0

AZ 0 1 1 at  0 1 1 0 16. 4 3 S 1

A3  110 t 3  O OO i
A 00We modeled this material by encoding the stimulias 7-dimensional objects with dimensions for the

CATEGORIES NOT LINEARLY SEPARABLE superordinate label (2 values), the intermediate label
(4 values), the subordinate label (8 values), handle (5

CArTEORY A CATEORY 9 values), shaft (5 values), head (6 values), and size (2
DMENSION values). What category structure was obtained

EXEMPLAR 0, o 0 N EXEMPLAR 0 ,2 03 o o4  depended upon the value of the coupling probability.
A 1 0 0 0 0 0 0 0 For c > .96 all were merged into one category; for .95
A> c> .8 the two superordinate categories emerged;

o o 0 , o for .8 > c > .4 the model fluctuated between the

A3  I I 1 1 I , 0 1 1 superordinate and intermediate categories depending

A4  0 1 1 , I 0 0 0 0 on presentation order; for .4 > c > .2 it extracted just
the intermediate categories; for .2 > c > .05 it

5. Basic-Level Categories The internal categories basically extracted the intermediate categories with

that the model extracts corresponds to what Rosch an occasional singleton category or subordinate

(1976) meant by basic-level categories. 2 Thus, it can category; for c < .05 it extracted only singleton

simulate the data of Murphy & Smith (1982) and categories. In summary, the subordinate categories
Hoffman & Ziessler (1983). We will describe the never emerged and only a very high levels of c did
H..of &, ,,essle. (1983). Wet will describethe superordinate categories dominate. At the value of c

.. r used in the simulations of this paper (c = .3) only the
basic level categories emerged. Thus, it seems fair to

Murphy and Smith presented to their subjects 16 conclude that the analysis agrees with the subjects as
to what the basic level is.

2Rosch's idea of a basic level is that there is a level in lte 6. Probability Matching Faced with truly
generalization hierarchy to which we first assign objects. For probabilistic categories and large samples of
instance, she argues we would first see an object as a bird not a instances the model will estimate probability of
sparrow or an animal.
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features that correspond exactly to the empirical Cultice (1984).
proportion. Thus, it predicts the data of Gluck &
Bower (1988) on probability matching. Figure 3 illustrates the stimulus material of Homa

and Cultice. They are derived from the random 9-dot
7. Base-Rate Effect Bepause of Equation 3 this patterns introduced by Posner & Keele (1968) but

model predicts that usually there will be a greater Homa has introduced the feature of drawing lines to
tendency to assign items to categories of large size. connect the dots. This makes it relatively cheap to
Thus, it handles the data of Homa & Cultice (1984). write a computer program that will determine how to
It also reproduces the more subtle interactions of map the points of one into another in a way as to
Medin & Edelson (1988). achieve maximal fit. Given such a mapping, we can

describe each stimulus according to 18 ordered
8. Correlated Features As noted earlier the model dimensions which are the x and y coordinates of each

can handle categories with correlated features by point. Then we can apply our categorization
breaking out separate internal categories for each algorithm to these materials.
feature combination. Thus, it handles the data of Figure 3
Medin, Altom, Edelson, & Freko (1982). They had

subjects study the 9 cases in Table 3 which were all
supposed to represent instances from one disease '
category, burlosis. This was simulated by presenting
these 9 cases to the model with a sixth dimension, a
disease label which was always burlosis. This was
arbitrarily treated this as a binary dimension. Note
that each of the five symptoms show a majority of
ones associated with the disease.

Table 3

SYMPTOMS OF BURLOSIS
from Medin t al. (1982)

Case Blod Skin Afu$c€e Condition 4 tight
Study Pressutt Condition Condition of E£es Condmtion

.R L. 0 I0 1
L. F, 1 0

3 ).) 1 0
4. R M 1 0I

AM. I I IF ]
.. S I I I

7 S,'T 1 0 0 0
$SE. 0 I I 0
9.EM. I 1 0 0 There are three categories in Figure 3--one

Note Zero denotes absence o1 the symptom and I denotes presence category represented by 9 items, one by 6, and one by

The critical feature of these materials from the 3. In one condition of their experiment, subjectsherpctiefclal d feature es mterls tfurth were given category labels and trained to sort the
perspective of correlated features concerns the fourth stimuli into three categories. in another condition

dimension of weight. Values are either both I or they were free to sort the stimuli into whatever
b oth 0. Theit. ites ae 3thaer to I categories they wanted. Homa & Cultice wereboth 0. The first six items in Table 3.5 have two l's; interested in determining how well subjects did at
the last three have two 0's. Subjects are sensitive to recovering the category structure without feedback.
this correlation. When these stimuli were fed into 3 In the case of feedback, Homa & Cultice just
algorithm with c=.3, it typically extracted 3 measured accuracy of assignment in a final criteria
categories--one to represent the first six items, one test. In the case of no feedback, they tried to discover
for the seventh, and one for the last two. Thus, the some way of assigning labels to the categories in the
way it dealt with correlated features was to break out subjects' sort that made their categorization look
separate categores for the different possible values of ontimal. It is hard to know how comparable the two
the correlation.

measures are.

9. Effects of Feedback If the category structure of In our case, when there was feedback, we
the stimuli is strong enough the model can extract the measured the probability of a category label
categories without any feedback as to category according to Equation 1. Wheu there was no
identity. In the face of weak category structure, it is feedback, we assigned labels to internal categories in
necessary to provide category labels to get learning, such a way as to maximize probability of a correct
Thus, this model reproduces the data of Homa & label assignment when Equation I was used. Again
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it is unclear how comparable our iwo measures were. forms is sensitive to presentation order. In this way
In our case we corrected our measures for guessing. we are able to simulate the data of Anderson (1990)
We ran a control condition where, rather than letting and Elio & Anderson (1984).
the algorithm decide which items go together, we
randomly assigned items to internal categories and Comparisons to Cheeseman, Kelly,
then proceeded to get performance scores in the same Self, Stutz, Taylor, & Freeman (1988)
way as when the algorithm did the assignment. Thus,

we got two measures--P, a mean probability of the The Bayesian character of this classification model
correct category label when our algorithm did the raises the issue of its relationship to the Autoclass
clustering and "3, a mean probability of category model of Cheeseman et al. While it is hard to know
labeling in the control condition when we did the how significant the differences are, there are a
clustering randomly. Our final measure was (P - G) / number of points of contrast:
(1 - G) which is a standard correction-for-guessing Algorithm Rather than an algorithm that iteratively
formula. incorporates instances into an existing category

Figure 4 structure, Cheeseman et al. use a parameter searching
(a) program that looks for the best fitting set of

parameters. Not enough information is provided to
. 0.60 compare the two algorithms with respect to efficiency

2 0.50 or probability of identifying the optimal structure.

0.40 Presumably, Autoclass is independent of the order of

o.3o the examples.

C 0.20 .. F.a, Number of Classes Autoclass has a bias in favor of
* 0.10 fewer classes whereas this bias is setable in the

E 0.00 rational model according to the parameter c.o 000 LOW HIGH

ostortion Autoclass does not calculate a prior corresponding to

(b) the probabilities of various partitionings.

0.60 Conditional Probabilities It app..rs Autoclass uses
F0.50 the same Bayesian model as we do for discrete

0.40 dimensions. The treatment of continuous dimensions
0.40 is somewhat different although we cannot discern its

c 0.30 - exact mathematical basis. The posterior distribution
o.20- is a normal distribution which will only be slightly-E 0.10 different than the t-distribution we use. Both

Autoclass and the rational model assume the various
LOW HIGH distributions are independent.

Distortion

Homa and Cultice used a number of different Qualitatively, the most striking difference is that
training sets including a low distortion training set AUTOCLASS derives a probability of an object
where the points were perturbated 1.1 units (the belonging to a class whereas the rational model
examples in Figure 3 are 1.1 distortions) and a high assigns the object to a specific class. However,
distortion set where they were perturbated 4.8 units. Cheeseman et al. report that in the case of strong
Figure 4 compares the performance of the subjects category structure the probability is very high that the
and the simulation for high and low distortion object comes from a single category.
training stimuli in the presence of label feedback or Acknowledgments
not. In the case of Homa & Cultice, we used a
correction for guessing measure to but set the This research was supported by grant BNS
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Abstract shared context in which operators were applicable.
Operator selection during later search is guided by

Our research adapts incremental concep- classification of contextual information. However, re-
tual clustering (or concept formation) to liance on classification is qualified by 'noise toler-
the task of learning to guide search. We ant' strategies that demonstrably mitigate the 'utility'
build on earlier research that uses concept problem. In fact, a general observation of our work is
induction techniques to learn search con- that problems of 'noise' in inductive concept learning
trol, but our approach differs by virtue of its and problems of 'utility' in search control learning are
reliance on probabilistic, hierarchical clas- closely linked in form and in solution.
sification schemes that increase certain as-
pects of search efficiency. The system also
includes inductive strategies of 'noise tol- 2 Search and Concept Induction
erance' that mitigate problems of control
knowledge 'utility'. A general lesson is that There are two facets to the problem of learning search
recently identified search 'utility' problems control knowledge: generating plausible abstractions
are synonymous with inductive problems of of when operators should be applied and filtering these
'noise'; solutions to the problems of the lat- abstractions for their utility (Etzioni, 1988). These
ter type can be usefully adapted to the for- facets correspond to similar aspects of concept learn-
mer. ing. This connection has been traditionally recognized

with respect to the generation of plausible abstrac-
1 Introduction tions. Early work on systems such as SAGE (Langley,

An important objective of machine learning research 1985) and LEx (Mitchell, Utgoff, & Banerji, 1983)

is to improve the efficiency of search. This includes applied empirical concept learning techniques to com-

the compilation of operator sequences into macro- plete solution traces, thus inducing conditions underthe omplaton f oeraor squecesint maro- which an operator's application previously led to a

operators and the adaptation of object concept learn- goal a n formationh rei m eto e
ing methods to guide operator application (Mitchell, goal state. Using information-theoretic methods, Ren-
ingmthods to gide operatr Lapliao (Mitc.Howelr, dell, Seshu, and Tcheng (1987) used PLSl, a 'util-
Utgoff, & Banerji, 1983; Langley, 1985). However, ity' clustering system, to group problems with simi-
recent research has qualified the naive application of lar solution strategies. Purely analytic concept learn-
these techniques: learned search control knowledge ing approaches to uncovering search control knowl-

varies in its utility (Minton, 1988). In the worst ing he o ncverig ser trl rinof

case, learned knowledge can have a detrimental effect edge have also been investigated under the rubric of

on sarc sice he earh tofin aplicbleleaned explanation-based learning (DeJong & Mooney, 1986;on search sinc e msearch to find applicable learned Mitchell, Keller, & Kedar-Cabelli, 1986). These tech-
unnored sytemoe wol t e sniques use analytic, typically deductive strategies touninformed system would require. find conditions under which 'operators' should apply

This paper illustrates that incremental conceptual from a small number of 'solution' traces.

clustering or concept formation can organize search number of 'slution' tr 1s

control knowledge for efficient reuse. In particu- .

lar, operator choices made during successful searches focused almost exclusively on the generation of plau-

are clustered into 'similarity' classes that capture the sible abstractions However, recently there has been
the observation that rule application varies in util-

*This research was supported by NASA Ames grant ity: the degree that rule application alters the number
NOC 2-645. of steps (i.e., subproblems, states) encountered dur-
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ing search.1 Rule application in certain contexts may 1987) have shown that this general strategy eliminates
actually detract from search efficiency. Several ap- the use of 'low utility' concepts (or portions thereof),
proaches to eliminating harmful rule application have classification accuracy is not adversely affected or is
been examined. For example, related techniques by actually improved by the process.
Hansson and Mayer (in press) and Wefald and Rus- In the following two sections we describe the appli-
sell (1989) assess whether significant information is cation of empirical concept learning to the induction,
gleaned about eventual goal satisfaction from further organization, and exploitation of search control rules.
state expansion. Probability estimates used in this Like earlier research, we are concerned with the gen-
assessment are learned by analyzing the state space eration of plausible concepts and control rules. Our
expanded during search. With sufficient experience work in this area is distinguished by the use of prob.
probability estimates terminate expansion at states abilistic concepts (i.e., control rules), a representation
from which it is unlikely that useful information can scheme that allows partial matching. Moreover, our
be found by further search (e.g., the system may be work is further distinguished by its attention to the
very certain about eventual goal achievement from the connection between post-generation tests of utility in
current state, thus diminishing the need for further traditional concept learning systems and search con-
search since it is unlikely to yield significant new in- trol learning.
sights about eventual outcomes).

Recently, research in explanation-based learning 3 The COBWEB Concept Formation
has employed similarly-intended, though differently- System
implemented methods for controlling search (Minton,
1988; Mooney, 1989). Research in this area has fo- Empirical concept learning is typically concerned with
cused on the efficacy of exploiting learned rules versus improving prediction accuracy. In search control
simply using the primitive operators. For example, learning this translates into a concern for accurately
Markovitch & Scott (1989) learn probability estimates predicting the operator that should be applied under
that subgoals can be satisfied. Learned rules are not current conditions; more accurate predictions result
used in proof attempts of subgoals that are not likely in a more directed, efficient search. For example, the
to be successful, only primitive rules are used in these search-intensive task of language recognition is highly
cases, thus avoiding redundant search. anticipatory; a parser expects (i.e., predicts) a par-

As we have noted, work with SAGE and LEx recog- ticular symbol next on the input stream. If the next
nized the applicability of concept induction methods symbol is not as expected then the parser has made
to generate plausible search control rules. Similarly, an incorrect prediction; this may actually reflect on
we believe that utility can be tested by noise-tolerant an incorrect prediction that was made several symbols
strategies of concept learning. For example, ID3 earlier but has only caused a contradiction after sub-
(Quinlan, 1986) generates decision trees from train- sequent processing. In the case of the phrase big blue
ing data using a measure of the information transmit- bugle boy, the subphrase big blue might be a nickname,
ted about class membership (e.g., disease) by each at- big blue bugle might refer to a large blue brass instru-
tribute used to describe objects (e.g., patient case his- ment, but the intent of the phrase is that big, blue, and
tories). The values of the most informative attribute bugle all modify the noun boy. Of the relevant pars-
label arcs of the tree and are used to divide the train- ing operators, (PARSE adjective) and (PARSE noun),
ing set; the information-theoretic measure is used to neither can be predicted with certainty at intermedi-
recursively divide each training subset, thus forming a ate points in the phrase. As with any search-intensive
decision tree. During tree construction, an estimate of system, the parser must backtrack to an indetermi-
whether 'significant' information is gained about class nate depth and try alternatives until contradictions
membership is made by a chi-square heuristic. Similar are eliminated.
to Wefald and Russell (1989) and Hansson and Mayer
(in press), tree expansion is terminated at nodes where 3.1 Hierarchy Generation
the divisive attribute does not transmit significant in- To reduce backtracking we wish to better predict the
formation about class membership; at this point, the likelihood that an operator applies under current con-
most common class among the training subset is used ditions. Our particular approach to improving search
to label the appropriate leaf of the decision tree. Sub- efficiency is through a conceptual clustering system,
sequent data is classified by traversing appropriate COBWEB (Fisher, 1987; 1989). This is an untatored
paths of the tree to a leaf, where an appropriate class system that incrementally builds classification trees
designation resides. Quinlan and others (Michalski, from objects that are described by nominal attribute-

'Recent work also points out that search control rules value pairs. Stored at each node of the tree are the

vary in their match cost - a test of a rule's applicability value distributions of each attribute over the objects

(Minton, 1988; Tambe & Rosenbloom, 1989). Our work classified under the node. For example, if 90% of the
thus far concentrates on reducing the states examined dur- objects stored under a node, n, are blue, then the
ing search, although we will return to issues of match cost blue feature would be weighted accordingly. P(Color
in Section 5. blue~n) = 0.9. Each node is a probabilistic concept
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(Smith 8 Medin, 1981); the classification tree is a 3.2 Hierarchy Evaluation: Pruning and
probabilistic concept tree. Utility

Each tree level contains sibling classes that collec- COBWEB'S strategy of prediction at best matching
tivcly partition the observed objects. COBWEB can leaves demonstrably yields good results in many do-
incrementally incorporate a new object into the class mains, but like early versions of ID3 this strategy can
that best matches the object according to category often diminish prediction accuracy (cf., Section 2).
utility (Gluck & Corter, 1985), a measure that rewards More generally, all inductive learning systems require
the formation of object classes that improve 'predic- that a domain exhibit regularities (i.e., dependencies
tion ability'. More formally, the category utility of a between attributes) if learning is to be beneficial. If
class, Ck, is a function of the expected number of at- the learning system is too persistent in trying to un-
tribute values that can be correctly predicted about cover regularities where no significant ones exist, then
members of the class, E(#CorrectPredictionslCk). this can result in 'overfitting'. This is also the case
This expectation can be further formalized in terms of in learning to search. if no or little correlation exists
conditional probabilities that are stored at tree nodes: between the conditions of a state and the eventual
E(#CorrectPredidionsCk) = P(Ai = success of an operator application, then persistence

V14Ck) 2 . Category utility has some additional com- in trying to discover such a connection will result in
plexities (Gluck & Corter, 1985; Fisher, 1987), but overfitting. In search control tasks, overfitting reduces
for our purposes it is sufficient to note that category the accuracy with which operator applications are pre-
utility is a function of: dicted, thus causing greater backtracking. In both

concept learning and search control learning, the util-

P(Ck) z P(A, = ,j Ck) 2 , ity of certain 'rules' is negligible or detrimental.ik P A recent version of COBWEB (Fisher, 1989) employs
a past-performance method for disposing of low utility

where P(Ck) is the proportion of the observations to rules. This method was inspired by Quinlan . k1987)
which the expectation applies; P(Ck) is the probabil- reduced error pruning, but the general approach is also
ity that the benefits (i.e., expectations) of a class will related to Hansson and Mayer's and Wefald and Rus-
be realized. sell's strategies for terminating search. 2 In particu-

COBWEB incrementally filters objects into appro- lar, as COBWEB classifies an object it determines at
priate classes based on category utility. A new ob- each node whether an attribute would be correctly
ject is evaluated with respect to a class by tentatively predicted at the node. To do this, it compares the ob-
placing the object in the class; each class's attribute- ject's actual value along this attribute with the most
value distributions are tentatively updated to reflect common (i.e., most probable) value of the attribute at
the values of the new object. Probabilities are com- the node. If the two values are equal, then COBWEB
puted from the tentatively updated distributions and would have correctly predicted the attribute's value if
the category utility of the class is computed. The it had been required to; in this case, a counter is in-
class that maximizes category utility after adding the cremented indicating that a correct prediction would
new object is chosen to classify the object and appro- have been made at this node. In addition, COBWEB
priate distributions are updated permanently. This also records whether the attribute would have been
process is recursively applied to the subtrees rooted correctly predicted at a descendant of the node. Thus,
at the selected child until a leaf is reached. A leaf each node holds two counts for an attribute: one of
is a singleton class that represents a previously ob- how often a correct prediction would have been made
served object. While objects are predominantly in- at the node, and one of how often a correct predic-
corporated with respect to existing classes, operators tion would have been made at a descendent of the
also exist for new node (class) creation, node com- node. When a prediction of an attribute is actually
bination (merging), and node division (splitting). A necessary (i.e., the attribute's value is unknown), then
more complete description of COBWEB can be found classification descends to a node at which the unknown
in Fisher (1987). attribute is more accurately predicted relative to its

Object incorporation is easily adapted to allow descendantb, the most common value of the attribute
object classification and prediction: category utility is used as COBWEB's prediction.
guides an object along a path of nodes to a 'best' Our summary of this past-performance 'pruning'
matching leaf. If any value(s) are missing from the
new observation, they may be predicted from the 2 Fisher (1989) also experimented with a chi-square
known values of the leaf. While COBWEB trees are method of terminating classification that directly assesses

probabilistic concepts the significance of the information gained by deeper classi-
reminiscent of decision trees, p rbutestie ces fication. Gennari, Langley, and Fisher (1989) used a cut-
are polyihetic in that multiple attributes guide cias- off parameter to prune a classification subtree based on
sification. If an object has missing attribute values a user-supplied threshold of required 'information gain'.
then category utility acts as a partial-matching func- This method was not sensitive to differences between at-
tion with summation limited to probabilities of known tributes and relied entirely on the user to specify 'signifi-
attributes, cant' gain thresholds.
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begins by pushing S on the stack in crossing from state
0 to state 1, parsing "a b d a b" leaving the system in

17 state 7. At state 7, a T is pushed on the stack, then
an S leaving the system in state 1. Next the symbols,

u f"b d b a b d e e e e" are parsed, and then the S and T
are popped off the stack. Next "d e" are parsed and

to the final S and $ are popped off the stack, leaving the
d tT system in state 17, the final state.

Our example illustrates the moves necessary for a
b d b successful parse, but the NPDA contains 4 points of

d nondeterminism: state 4 given an 'a', state 7 given a
'b', state 8 given a 'd', and state 9 given an 'e'. The
arcs out of state 9 model precisely the dilemma of
the noun/adjective example at the beginning of Sec-
tion 3. This nondeterminism is the cause of search:
each point of nondeterminism must be tried and may
result in backtracking if the wrong choice is made.
The NPDA is constructed so that certain incorrect
guesses are discovered rather quickly, while others are
not uncovered for several moves.

Figure 1: A NPDA transition diagram for simplified- To reduce backtracking we present information
English parsing. about successful parses to COBWEB, in the hope that

the system can use this information to guide future
parsing. In particular, after a sentence is successfully

strategy has been brief of necessity, but it does not parsed, a complete trace of the choices required from
add to the asymptotic cost of learning or classification the start state through the final state is returned, this
and it considerably improves prediction accuracy over does not include the choices that were retracted via
the initial strategy of always classi.-Ying an object to backtracking. Each choice is regarded as an operator
a leaf. With this in mind, we turn to the application to be predicted from decisions that were made previ-
of these concept formation strategies to our primary ously. Thus, the complete trace is segmented into 'ob-
goal: the effective management of search control. jects' (i.e., windows) of seven attributes. one object

for each choice made in the trace. The values of four of
4 An Example: Search Control in these attributes are the four choices (operators) that

Parsing were made just prior to the current choice; two of these
attributes are the top two stack symbols at the time of

Our objective is to demonstrate that COBWEB (and the current choice; finally, the seventh attribute is the
by implication other conceptual clustering systems as current choice. Thus, a single parse of ten choices will
well) can effectively direct search by predicting op- be segmented into ten distinct objects. 3 After sen-
erators that are best applied under 'current circum- tence recognition, the successful parse is segmented
stances'. Consider a detailed parsing example sim- and the constituent objects are incorporated into a
ilar to the one given at the beginning of Section 3. COBWEB hierarchy. During subsequent parsing COB-
Figure 1 shows a nondeterministic (i.e., backtracking) WEB is used as an oracle for predicting the current
push-down automata (NPDA) for recognizing an ar- choice, given a window of four previous choices and
tificial, but nontrivial language. Arcs have two types the top-most stack symbols.
of labels: those preceded by an up/down arrow, and To test the savings provided by a COBWEB oracle,
these that are a lower case letter. The lower case let- a COBWEB-enhanced parser was trained on success-
ters denote input symbols that are to be parsed. A ful parses. Training sentences were generated so as to
down arrow, (1), followed by a letter denotes a sym- usually adhere to two rules, although neither was fol-
bol to be pushed on a stack when the arc is crossed in lowed 100% of the time, thus introducing some 'noise'.
parsing. An arc labeled by an up arrow, (1), denotes The first rule was that pushing a T or a U (lead-
thbat t,1 symbol must reside at the fop of the stack, ing into state 15) was dependent upon tihe patih from
and is popped from the stack. It is assumed that the state 1 to state 4. The second regularity was that
stack contains only a S when parsing begins. A sen- roughly 4 consecutive e's should occur when in state
tence is accepted (i.e., successfully parsed) if there is 9. The COBWEB-enhanced parser was trained on five
at least one way to enter the final state of the macline randomly generated sentences (under the above men-
(i.e., state 17) with an empty stack and an empty in-
put stream. 'Note that the initial choices - those without four pre-

Consider "a b d a b b d b a b d e e e e d e", which decessors - are still represented but without somne initial
is a string accepted by the NPDA. A successful parse attributes.
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Figure 2: Backtracks required by COBWEB-guided
parser and best of 16 alternative parsers. 0 ... ,I u

Machines

Figure 3: Sensitivity to input window and stack sym-
tioihed regularity constraints), which after windowing bols.
constituted a total of one to two hundred training ob-
jects. Four more sentences were randomly generated
to use as additional test sentences. 4  For compara- sentences, while the sum of the hard-coded machine
tive purposes, the number of backtracks required by minimums comes to 378 backtracks. If we compare the
a COBWEB-enhanced parser was compared with six- COBWEB-enhanced parser to the individual machines
teen hard-coded parsers: recall that the NPDA of Fig- then the savings become even more pronounced: the
ure 1 has four points of nondeterminism - two choices backtracks required by the individual machines ranged
per point. The sixteen hard-coded parsers correspond from 643 to 2626, as compared to 378 for their collec-
to the (24 =) 16 possible orderings on these choices. tive minimum and 60 for our COBWEB parser.5

These orderings roughly correspond to all the possible We also investigated the sensitivity of the COBWEB-
ways that an 'expert' might order choice preferences enhanced parser to window size and number of stack
with sufficient knowledge of individual choice frequen- symbols that were used during Icarning. In the results
cies. All nine (training and test) sentences were run that we report above, we assumed a input window
against the 16 hard-coded machines; COBWEB was size of 5 and access to the top 2 stack symbols.6 Fig-
trained on the first 5 of these sentences and like the ure 3 compares the total number of backtracks over
hard-coded machines was tested against all nine. all sentences for various window/stack sizes and the

Figure 2 compares the number of backtracks re- sum total of the minimum parse of each sentence for
quired by the COBWEB-enhanced parser and the num- any of the static machirts (Min of 16). For each of
ber required by the best hard-coded machine (per sen- There are several interesting issues that arise when
tence) for each of the nine sentences (note the loga- we consider using concept formation techniques to guide
rithmic vertical scale). The COBWEB-enhanced parser language parsing. In particular, the relative performance
out performs the minimums of the hard-coded ma- merits of and conceptual links between our heuristically-
chines on all sentences, except one (sentence # 5) guided parser and efficient parsers for such things as LR(k)
where the number of backtracks was one in each case. grammars are of some interest, but are tangential to the
A nonparametric sign test reveals that the COBWEB- objectives of this paper. Notably, our heuristic parser as-
enhanced parser properly minimized backtracks over sumes that statistical correlations exist between parsing
the collective minimum of the hard-coded machines transitions; if such correlations exist then concept induc-
in a statistically-significant (a = 0.01) number of tion techniques can hope to provide some speedup over
cases (i.e., 8, with 1 tie); even if we could deter- standard parsing methods, regardless of the language clna
mine a priori the best hardcoded machine to parse If no such correlations exist, then inductive techniques will

each sentence, the enhanced parser would still win in provide no speedups over the standard parsing mnethods for
a language. More generally, the objectives of this paper

terms of requirei backtracks, Overall, the COBWEB- are to illustrate links between inductive concept formation
enhanced parser requires 60 backtracks for all nine and search control management, and thus we will defer dis-

cussion of parsing-specific issues.
4 Originally, five additional test sentences were gener- 'As we stated earlier, during testing,4 of the 5 window

ated, but one was identical to a training sentence and was symbols will correspond to the 4 previous choices, while
removed from consideration, the 5th will correspond to the choice to be predicted.
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1000 5 Concluding Remarks

0 Past Performance We have demonstrated the efficacy of concept forma-o Class, to Leaf tion in the management of search control knowledge.
COBWEB's probabilistic representation of search con-

100 trol facilitates greater flexibility in guiding search: in
7o addition to hard-and-fast rules, tendencies ('hunches')

Ualso guide search. This characteristic is particularly
important in tasks like parsing since it may be impos-

A 10 sible to tell with certainty whether a particular oper-
ator is applicable prior to its invocation.

Although our approach was tested on a parsing
task we believe that it can be adapted to other

Lp f search-intensive tasks, though this may require that
1 2 3 4 5 6 7 8 9 we overcome representational limitations. In partic-

Sentence Number ular, COBWEB requires nominal attribute-value rep-
resentations. This representation is sufficient to deal

Figure 4: Backtracks required with and without noise- with certain other domains that have been examined
tolerant classification strategy. in search control research such as the 8-tile puzzle

and other games (Wefald & Russell, 1989), but more
complicated search tasks such as planning and those
found in EBL research will require relational repre-

the window/stack combinations that we investigated, sentations. In fact, extensions of COBWEB-like strate-
the number of backtracks required by the COBWEB gies that deal with relational representations are be-
parser is considerably less than the hardcoded mini- ing investigated (Yoo & Fisher, 1990; Yang, Fisher, &
mums. A second observation is that the performance Franke, in press).
of our parser appears to improve as the amount of in- A second, but more subtle, representation issue
formation (input and stack symbols) available to guide arises when we examine more deeply the meaning
classification increases. The exception to this trend of rule 'utility'. In particular, we have ignored the
occurs between (0,3) and (0,5), but we believe this to 'match-cost' aspect of utility (Tambe & Rosenbloom,
be an aberration caused by an exceptional sentence. 1989); the -COBWEB-enhanced parser uniformly re-
In fact, the (0,5) properly minimized the backtracks quires greater execution time because of increased
relative to the (0,3) condition for 6 of the 9 sentences, match cost. In part, this is due to 'uninteresting'
with 1 tie and 2 cases in which (0,3) minimized back- factors such as (1) inefficiencies of the COBWEB im-
tracks. Though our experiments are not sufficient to plementation, which we have not tailored to this do-
make statistically-justified claims for the relative ad- main, and (2) the exceedingly low cost of backtrack-
vantage of differing (stack, window) conditions at the ing with an NPDA. More fundamentally though, it
a = 0.05 level, we nonetheless believe that more ex- appears that match costs are magnified by probabilis-
tensive experiments will confirm the trend within cer- tic concepts, which require that we match many at-
tain limits. tributes of a concept - even those that may be sta-

Finally, the COBWEB results reported above assume tistically irrelevant to class membership. Fortunately,
the classification strategy designed to avoid overfitting the same noise-tolerance strategies that identify when
that was described Section 3. To test our contention an attribute is best predicted are also useful in deter-
that this strategy avoids overfitting and the detrimen- mining when attributes are irrelevant for classification
tal use of low-utility control knowledge, we compared purposes. Thus, we believe that these strategies sug-
these results to a parser that made predictions sug- gest a promising path for mitigating the match-cost
gested by best-matching leaves of the learned concept factor of probabilistic-rule utility (Gennari, 1989).
tree. Figure 4 compares these alternative versions; Finally, we believe that a notable contribution of
classification to a leaf yields less reliable results and is this work is that it illustrates a link between concept
often much more costly in terms required backtrack- induction strategies for noise tolerance and search con-
ing. The past-performance strategy outperforms clas- trol issues of utility. classification/search should ter-
sification to a leaf in 7 of the 9 cases, with 2 ties. minate at points that do not helpfully inform pre-
This is significant using the nonparametric sign test diction. In Section 2 we alluded to a point that
at a = 0.05. This supports our specific claim that we more forcefully argue elsewhere (Fisher & Chan,
our past-performance strategy gives a good measure in press; Yoo & Fisher, 1990) - that overfitting is
of rule utility. More generally, a promising conjecture also at the root of the utility problem as it per-
is that strategies designed to enhance noise tolerance tains to EBL and domain theory search. Learned
in concept learning may be useful in mitigating utility rules may represent logically possible, though statis-
problems in search control. tically idiosyncratic connections between patterns of
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Abstract graph based methods seems to be limited by compu-
tational cost of graph matching, and lack of robust-

This paper uses a minimal representation cri- ness. The latter is most often caused by use of con-
terion to formally define tasks of matching, trol parameters, such as acceptance level, threshold, or
classification, and interpretation f objects weights, without automatic methods of their selection,
represented as graphs, as well as conceptual so they may have to be set by the user differently for
clustering of graphs, and supervised learning each application.
of structured concepts represented as prob- Recently, we introduced a method for supervised
abilistic graphs. These definitions do not learning of graph models (Segen, 1988a), which uses a
rely on acceptance thresholds, or other user minimal representation criterion (Segen & Sanderson,
selectable parameters. The resulting prob- 1979; Segen, 1980) to define graph matching. This
lems of combinatorial optimization are ap- method is very practical, since it is free of user set-
proximately solved by a fast graph matching table parameters, and fast, due to an efficient graph
heuristic, which is a key element of the de- matching technique. It has been applied to recognition
scribed learning methods, that include forced and supervised learning of nonrigid shapes.
learning of graph models, and two graph clus- In this paper we describe methods for graph cluster-
tering methods: incremental, and agglomer- ing, based on the same approach, and present general
ative. These methods apply to usual directedgraphs, and to recursively defined layered methodology for supervised and unsupervised learn-
graphs. The presented methodology has been ing, classification and interpretation, using layered
gaphs.ed threa prsentedmetoologyeasbn, graph representation. The minimal representation cri-
applied to real problems of concept learning, terion is used to define these tasks formally, and to
classification and interpretation of nonrigid guide their solutions, judging each step by its data
shapes. compression ability. The presented methods have been

implemented, and applied to shape data from real

1 Introduction noisy images. They appear quite fast and robust. At
the end of the paper we show some examples from this

Structural descriptions composed from parts and re- application.
lations are often used to describe complex entities.
They have been particularly useful in computer vision, 2 Layered graph
as representations of shape of objects (Barrow et al.,
1972; Connel & Brady, 1985; Shapiro, 1980). A conve- A directed graph is a set of vertices V and a set of
nient form of a structural description is an attributed directed edges E. Beginning with a directed graph we
graph, i.e. a graph with symbolic attributes, or labels, recursively define a special case of a hypergraph called
attached to its vertices and edges. a layered graph. A vertex v E V will be called a level 0

The use of a graph as representation for data and vertex, or a leaf. Two level 0 vertices connected by an
concepts, or models demands formulation of meth- edge will be called a level 1 vertex. If we assume a set
ods for matching data to concepts, object classifica- of directed edges over the set of level 1 vertices, we can
tion, and concept learning. Variety ,f such methods similarly define a level 2 vertex, and generally define a
have been proposed. some based on exact matching, level n+1 vertex as an ordered pair (v1, v2), where vi
e.g. Winston, (1975), other allowing inexact match by and v2 are level n vertices. Their order corresponds to
defining a graph distance, or probability, as Wong & the direction of the edge between vi and v2. We will
You (1985). However, a practical use of many of the call such a structure a layered graph. A layered graph
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mapped vertex of M the label, of the corresponding
vertex of H. The probability of H, given M and
T, P(HIT, M) is the probability of this set of assign-
ments. Assuming independently distributed vertex la-
bels, P(HIT, M) is simply the product of the proba-
bilities p(L(Tv)Iv), where v is a vertex of M, and Tv
is the vertex of H assigned to v by T.

4 Minimal representation criterion

The minimal representation criterion (Segen &
Sanderson, 1979; Segen, 1980) was introduced to guide
inference of models in cases when the maximum like-
lihood fails. Its formulation has been inspired by the
pioneering work of Solomonoff (1964). The minimal
representation criterion seeks, in a given -set of pro-
grams, a minimal length program generating observed

Figure 1: Layered graph. Leaves are at the bottom data X. Mapping a family probability distributions to
a subset of programs, and seeking a distribution corre-
sponding to a minimal program, results in an inference

can be represented by a directed acyclic graph, whose rule that select a distribution P that minimizes
vertices correspond to the vertices of the layered graph,
and edges show the hierarchical dependency among C(P) - log2 P(X) (1)
vertices. Figure 1 shows an example of a layered graph
used-as a shape description. Referring to vertices of a where C(P) is is the number of bits needed to specify
layered graph we will use terms parent, child, ancestor, the probability model P, or the cost of P. This cri-
descendant and leaf, in the same sense as for a tree, terion is obviously equivalent to the minimal descrip-
except that here a vertex can have multiple parents. tion length principle of Rissanen (1978, 1987), and re-

A layered graph has the following properties: lated to the information measure of Wallace & Boulton
1. Each non-leaf vertex v has exactly two ordered (1968), but it was derived independently.

children, distinguished as left(v) and right(v). 5 Matching graphs
2. For every vertex v, every path between v and a

leaf vertex have the same length. This length is A key mechanism of a learning system based on a
called the level of v. graph representation is a method for establishing a

3. Two vertices can have no more than one common mapping between elements of two graphs, or graph
parent. matching. Based on the minimal representation cri-

In addition, we assume that each vertex v of a lay- terion, we define the task of matching a probabilistic
ered graph has a label L(v), which is a symbol from graph M to a graph H, as a construction of a mapping
aefint raphhalabe nd ), thir is a separa bet fr between vertices of M and H, that maximally simpli-a finite alphabet, and there is a separate alphabet for fies description of H, when H is represented relative

each level. Such a graph is a special case of an at- to M. This definition provides a natural decision rule
tributed hypergraph: the leaves of the layered graph for accepting a match, which does not rely on an ar-are vertices of a hypergraph, while the higher level ver- btaytheol.Iuivlitwrsaflos:I

tices are the hyperedges. Further we often refer to the bitrary threshold. Intuitively, it works as follows: If
layered graph simply as graph. part of M fits to a part of H, then representing H rel-

ative to the matching part of M should cost less than
3 Probabilistic graph its default representatiofn, independent of any model.

However, the total cost of representing H with the aid
A group of layered graphs that are not identical can of M includes an overhead associated with specifying
be described using a probability model whose outcome the mapping. If the part of H represented by M is too
is a layered graph, or a probabilisiic layeTtd gTaph. WeV small, thc saming may not cover thc overhcad cost, and
define this model just like a layered graph, except that it will be cheaper to use the default representation, i.e.,
each of its vertices is associated with a probability dis- to reject the match.
tribution over a set of labels, rather than a single label. A default representation of a graph is constructed
A probability of finding the label I at a vertex v will as follows:
be denoted p(llv), 1. Specify N, tie number of leaves in H.

If T is a mapping from vertices of a probabilistic
graph M onto vertices of H, we can assign to each 2. Provide a list of leaf labels, ordered by leaf index.
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3. Order pairs of leaves (e.g. lexicographically), and We prefer the first representation, since it is less pe-
specify the label of the common parent for each nalizing to small values of k. The number of bits saved
pair (NIL if none), with respect to the default representation is

4. For level 1, order pairs of non-null vertices. For
every pair, specify the label of the common parent Q(H, TIM)= C(H) - C(H, TIM) (7)
(or NIL). = E 192 p(L(Tv)v) C(T)

5. Repeat the last step for each higher level, up to a VEvI p(L(Tv))
level with all null vertices.

The cost of this representation C(H) is If this value is positive, the representation based on M
and T should be used instead of a default representa-

C(H) = C(N) - E logp(L(v)) (2) tion, since it is less expensive.

where p(l) is a prior probability of the label 1. The first We define the task of matching a graph H with a
term is the cost of representing N, the second term is model M as a problem of constructing a mapping T,
the cost of specifying vertex labels (this value is within that maximizes the value of Q(H, TIM). It is easy to

1 bit from the length of Shannon block encoding). show that the problem of finding maximal isomorphic
A graph H can be described relative to a model subgraph, which is NP-complete, is a special case of

M, given a one-to-one mapping T from V1 C V(M) the above problem, so the maximization of Q(H, TIM)
onto V2 g V(H). To represent H under this mapping is NP-hard. Therefore, we must compromise and ac-
we use the probability defined by M for labels of the cept a quasi-optimal solution obtained by heuristic
mapped vertices in V2 , instead of their prior proba- search. The fast graph matching heuristic described
bility. The cost of representing H, given M and T, below is an improved version of the method from Segen
denoted C(HIT, M) is: (1987).

p(L(Tv)V) The procedure for matching H with M consists of
C(H IT, M) = C(H) - E 1092 T (3) two steps, called map and refine. Map finds an ini-

V vg p(L(Tv)) tial mapping T that maximizes an upper bound of Q,te s i t then refine iteratively edits T until Q reaches a local
where the second term is the sm of bits saved over V2 . maximum.
The cost of describing H relative to M, C(H, TIM) The function map uses contextual similarity as a ba-
includes the overhead for specifying T. sis for the leaf assignment. We can think of a vertex v

C(H, TIM) = C(HIT, M) + C(T) (4) of a layered graph as a relation l(fl, 2,...fk), where I

where C(T) is the cost of T. To find this cost, no- is the label of v, and fi, f2, ... are recursively ordered
tice that mapping T is completely determined from its leaf descendents of v. Similarly, we can associate with
submapping T' restricted to the sets of leaves F(M) a vertex v of a probabilistic layered graph a relation
and F(H). T' is a mapping from F1 g F(M) onto l(fi, f2, ...fk), with a probability pQIv). We consider
F2 g F(H), such that T'(v) = T(v) if v is a leaf. the context of a leaf v to be the set of relations asso-
This fact that T' determines T is implied by the prop- ciated with its ancestors. It is described by a support
erty 3 of the layered graph (Section 2). Therefore, of the leaf v, denoted SPS(v). A support of a leaf v
we only need to specify the leaf mapping T', and of a layered graph, is a set of pairs {(R, K)}, where R
C(T) = C(T'). If T' maps k out of n leaves of one describes t relation by its label and the position of the
graph, to k out of m leaves of the other, then knowing vertex v in its argument list, and K is the number of
n and m, we can encode T' with occurrences of R among ancestors of v. A support of a

n! ( leaf v of a probabilistic layered graph, is a set of pairs
C(T') = log2 min(n, m) + 1092 (n - k)!k! (5) {(RG)}, where R describes a relation, as above, and

7m! G is a list containing a value 2- level(u) log P(lu) for+ 102 (m"°p(l)
(m - k)! each occurrence of R in an ancestor u of v, for which

bits. The first term is the cost* of specifying k > 0, p(llu)
the second term is the cost of selecting k leaves of the p(l- >1. This list i§ sorted in a decreasing order.
first graph, and the third is the cost of selecting k The factor 2 -tivel(u) divides equally the support of u
leaves of the second graph and specifying their permu- among its leaf descendents.
tation. This representation essentially assigns equal A similarity S(u, v) between a leaf u of a graph, and
prior probability to each value k > 0. An alternative
is to assume equal prior probability for each mapping, v is a leaf of a probabilistic graph is defined as
which corresponds to a constant cost min(K,IGI)

min(n,m) n!m! S(u, v) = Z Z Gi (8)
C(T) = log 2  (- )!(m- ( (R,)ESPS()

k=1 i-k (R,G)ESPS(v)
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S(u, v) is an upper bound on an increase of Q resulting graph interpretation solves the recognition problem,
from adding an assignment (u, v) to T. first for H 1 = H, then for H2 , etc., until some graph

Map finds a mapping that maximizes the sum of sim- Hk is recognized as M0 . Since interpretation requires
ilarities between mapped leaves, by solving an assign- multiple recognitions, it will also benefit from the use
ment problem. This mapping is iteratively improved of screening in the recognition search.
by refine, which deletes or adds one assignment in each
iteration, seeking a maximal increase of Q. The iter-
ation stops when no single addition or deletion can 7 Learning
further improve Q.

Models used for recognition and interpretation can be
6 Recognition and interpretation learned from a training set of graphs. If the graphs

in the training set are grouped into classes, and our
Given a library of probabilistic graph models ML = objective is to find models that correspond to these
{M0, M , M2, ...Mkl, and a graph H, we might want classes, we have a task of supervised learning. We can
to select one model M, which is in some way nearest approach it in two ways. First, we can force a single
to H. We call this task recognition, or classification, model to represent all graphs within a class. However,
since each model from ML is associated with a class such a model may not perform well if the graphs in
of graphs for which it is nearest. Since the mapping of ss are not etysmil in sh arase,H to a single model may not exhaust all the vertices of a class are not sufficiently similar. In such a case,

we can try to divide a class into subclasses containing
H, we may want to map parts of H to several models. mutually similar graphs, and use a separate model for
These mappings will form an interpretation of H. In- each subclass. This is an unsupervised learning task.
terpretation can be considered an attempt to explain
H using the models from from the library as primi- Below we describe a method of forced learning of a
tives. Since both recognition and interpretation can single class model (Segen, 1988a), and new clustering
result in a compressed representation of H, we define methods for unsupervised learning.
both tasks as problems of minimizing representation
cost. 7.1 Forced learning

6.1 Recognition This learning procedure incrementally constructs a
Recognition is a problem of finding a model m in ML, probabilistic graph for a class, from the sequence of
and a mapping T from m to H, that maximizes its members. Given a sequence of graphs Hi, H2, ...Hk,

the first graph H1 is converted to a probabilistic graph
Q(H, Tim) + log 2 P(m) (9) Mi, by assigning a probability value to each vertex la-

Here P(m) is the prior probability of model m, and we bel, using the formula below. The following graphs
assume M0 to be an empty S ph always associated are then used to update the model, which results in a
with a null mapping, so that Q(H, TIMO) = 0. A sim- sequence of models Mi, M2, ...Mk, using the following
ple brut force recognition method seeks a maximum match-and-merge operation.
of this expression by matciing F1 with each model in A graph Hn+i is matched with model M,, giving a
ML. The computational cost of this iicthnd grows mapping T. Since T maps a subset of leaves of lmi,,
approximately linearly with the size of the model ii- to a qubset of leaves of H.+1 : generally, some leaves
brary. We are presently experimenting with screening of M, and H,+i remain unmapped. The mapping T
methods based on bounds provided by the similarity and the graph M, are then extended to T' and M' in
function (Equation 8) to speed up the recognition for the following way: Initially M' is set to M,. For each
large libraries. unmapped leaf f of H,+I, a new leaf f' is added to

M', and a pair (f', f) is added to T. Then new higher
6.2 Interpretation level vertices are added to M', such that each vertex of
Interpretation is a problem of consrructing a sequence M has a corresponding vertex in H,+,. The mapping
of models from ML, ml,m2, ...mk, where mk = M0  of these vertices is determined by recursively following
and ml $ M0 for I < k, and a sequence of associated child to parent links. Finally, vertex-label statistics for
mappings Ti, T2, ...Tk which maximize the value of the vertices of M' are updated, based on the labels of

k their matches in ln1+i, and new label probabilities are
E Q(Ii, ]TimI) + log 2 P(mi) (10) computed using the Bayes estimator: P(i) = n(i) + 1

n+k
_=_ where n(i) is the number of events in the i-th category,

The graphs Hi, i = 1, 2, ...k in the above expression n is the total number of events, and k is the number of
are constructed recursively, by taking H1 = H, and categories. The final form of graph M' is then taken
forming Hn+i from Hn, by removing all vertices of as M+1 . The last graph Afk obtained this way is used
Hn mapped to mn by Tn. A heuristic method for as the model of a class.
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7.2 dkaph dlustering cluster index i, and the representation of H rela-
W hile ihost of the work on conceptual clustering is tive to Mi.
focused on attribute-value, or vector representations, 5. For each free (not a member of any cluster) graph
(Cheeseman - et al., 1988; Fisher, 1987a, 1987b; Fisher H, the index of the group of free graphs, and the
& Langley 1985; Michalski & Stepp 1983; Segen & default representation of H.
gakdeisbn , 1979; Segen, 1980, 1988b, 1989; Wallace & An incremental clustering method called INCLAG,
Boulton, 1968), several methods have been proposed begins by forming a cluster from the first element of
for clustering graphs (Levinson, i984; Wong & You, I, then it assigns each successive element to its near-
1985-;) or structured entities that can be represented est cluster, or creates a new cluster containing this
by graphs (Stepp & Michalski 1986; Lebowitz, 1987; element, based on the value of expression (9). The
Thompson & Langley, 1989; Wogulis & Langley, 1989). nearest cluster is the one which gives maximal value
These methods share the requirement for a user spec- to this expression; a new cluster is formed if this valueified parameters or other subjective devices to control is not positive. After examining the last element of I,
the number of clusters, or cluster separation. Here we all singleton clusters are eliminated, and their mem6-
attempt to formulate the clustering of graphs in a non bers become free graphs.
ad hoe manner, as an optimization problem void of While INCLAG is simple and fast, its results de-
any free- parameters. pend on the order of data, and it tends to finds only

Graph clustering is a task of dividing a set of graphs well separated clusters. A more complicated -graph
into groups, such that similar graphs are grouped to- clustering method called ACLAG, uses an agglomera-
gether. We can formally define such a task as a prob- tive procedure, which does not dependent on order of
lem of minimizing the cost of representation of a set of data. Comparing to INCLAG, it can better separate
graphs. Given a sequence of graphs I = Hi, H2, ...HN, similar clusters, but it is also more expensive. Begifn-
we want to construct a set of prooibilistic models, ning with a default representation for each graph iin-,
ML = Mi, M2,...Mk, such that whet, graphs in I ate and 0 clusters, ACLAG repeatedly applies one oftle
represented relative to models in ML, the total cost following moves, until there is a single cluster contain;
of representing ML, and I is minimum. The set of ing all elements of I:
all graphs that are represented relative to the same
model is called a cluster. To avoid the need for en- 1. Vorm a new cluster ifrom a pair of free graphs.
coding label distributions for probabilistic graphs we 2. Assign a free graph to one of the clusters, as an
will represent a model predictively, using a small set external member.
of cluster members. They will be called internal mem- 3. Merge two clusters by assigning members of the
bers, while remaining members of the cluster will be first cluster to the second cluster as external mem-
called external. This approach is related to Rissanen's bers, and removing the first cluster.
predictive minimal description length principle (Rissa-
nen, 1987), but it does not depend on ordering of data Each iteration selects the move, which results in b
elements. minimal representation cost after the move, even if

A model Mi, i > 0, will be represented by a generat- this cost increases. When a new member is added to
ing sequence of ni graphs from I, i = Hil, Hi2, -...Hn, a cluster, ACLAG attempts to reduce its cost by ap-
(internal members). The forced learning algorithm ap- pending external members to the generating sequence.
plied to this sequence results in a sequence of models The final result is the best among the examined sets
Mil, M 2, ... . The last model in this sequence is of clusters.
then used as the model Mi of a cluster i. We use a
default representation for the first graph in the gener- 8 Application example: Learning
ating sequence, and then encode the following graphs shape rmodels
predictively, i.e., a graph Hj+r is represented relative The methods presented in this paper have been applied
to a model Mij. In addition, for each graph in Ii we t
must encode its position in I, to preserve the initial to modeling, recognition and interpretaticn of planar
ordering of I. shapes. Details of this application will be described

The total representation for ML and I consists of in a separate paper, and here we show only several
the following parts: examples to illustrate the methodology, and give a feel

of its practical potential.
1. The length N of I, and the number of clusters K. A general task is to learn models of shape classes
2. The predictive encoding of a generating sequence from a training set, consisting cf shape examples and

for-each cluster, their class names, and to use these models to explain
em Tepnew imple or composite shapes. To represent shape

3. The position of each of n = n internal in a layered graph structure we need to define primi-
bers in I. tive parts that will forni leaves of the graph, and re-

4. For each external member H of some cluster, a lations, to be represented by higher level vertices. In
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our representation (Segen, 1988a), the primitives, rep-
resented by leaves, are points of extremal curvature of
the contour, along with their local tangent and cur-
vature. Higher level vertices represent geometric re-
lations among the primitives, based on distances and
angles: First level correspond to binary relations, sec-
ond level vertices to fourth order relations, etc. Figure
2 shows a shape with labeled points of extremal cur-
vature (leaves), and labeled binary relations, i.e. the
first two layers of a graph. A complete three layer
graph representing this shape (without vertex labels)
is shown in Figure 3.

In one application we used 5 classes of such shapes.
Figure 4 shows one example of each of these classes.
The training set consisted of 270 examples (54 per
class), and the test set of 146 shapes. When we ap-
plied the forced learning method and used the result-
ing models to recognize test examples, 105 examples
(about 72%) were recognized correctly. After group-
ing the training examples by incremental clustering
(INCLAG), the number of correctly recognized cases
increased to 127 (about 87%).

To see how automatic clustering relates to our sub-
jective classification, we applied the agglomerative
clustering method (ACLAG) to a mixed collection of
training examples. The result in Figure 5 shows that
classes are subdivided with only few misplacements.

9 Conclusion
This paper applied the criterion of minimal represen-
tation to formulate graph matching, classification, in-
terpretation, and learning probabilistic graph models
as :ombinatorial optimization problems. The meth-
ods proposed to approximately solve these problems
rely on an efficient graph matching heuristic. These
methods are quite practical, and have been applied to
recognition and interpretation of nonrigid shapes us-
ing real, noisy data. Possible extensions of this work
may include other types of graphs and hypergraphs,
in particular undirected graphs. However, more im-
mediately needed is the analysis accuracy and speed
of presented heuristics.
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Figure 2: Structural representation of shape. Circles correspond to leaves, thin straight lines between circles
represent binary relations (1st level vertices). Numbers and letters are vertex labels.

Figure 3: Layered graph representing the shape from Figure 2.

C
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Figure 4: Examples of 5 shape classes.

[ Figure 5: Shape clusters from ACLAG. Each row shows members of one cluster.
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A I- t"a"'~u. MU act learning; in particular, changes in the representation of
training examples in concept learning problems. This,

In spite of the importance of representation is in contrast to previous work in representation change
in learning, little progress has been made to- in learning, which has primarily addressed the prob.
ward understanding what makes representa- lem of changing the representation of hypotheses (i.e.,
tions work. This paper describes a frame- shift of inductive bias.) Since a hypothesis is a set of
work for knowledge-level analysis of changes examples, a change in the representation of training
in the representation of training examples in examples requires change in inductive bias; however,
concept learning. This a very fundamental being able to change the language used to describe
sort of representation change; such a change examples as well as the language used, to describe hy-
alters the very space over which'learning oc- potheses makes possible more radical representation
curs, and hence necessitates selection of a shifts.
new hypothesis space and (probably) a new The problem of automatically performing represen-
learning algorithm. The goals of this paper tation shifts of this kind is outside the scope of this
are first, to provide a framework for analy- paper. The goals of this paper are:
sis of representation shifts; second, to make
explicit the assumptions implicit in represen- 1. to provide a framework for analysis of representa-
tation shifts that have actually been used tional choices made by humans,
in learning systems; and third, to suggest a 2. to uncover the assumptions implicit in c "rtain rep-
procedure for finding the most appropriate resentation shifts that are used in real- learning
representation shift, given some background systems, and
knowledge about a learning problem. The 3. to suggest a methodology for selection of an ap-
analytic framework is used to analyze a class propriate representation shift, given some back-
of hybrid EBL/SBL systems by characteriz- ground krwledge about the learning problem.
ing the sorts of domain theories that can be
used with these systems. All analysis is done at the "knowledge level" [Newell,

1982]; consideration is given only to when learnabil-
ity is made possible or impossible, not to when it

1 Introduction is made easy or difficult. This enables our resultsto be independent of particular learning algorithms
Few will take issue with the claim that the choice of an and particular learnability criteria; however, it also re-
appropriate representation is crucial to success in solv- stricts the analysis to representation shifts that are not
ing AI problems. This is particularly true for learn- iformanpreserving.
ing problems. However, in spite of the importance information-preserving.
of representation in learning, little progress has been
made towards understanding what makes representa- 2 Motivation and Overview
tions work: determining whether a representation will
or will not help in solving a learning problem is still Consider a learning program with the architecture
by and large a black art. In particular, there is no ac- shown in figure 1. First, examples are mapped from
cepted procedure for answering questions about rep- an initial space X1 into the representation space X1Z;
rcscntuati: -.o change ouch as. -Arlcri is a 1Ct'61tLtGtUua 0111,1, IL IGu11Iiig digUrI~hU11 iS rUn inl the representation
appropriate for a learning problem? what assumptions space; finally, the concept learned in the representa-
are being implicitly made when a particular represen- tion space is translated back to the initial space. Such
tation is being used? given some background knowl- a learning system is shifting the representation of ex-
edge about a learning problem, which representations amples from X, to XR using the function fn.
are good, which are bad, and which are optimal? Several learning systems of this sort have been built

The subject of this paper is representation change in [Cohen, 1988; Cohen, 1990b; Flann and Dietterich,
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Initial space X 1  Representation space XR

H 21 HR

a2 Learner

Figure 1: A learning system using representation shift

1989; Hirsh, 1989]. One advantage of this architec- whether a given representation shift is necessar-
ture is that it allows background knowledge to be ap- ily appropriate, by testing whether the knowledge
plied to a learning problem in a highly modular way. which corresponds to the representation shift is
Background knowledge is used only to select the space implied by the background knowledge.
over which learning will occur, via the representation- * Finally, if one assumes that it is desirable to use
shifting function fjz; standard concept learning tech- a representation shift which corresponds to the
niques can then be applied in the new space XR. strongest possible knowledge, it is possible to de-

A small notational issue should be clarified at this termine if a representation shift is optimal with re-
point. In this paper, we will adopt the convention that spect to some given background knowledge about
if f is a function with domain X and if S C X, then a learning system. This s9:ggests a procedure
f(S) denotes the set {f(x) : x E S). This will greatly for constructing a representation shift given some
simplify the notation in situations where there are two background knowledge about a learning problem.
parallel functions that must be considered, one which Such a representation shift is a means of incor-
maps instances to instances, and one which maps con- porating background knowledge into a concept
cepts to concepts. An example of this appears in learning problem.
Figure 1, which actually contains two representation. Two applications are given of our framework. In sec-
shifting functions: f.R, which maps examples from the tion 4.2, we find the assumptions implicit in the useinitial space to the representation space, and an "in- of a common representational shift: a shift from ex-
verse" of IR, denoted .fW in the figure, which maps amples to the "explanation structures" generated by
concepts in the representation space back to concepts the explanation based generalization (EBG) algorithm
in the initial space. The function f/1 is of course not [Mitchell et al., 1986]. This shift is found to corre-
a true inverse of fR; rather, it it the inverse of f/ spond to an assumption about the correctness of EBG.
extended to concepts using the convention described In section 4.3, we relax this assumption of correct-
above. ness, and construct a new representation shift which is

The effectiveness of such a learning system depends knowledge-level equivalent to the relaxed assumption.
on the representation shift. The first issue addressed This representation shift could be used as the basis
in this paper is: when is a representation shift appro- of a learning system that makes a weaker assumption
priate for a learning problem? In short, what are the about the correctness of EBG.
principles that underlie representation shift? We es-
tablish a correspondence called knowledge-levei equiv- 3 A framework for analyzing
alence between a representation and the assumptions
about the learning problem that are implicitly made representation shift
when that representation is selected. This Luiu.bpu,- The question addressed iii this sectioli is. when is a
dence is the basis of our analytic framework. representation shift appropriate to a particular class

The correspondence can be used in three ways. of learning problems? The meaning of this question

• Given a representation shift, it is possible to iden- is intuitively clear. However, in order to formulate
titfthe background knoiWdgq.to which a repre- and answer the question above precisely, it is necessary
sentation shift corresponds. In other words, it is to formally define the terms involved: representation
possible to uncover th6 assumptions implicit in shift, leaning problem, and appropriate.
the use of a specific representation shift. 3.1 What is a representation shift?

* Conversely, given some background knowledge A representation shift will be formalized as a function
about a learning problem, it is possible to test fI from an original initial space X, into another space
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XRZ, called the representation space. fr is a well-defined function A
VT E P, Vx, y E X1 ,

Representation shift - a function fR : X - XR (fR() = fR(y) =! XT(X) = XT(y))

In a typical case, X1 is a set of potential training ex- where XT(x) denotes the characteristic function of T
amples in some initial description language, which is r.
inappropriate for learning. XR contains representa. e definition of potentially solvable assumes that
tions of the elements of X1 , in what is hopefully a t., goal of learning is exact identification of the target
better format for learning. For example Xt might be concept. This fits many formal definitions of learn-
a set of digitized photographs of soybean plants, and ability, such as Gold's learnability in the limit [Gold,
XR might consiA of feature-vector representations of 1967], Littlestone's mistake-bounded learnability [Lit-
thepe plants using certain features known to be signif- tlestoae, 19881, and Angluin's definitions of learning
icant for the learning task at hand, as in [lichalski from queries [Angluin, 1988]. An exception is the
and Chilausky, 1980]; or Xr might be a set of chess Valiant criteriou of probably approximately correct
positions, and XR might be proofs that white has a (pac) learnability [Valiant, 1984], which requires only
forced exchange from that position, as in (Flann and approximate identification of the target concept; this
Dietterich, 1989]. suggests that a probabilistic extension of this analytic

3.2 What is a learning problem? framework may be worth investigating.
Notice that the appropriateness of fR does not say

A definition of a "class of learning problems" must now anything about how easy or difficult it is to solve the
be given. It is assumed that the problem faced by the learning problem in the representation space XR; it
learner is to correctly identify some unknown target merely says that it is still possible to solve the learning
concept T given some "partial information" about T. problem.
Typical examples of the sorts of partial information
available might be a set of answers to queries issued 3.4 Representations and background
by the learner, or a set of labeled examples of members knowledge
and nonmembers of T.

We would like to exclude from our formalization of Let A(?) denote a first order sentence which is a state-
a learning problem anything specific to a particular ment about ?; A(P) will alternatively be viewed as an

learning algorithm or a particular model of leanabil- assumption about the class of learning problems, or

ity. One way to do this is to assume that the partial as background knowledge about the class of learning

information is requested by the learner (for example, problems. We can now formulate precisely and answer
via a set of calls to oracles) and is not an explicit in- the questions given in the introduction:
put to the learner. (It seems reasonable to assume Question 1: Given a representation fR what as-
that for every learner that takes partial knowledge as sumptions are implicitly made when fR is used on the
an explicit input, there is a learner that requests this class of learning problems P ?
input from an oracle.) In this case, a learning problem The answer to this question is obvious: any learn.
is simply a possible target concept T, and a class of ing system that uses a representation fR makes the as-
learning problems is simply a set of such concepts. sumption that fR is appropriate for the learning prob.

lem; i.e., that APPROP(fR,P) is true. A particular
Class of learning problems - a set P = {T, T2,..., } learner may (and probably will) make other assump-

tions as well in the process of generating a hypothe-
3.3 When is a representation appropriate? sis; however, since every learning system that uses the
Given these definitions, it is now possible to state pre- representation fR assumes APPROP(fR, P), then it
cisely when a representation is appropriate. A repre- seems reasonable to characterize APPROP(f,?) as
sentation fi is appropriate for the class of learning the assumptions made in choosing the representation
problems ? if and only if each learning problem is po- fR.
tentially solvable in the representation space. A learn- Question 2a: Given some background knowledge
ing problem T is potentially solvable if it is possible A(?) about a class of learning problems ?, what rep-
to exactly describe a target concept T by an image of resentations fR can be used?
T under fR. If we let APPROP(fR,?) denote the Question 2b: In the same circumstances, what
proposition "fR is appropriate for P", and let X.l? be representations fh should be used?
the range of fR, then the definition of appropriateness The answer to question 2a is also obvious: if
can be stated in symbols: A() # APPROP(fT,?) (1)

APPIIOP(.fR,?7))
Riawldfind f n A_ then the representation fR could be used for the learn-

fV is a well-defined function A ing problem ?, given the background knowledge A(P).
VT E "P, 3TR g_ XR : T = f 1 (Tj) The answer to 2b is not obvious, however. There

An alternative definition which some readers may find may be many representations that have this property;
more intuitive is which of these should be used? In short, are there any

grounds for preferring one of these representations over
AP PROP(f, ) -others?
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One context in which fR is preferable to fn, is when The representation shifts and assumptions which
the appropriateness of fR1 implies the appropriateness we consider are closely connected to the operation of
of fR, i.e. explanation based generalization (EBG), a procedure

APPROP(f,1 , P) #, APPROP(JfR,P) (2) that uses a logical theory to generalize a single positive
example of some concept. A short discussion of EBGThe rational for preferring f/ , is the foiiowhig: .. prece--,des our analyses.

sider a learning system L1 that uses fRj, and another
learning system L 2 that uses f.j. L1 "knows" only 4.1 Explanation based gentralizAtion
that fR1 is appropriate, and L2 "knows" only that fR, To avoid unnecessary detail, explanation based gen-
is appropriate. Then if equation 2 holds, everything eralization will be discussed at a rather abstract
knou by L 2 is deductively implied by what is known level in this paper. Readers requiring more detail
by Li, and can, at least in principle, be derived from are referred to [Kedar-Cabelli and McCarty, 1987;
knowledge available to Li. At the knowledge level, L1  Mitchell et al., 1986]. Let e be a theory, zrd for
is "better informed about the learning problem" than x E X z , let PROOFSo (z) denote the set of ,roofs
L2. of z in 0. This assumes that x is a logicp' goal,

This rule of preference means that logical implica- for example cup(objl); such an example is implic-
tion imposes a partial order on the desirability of rep- itly tagged with the "target concept" to which it is
resentations. The best representations are those fR relevant. Let 0 denote an operationality predicate;
that satisfy equation 1 and are maximal with respect in this context, an operationality predicate tells if a
to this partial order. It is easy to show that if fR has subproof is a "detail" not relevant to the concept to
the property be learned. Ezplanation based generalization is an

4(7P) 4 APPROP(fR,7P) operation defined on a proof Px E PROOFSo(x)

then it fulfills this requirement. Such a representa- denoted by the function EBG(, 0, p). This

tion will said to be knowledge-level equivalent (KL- funcioalways returns a set that generalizes x; i.e.,

equivalent) to the assumption A(P). The answer Notice that the usual assumptions about 0 - e.g.,
to question 2b is thus: given 4(u), the most desir- that it is complete and correct, that it is defined onlyable representation is some JR such that JR is KL- fopsivexa ls-hventbnmd.Te
equivalent to ,4(7P). for positive examples -- have not been made. The

equivalent toat () isnoreason is that the assumptions which an EBL system

sumption A(P), there is more than one fi that is KL- makes about 0 depend in part on how generalizations
euialent to(). Iearticulareifg is aorehn n y tat - are used. The remainder of this section will considerequivalent to .4(P). In particular, if g is any one-to- several possible schemee for using EBG, and analyti-
one function and J is KLequivahent to .4('), then cally determine which assumptions about the domain
JR o g is also KL.equivalent to .4(1'). This is to be ter r en ae
expected: if g is one-to-one, then it is an "information- theory are being made.

presrvig" peraionandshoud mke o difernce There are several known algorithms for explanation
preserving" operation and should make no difference based generalization. Generally, a proof p, is gener-
at the knowledge level. However, the following the- alized in two ways: operational subtrees are pruned
orem shows that this is the only sort of variation of in accordance with the 0 predicate, and sc -ie of the
fR which is possible: i.e., that the KL-equivalent rep- constants appearing in the proof are replaced with
resentation for an assumption .4(P) is unique up to variables. This generalized proof is called aa e.pla-
composition with one-to-one functions. nation structure, and will be denoted eo(px). A rule
Theorem 1 If fR, and fJ2 are both KL-equivalent to is then extracted from the explanation structure by
4(P), then there is a one-to-one function g such that conjoining the leaves of the explanation structure to
fR1 = fR2 o g. form the antecedent, and using the root of the expla-

The analytic framework presented in this section is nation structure as the consequent. The set of goals
summarized in table 1. provable directly from this rule is the generalization of

X.
4 Applications of the framework As an example of explanation based generaliza-

tion, [DeJong and Mooney, 1986] describes a simple
The true value of an analytic framework lies in its use- theory of social interactions, under which the goal
fulness in the analysis of meaningful problems. We will kill(johnjohn) is generalized to form the rule
consider two uses of the framework. First, in section
4.2, we find the assumption implicit in the use of a kill(X, X) +- depressed(X) A buy(X, W) A gun(W)
common representational shift. This is a simple anal- which can be paraphrased as saying "X will kill him-
ysis: it mcrely requires finding a meaningful condition self if he is depressed and has bought a gun." Here
which is logically equivalent to APPROP(fR, P). In the example is the goal kill(johnjohn) and the gener-
section 4.3, we consider the related problem of con- alization is the set of goals provable by the rule above,
structing a representation shift which is optimal given i.e. the set of goals of the form kill(X,X) such that
a particular assumption about a learning problem.
Here, given an assumption about the learning prob- depressed(X) A buy(X, W)A gun(W)
lem, the problem is to construct a representation shift is provable. In this case, the generalization corre.
which is KL-equivalent to this assumption. sponds loosely to the concept of "suicide".
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Table 1: Summary of the analytic framework

Intuitive Notion Formalization
representation shift a function fR : Xr -, Xit
learning problem a target concept T C Xr
class of learning problems a set P = {T, T2,...J
background knowledge of learning problem a first order formula A('P)
fR is appropriate for P APPROP(fR,P)
assumption implicitly made in using fR APPROP(fR,7)
.fh can be used given .A(') A(P) =* APPROP(fR, ')
fhR should be used given A(P') A(P) 4 APPROP(fR, P)

I (i.e., fR is KL-equivalent to A(P))

Later analysis will not depend on the precise algo- This restatement of APPROP shows that it is
rithm used for EBG; however, the following property equivalent to two assumptions about EBG. The first
is assumed to hold. 1  assumption is that every instance has at most a single

proof, up to the level of detail specified by the expla-
Assumption 1 For all ), 0, pr, and y, nation structure. Since this constraint is usually en-

y E EBG(O, O,px) forced by ensuring that there is at most one proof for

' 
3p E PRO FSe(y) : eo (p1 ) = eo(p.) every instance in the domain theory, we will call this

assumption the unique proof assumption. The second
4.2 Analysis of a representation shift assumption is about the "validity" of generalizations

of positive examples. Intuitively, the generalization of
An important topic in machine learning research is any x E T is valid: i.e., it is a correct generalization
integration of explanation based and similarity based of x with respect to T. Notice that this assumption is
learning techniques. Several integrated learning sys- much weaker than the assumption, commonly associ-
tems have been built that have the architecture of fig- ated with EBL systems, that the theory is a complete
ure 1, and that use as a representation-shifting func- and correct definition of the target concept T.
tion some close variant of the finction f(x) -eo(px) Theorem 2 has the interesting corollary that f is
These systems learn from a set of ezplanation struc. KL-equivalent to the assumption above (i.e., the con-
tures using SBL techniques; they differ primarily in the junction of the unique proof assumption and the valid-
learning methods used. (See [Flann and Dietterich, ity assumption.) This means that if L' is any hybrid
1989] for a discussion of some of these systems.) SBL/EBL concept learning system which makes these

What assumptions are made by a learning program assumptions, and which assumes nothing else about
that that uses this representation shift? The answer the learning problem, then a learner that uses the rep-
APPROP(f,P) is correct, but not very meaningful. resentation shift foo will have access to exactly the
However, it can be shown that APPROP(f, P) is logi- same knowledge that is available to L'. This is true
cally equivalent to a meaningful assumption about the regardless of the architecture of L'.
behavior of EBG.

Theorem 2 Let fe,o be defined as fe,o(z) = eo(Px). 4.3 Constructing a representation shift
Then

Given the analysis above, it is natural to ask: in what
APPROP(fo,o,7') ways can these assumptions about EBG be relaxed?

Vx E X1 , Jeo(PROOFS (x))J = 1 A One class of theory that violates these assumptions
VT E P, Va E T, Vp4 E PROOFSo(a), and that appears to occur often in practice is the class
EBG(O, 0,p) C T of "abductive" theories: theories that make assump-

tions in the process of theorem proving. These theories
'This assumption should hold for any reasonable ir- often violate the unique proof assumption. A common

plementation of EBG. The "only if" direction requires only subclass of abductive theories is the class of theories
that the output of EBG be determined by 0,0, and eo(p=): that involve plan recognition; often, any of several as-
in this case, if 3p, E PROOFSo(y) : eo(p,) = eo(p,), sumptions could be introduced that would suffice to
then EDG(0,0,py) = EBG(0,O,p.). We know that explain an action, but only explanations based on the
y E EBG(e,0,p,), and hence y E EBG(G, 0,p,) as well. right assumption will be correct.
The "if" direction is also intuitively clear, if the conjunc-
tion that describes the set EBG(O, O,px) represents pre- The crucial property of an abductive theory seems to
conditions under which the "abstract version" ec,(p) of be that for every true observation, there is some cor-
the proof p, is applicable: if y is in this set, those precon- rect explanation. It seems reasonable to require that
ditions are true, and some instantiation of the "abstract a generalization associated with a valid explanation is
proof" eo(pz) should succeed for y as well as for z. valid. This "abductive assumption" about the correct-
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ness of EBG can be precisely stated as: 4.4 Discussion of the results

.ABe,o (P) Any system which uses EBG must make an assump-
tion about the domain theory which is used; the as-

VT EP, Vx E T, sumption that is commonly associated with EBG is
3px E PROOFSo(x) : EBG(G, O,pp) g T that the domain theory is a complete, correct, and

A reasonable application of our framework would be tractable definition of the target concept. In recent

to find a representation shift which is optimal under years, several hybrid learning systems have been built

this assumption: that is, a representation shift which that have the architecture of figure 1, and which use as
is KL-equivalent to A is (). A learning a orith a representation-shifting function a mapping from in-using this representation would have the advantages of stances to the explanation structures associated with
systems which use the representation shifting function those instances. Presumably, these systems make a

weaker assumption about the correctness of the do-
f, but would be useful even when the unique proofassumption does not hold. main theory.

aspin doe ot nd . The analysis above confirms this intuition. It showsIn order to find a representation that is KL- that the domain theory ,,se, by uch a earning sys-
equivalent to this assumption, it appears necessary to t.......... t chonud by s: aver n inn ss
make some assumptions about P as well. Let us say tern must satisfy two conditions: every instance mustmhatke soe ss ios abot if :have exactly one associated explanation structure, andthat a set S CA is a hitset ifn So C X : S R wilb EBG must never overgeneralize a positive example.
E2r E R n Sol. A class of learning problemsP will be This is a strong assumption, but it does not requiresaid to have hitset images under fR iff VT E P>, fR(T) Ti sasrn supin u tde o eur
is a hitset, the domain theory to be complete and correct; in par-ticular, the domain theory might produce an (incor-
Theorem 3 Let the function f;,O(x) be defined as rect) proof for a negative example of the concept. In
f,o(x) -{eo(p.) : p. E PROOFSe(x)}. If P has other words, the domain theory can be overly general

hitset images2 under f;,O, then f,, is KL-equivalent with respect to the target concept. However, the the-
ory must be sufficiently detailed that EBG does not

to ABe,o (). overgeneralize any positive examples.
Discussion of learning algorithms for the representa- The second result shows that some of the require-

tion space which is the range of f* is outside the scope ments on the domain theory can be relaxed by using
of this paper; however, the A-EBL technique described a slightly different abstraction function. By mapping
in [Cohen, 1989; Cohen, 1990a; Cohen, 1990b] can be an instance to a set of explanation structures, rather
viewed such a learning algorithm, than to a single explanation structure, a somewhat

A few remarks are in order about the theorem above, weaker requirement is placed on the domain theory.
in particular about the requirement that P have "hit- The domain theory must still be complete; however,
set images". First, this property generally holds if ?P the theory may produce multiple inconsistent explana-
contains only concepts that can be expressed using a tion structures for each instance, rather than a single
set of rules produced by EBG; in particular, it can eas- explanation structure. The theory must still be suffi-
ily shown that if assumption 1 holds, then the image ciently detailed that EBG does not overgeneralize on
under f * of the set EBG(O, O,p,) is always a hitset. all explanations of a positive example; however, EBG

Second, the proof of the theorem shows that the may overgeneralize on some of the possible explana-
property of having hitset images is not necessary to tions of an instance.
establish that The second result is also of interest because it shows

that it is possible to relax assumptions about the do-
.AB,o (?) =. APPROP(f;,o ,P) main theory in a principled way, and thus to expand

the range of competence of a representation-shifting
The property is only necessary for the other side of learning system.
the logical equivalence which is the definition of KL-
equivalence; that is, having hitset images is only nec- 5 Conclusions
essary to show that

APPROP(f;,o, P) = ABo,o(P) In this paper, we have developed a framework for
knowledge-level analysis of the changes in representa-

In other words, the function f* will be an appropriate tions of training examples in Learning. There have betu
representation shift whenever AB(?P) holds; the condi- several learning systems implemented that use changes
tion that ?P has hitset images is only needed to show of representation of the kind considered in this paper;
that f* is the best representation shift. some good examples are [Cohen, 1990b] and the sys-

tems discussed in [Flann and Dietterich, 1989]. 3 The
2 0f course, the assumption that P has hitset images

could be simply added to AB(P). This presentation em- 31t is important to keep in mind the difference be-
phasizes the fact that this assumption is motivated by the tween these systems and work on constructive induction,
desire to construct a KL-equivalent representation shift for example [Drastal ct al., 1989]: constructive induction
rather than by a natural assumption about the learning is concerned with informat:on-prcservmg transformations
problem. of training instances.
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framework was used to uncover the assumptions im- correct learnability (Valiant, 1984], which requires only
plicit in a cornnonly..used representation shift, and to approximate identification of the target concept. This
derive a representation shift which is appropriate for suggests that a probabilistic extension of the analytic
a weak assumption about the correctness of EBL. The framework may be worth investigating.
first result is important because it helps us to under-
stand the assumptions made by the learning systems 6 Acknowledgements
which use this representation shift; the second, because
it shows how to relax these assumptions in a principled I am grateful to Alex Borgida, for his advice and en-

way. couragement; Chun Liew, Patricia Riddle, and Haym
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strategies [Amarel, 1981; Korf, 1981: Riddle, 1989; community. The papcr was also much improved by
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representation change in problem solving, however, are th e u this supported by a Fl i n
general enough to serve as a model for representation tial stages of this research were supported by a Marion
change in learning. In particular, our model of repre- Johnson Fellowship.
sentation change in learning and notion of appropri- A Proofs of theorems
ateness is closely related to the models presented in

[Holte and Zimmer, 1989] and [Lowry, 1988]; in fact, A.1 Proof of theorem 1
it is a special case, in which the problem to be solved is If XT(x) is the characteristic function of T on z then
required to be a learning problem. However, the earlier it can be easily verified that
models do not d velop the notion of a "most appro-
priate" representation, and have not been applied to APPROP(fA,71) (3)
analysis of representation shifts in learning. VT E 'P, Vz, y E Xr,

Work in representation change in learning has gen- (fA() = fR(Y) = XT( ) = XT(y)) (4)
erally focused on automatic change or derivation of
inductive bias [Chrisman, 1989; Keller, 1989; Russello So if
and Grosof, 1989; Utgoff, 1984]. The representation .A(P')
changes considered in this paper - changes in the rep-
resentation of training examples - are more fundamen- APPROPfR, 1')
tal than shift of bias; such a change alters the very APPROP(fR, P')
space over which learning occurs, and hence necessi- then for i = 1,2
tates selection of a new hypothesis space and (prob-
ably) a new learning algorithm. Our goals, however, Vx, y E Xr,
are more modest: the goal of this paper is to provide fRi(z) = fn,(y) 4-- (VT E *PXT(x) = XT(y))
a framework for analysis of representational choices
made by humans, and to suggest a methodology for and hence
humans to follow in constructing new representational fR () = fA (Y) 4-- A, (X) = fA,(Y)
shifts, given background knowledge about a learning
problem. and the mapping g(a) = f, (fjil(x)) is well-defined

These goals have been at least partially met, how- and one-to-one. U
ever, many problems remain for future research. One A.2 Proof of theorem 2
difficult problem is automation (or partial automa-
tion) of the methodology suggested for constructing To prove the theorem, it is necessary to show both
representational shifts. Another set of problems is sug- sides of the logical equivalence. The proposed sim-
gested by the observation that there is a second pos- plification of APPROP(fjl, P') will be referred to as
sible interpretation of a the architecture of figure 1: A(P').
Xr might be the space in which training examples are To show that ( k o is appropriate for ') #, A(P).
"naturally found" (for instance, X1 might be the set First, note that if /oo is a well-defined function over

of all soybean plants). In this case, fR is a noncom- X1 , then the unique proof assumption holds. If f,

putable function that denotes an initial choice of rep-

resentations. Our basic framework applies to initial- VT E 7', Vx, y, -(fo.o (x) = fo,o(y)AXT(x) 0 XT (y))
choice representations as well as to representation-
shifting functions, although obviously proof techniques again using XT(x) to denote the characteristic function
for showing the appropriateness of initial-choice repre- of T on x. Now, if fo,o(a) = fo,o(y) then there
sentations will be different from the proof techniques is some explanation structure e such that fo,o(x) -
used in this paper. Finally, the definition of the ap- fe,o (y) = e, and
propriateness of a representational shift assumes that VT E ?,Vx E T, (eo(p) = eo(p) y E T)
the goal of learning is exact identification of the target
concept; this is a more stringent identification criterion VT E P, Vx E T, (y E EBG(O, 0. px) Y E TX5)
than the Valiant criterion of probably approximately #> VT E P,Vx E T, EBG(O, O,pr) C T



An Analysis of Representation Shift In Concept Learning 111

where Px is any proof of x, and where pt is any proof If f;,o is appropriate for P then
of y; hence the second conjunct holds.Line 5 follows
from assumption 1. VT E P,Vx G Xx, (z E T = f ,o(z) r fGo(T))

To show that A(79) =, (fo,o is appropriate for P).
First, note that the unique proof assumption implies Now, since f;,o(T) is a hitset, there is some Eo such
that fe,o is a function. Second, observe that for any that f;,o(T) = {E : 3eo(pxi) E E n Eo} and so

VT, E E ,fE,o (z) E f;,o(T) =* 3eo(pzj) E f;,o(z) n Eo
VT EP79, V- E T, (EBG(O, 0,p) g_ T) Let el denote the explanation structure in f;,o (.P) n

=t VT - V. va. r-v,_ _ (E , ) E. We claim that any y that has a proof p. with an
explanation structure equivalent to i' will be in T. If

where p, again denotes a proof of x. To see that this this is true, then by assumption 1, EBG(0, O, P.) 9 T
is true, imagine that the antecedent holds but for the proof pj' of x with explanation structure el;

3T EP', zE Tp E PROOFSe(x)' and since nothing has been assumed except that x E T
and T E ?, AB(?) will be established and the proof

EBG(O, 0,p.,) 9 T will be complete.

Then there is some YE EBG(E,0, p,) -T; note that But the claim must be true, because for any y,

this implies that y is in T. But by assumption 1 e' E ,o(Y)
yE EBG(O,0, pz) * e' E f;,o(y) n Eo
eo(p)= eo(p.) f;,o(y) E f;,o(T)

* EBG(O,O,py) EBG(O,O,p.) *yET

and so the last step following because f;,o is appropriate. N

3T E 7,y E T: EBG(,O, p ) Z T
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Abstract variety of concepts: build column, transform logic cir-
cuit, etc.). However, each acquires concepts by pas-Induction of action sequences in a simulated sively observing examples without generating experi-

robot world is described. The learner pas- ments. Active learning of single step procedures oc-
sively observes examples which are procedu- curs cooperatively in ADEPT (experimentation) and
ral action sequences where properties and/or PIIINEAS (concept revision) {Falkenhainer & Raja-
relations change in the simulation. The ob- money, 1988} with explanation~s of new physical pro-
served procedures are split and trimmed to cesses. But in all these systems, as for EBL in general,
form the initial concept descriptions. Active extensive domain theory must be supplied or built in
experimentation occurs when the system re- so that explanations of examples may be analysed.
peats or tests more general descriptions of In planning or problem solving, two learning sys-
the observed examples. Generalisations are tems which can learn temporal concepts interactively
formed by constructive induction using in- and autonomously in an environment are PRODIGY
verse resolution and tested by execution of {Carbonell & Gil, 1988} and LIVE {Shen & Simon,
operational actions in the simulation. Coin- 1989}. PRODIGY discovers missing conditions on
pleted execution of the test confirms success. operators as well as their subgoal ordering of appli-
Inability to complete a concept in the sim- cation, and LIVE can extend its concept description
ulation causes search for successively greater (by matching domain functions over the whole exper-
generalisation on demand inorder to continue iment in order to find missing aspects of the concept
execution. Background knowledge need not description) when the operators fail to predict an out-
be present as the system invents appropri- come, thus causing the operator to split on the pre-
ately justified concepts as required. condition. However, both these systems obtain their

guidance from a predefined goal to be obtained, and
1 Introduction other domain knowledge.

In this paper we describe learning of a set of con-
Before children learn conventional language they can cepts representing a procedure. This set of concepts
learn how to build columns and arches from blocks, is organised as a hierarchy with higher level concepts
and other such concepts. They do this by observing an referring to lower level concepts. For each new concept
agent (maybe a parent) perform a one or more exam- identifier (supplied with examples) a hierarchy is built,
ples of these concepts, and then imitating the observed and when learnt can be used to recognise an example
actions. Once they start experimenting they can some- of that procedure, or can be executed to perform that
times proceed and successfully learn the intended con- procedure. The seed concept is the unique concept at
cept, or some variation on it, without feedback from the very top of a hierarchy. Constructive induction is
the agent ("playing by themselves"), performed on different parts of the hierarchy during an

In a simulated world containing two robots we ex- experiment to perform and track execution of the seed
amine this type of learning from the point of view of concept. Using only imitation and the environment as
the child. Thus the learning task is. Given an intel- guiding influences, we show that effective learning in
liO..t agent performing examples of purposeful action the absence of background knowledge can occur.
seqL.ances, Create a learning element which observes After a description of the representation and termi-
these examples and then conducts experiments to ac- nology used, the overall learning strategy is described.
quire useful concepts by exploring the environment. Then, details of tracking experiments on concepts, and

The learning of procedures from examples in a re- regeneralisation on failure of expected outcomes, is fol-
active environment has received some attention in. lowed by the generalisation mechanism. After this, two
NODDY {Andreae, 1985} (learns blocks world ac- traces of concepts learnt by CAP are examined, fol-
tions), SIERRA {VanLehn, 1987) (learns how to sub- lowed by discussion of the system learning these and
tract) and BAGGER2 {Shavlik, 1989} (learns wide other procedures.
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2 Learning Procedures cup(a) at 2, cup(b) at 2, cylinder(c) at 2, bowl(e) at 2,
not-contains-liquid(a) at 2, ccntains-liquid(b) at 2,

The representation used for concepts is a subset of not-containB-liquid(c) at 2, not.contains-liquid(e) at 2
Horn clause logic1 with the following variations. For The trivial seed concept hierarchy from this, prior to
the purpose of describing temporal concepts it is useful all constant terms replaced by variable terms, is
to distinguish two semantic interpretations of predi- Sorted count list [(b , 3), (L , 3)]
cates: state predicates p(tl, ... , t,,, Time, Time), indi- Trimming to objects: [b, a]. Zach state trimmed from 8 to 4
cate that p(t1,. .. ,tn) is true at state Time (shown do-a-pour(a, b) during 1 / "-

by p(tl,...,t.) at Time), and action predicales ado-a-pzur(b, a) during j . 2p(,ttS artFinish), indicate that p(i1,.. ,i) sdo-a pour(b, a) during 1 / 2 :.... -pdo-a-pour(b, a) during 1 / 2

is true during the states Start until Finish inclusive ssdo-a.pour(b, a) during 1 / 2
(ahown by p(tl,...,t,) during Start / Finish). Pos- cup(a) at 1,sible interpretations for A 4 B,C are "if B and C containsliqud(a) at 1,

are recognised, then we recognise A as well" and "to not.contains-liquid(b) at 1,
perform A then one must perform B and C. pour(a, b) during 1 / 2,

contains-liquid(b) at 2,
The components of the system and the infor- not-contains.liquid(a) at 2,

mation flow between them is shown in Figure 1. cup(a) at 2,
CAP is connected to a simulation which receives prim- cup(b) at 2

itive actions to be performed and produces predicates If at some later stage (maybe after some learning)
describing properties, relations, and actions for the more examples are observed, they are attempted to
next state. The system starts by observing (ie. record- be recognised with the current hierarchy. From this,
ing) all primitive predicates produced by the connected intra-construction forms a new 'root' based on a sim-
simulation during execution of an example provided by plified maximal subsequence match2 .
an external agent. This is specified as a list of actions A cautious lea:ner in an unknown environment will
on objects, and is performed by the learner in the sim- not do the rnst radical changes to its current con-
ulation. Neither the substructure of this example nor cept description and hope for success. Identification
the objects relevant to the intended concept to be ac- of the cause of a failure is easier with smaller numbers
quired are given, merely an observed sequence of states of simultaneously tested changes. During execution
and actions with possibly many irrelevant objects. The of a concept hierarchy many concept bodies are being
intelligent agent that provided the example can never executed. With generalisations possible on ail these
give feedback to the learner as to the nearness to the bodies the amount attempted must be strictly con-
intended target concept. Thus the example is referred trolled. To this end generalisation levels are defined
to as an instance of a seed concept, ie. one to stimul.te ordered on the least amount of new coverage added to
and direct search for Aseful concepts. memory, and on minimal invention of new symbols.

In order to create the inital procedure description After the examples are read in to form the initial
the complete observed example trace is divided by two hierarchy the system attempts to learn a more general
levels of division and "irrelevant" predicates trimmed hierarchy using Algorithm 1. But first the seed con-
out. A concept hierarchy with one "root" is then gen- cepts are assigned initial generalisation levels of repeat
erated with all constants automatically variablised. As which force an initial execution of the concept without
we are concerned with the active experimentation in attempting any generalisations.
this paper, we briefly sketch this process. Algorithm 1 Learn

Major divisions occur when primitive actions cease
acting on one object set and start acting on a different 1. Find a seed concept n i- B that has not stopped
set of objects. Minor divisions occur when one primi- testing, with the lowest generalisation level L. If
tive action ceases on an object set and a different prim- there is more than one seed concept at this level
itive action starts on the same object set. Trimming then choose the one with the least recent exper-
chooses the most changing object and objects from iment. Bind the starting state term of S to the
one or two next level sets of object-changing-predicate current simulation state number.
counts. This is a generalisation as conjoined predi- 2. Call track(S, L) which executes the whole proce-
cates are removed thus increasing the coverage or use dure (ie. concept hierarchy) by executing a body
of the resulting description. The justification for this of S which in turn executes each of the compo-
comes from a heuristic of "localised focussing". Just as nents of that body and so on. The generalisation
a child focusses on a subset of all the objects available level L represents the maximum generalisation to
in order to build an arch, so does CAP. attempted on any body executed.
Example 1 3. If track exits then S was performed successfully, so
For a seed called doapour the observed sequence is the generalisations performed on any part of the
pouring water from a full cup to an empty cup: hierarchy during execution (if any) are adopted.
cup(a) at 1, cup(b) at 1, cylinder(c) at 1, bowl(e) at 1, If no generalisation was tested then the learner

contains-liquid(a) at 1, not-contains-liquid(b) at 1,
not-contains-liquid(c) at 1, not-contains-liquid(e) at 1, tri being more adventurous by increasing thepour(a, b) during 1 / 2, 2These aspects of example observation along with other1The reader is referred to {Muggleton&Buntine, 1988}. details are described in detail in {Ilume, 1990}
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Seed CAP Observe
Examples /Execute actions in examples

Dissect observed predicates
World Learn Concept

Simulation Find next experiment on Memory

concept hierarchy. If primitive M'

Graphics ]World action, perform in simulation

Display Current Trace Prediction = actual, or try
IV rethinking failure as success

of more general experiment

Figure 1: System Diagram and Informdzonn F!c..;

generalisation level of this seed concept. If any Tracking a predicate attempts to complete execution
generalisation required invention of a new concept of that predicate by either showing that it exists in the
then restart any "stopped testing" seed concepts. world (for primitive state predicates), by performing
Continue at Step 1. that predicate in the simulation (for primitive action

4. If track fails and the mistrack occurred in the very predicates), or by finding the body of that predicate

last state, then we can be sure of exactly what from the concept hierarchy and executing that body
generalisation on a concept body caused the fail- or an attempted generalisation of that body:

ure. Record this as a failed generalisation (a gen-re-
eralisation never to be attempted again) in that quested generalisation level L, we generalise and track
concept. Continue at Step 6. the predicate using Algorithm 2:

5. Otherwise, the track failed and we can not iden- Algorithm 2 Track(P, L)
ti Otheeac case. trackindw culd not be cor- . If P is primitive then completed execution occurstify the exact cause. Mistracking could no eco- i P E world W, or P can be, and is, performed

rected by the generalisation level so regeneralise in t simlatio (Th e performd
by temporarily increasing the generalisation level3  in the simulation. (The performance will add P
and continuing at Step 2 (with original starting and the simulation's succeeding state predicates
state number). If we cannot temporarily increase to W.) Fail otherwise.
the level then proceed at Step 6. 9 For P non-primitive, on it attempt to find an ex-

periment test, T, for a generalisation of the re-6. Because the track has failed then the learner tries quested level, generalise(L, P, T) (described in
being lucky (or more desperate) looking for a Algorithm 3, below), or fail.
more general concept that may be testable in the With the returned experiment body T, track each
world, by increasing the generalisation level. But of the component predicates P E T, in order:
if there are no more generalisation levels then ex- track(P,L). Succeed if all components complete
perimentation stops (marking this seed concept as execution, otherwise backtrack to generalise(L,
"stopped testing") until new concepts arise due to P, T), to possibly produce a new experiment the
other seed concepts. Continue at Step 1. components of which may succeed.

Failure of experiments is critical to specific-to- When a concept learner has too specific a concept
general learning, otherwise the concepts would never description, it must generalise that description to - ver
stop being generalised. In Step 4 of the above algo- more positive examples while still excluding negaave
rithm the experiment fails in the very last state of the examples. We have just seen how a test of the new de-
seed concept. If no generalisation was tested (as in a scription created is verified. Now, we describe how to
repeat experiment) then the existing concept descrip- create experiments and how to repair ones that fail, so
tion is incorrect and thus a previous generalisation was that execution of the overall hierarchy may continue.
wrong. Because the current set of generalisations on a Given a requested generalisation level L and a par-
concept have each generalisation applied and tested at tially grounded predicate P, we specify how to return
a different timL, then identification of the exact gen- a set of predicates T, representing a test of a general-
eralisation causing this failure is impossible. Thus all isation of P with Algorithm 3:
generalisations ever conducted on the concept are un- Algorithm 3 Generalise(L, P, T)
done and the conjunction of them all is recorded as a
failed generalisation. 1. Since P is guaranteed to be a non-primitive pred-

Similarly, when a current generalisation being tested icate find a matching concept P +- C in memory.
is deemed to be responsible for the failure it is the 2. Find an experiment of the requested generalisa-
conjunction of all the generalisations that has failed, tion level L, for P on C returning the test of that
and not allowed to be tested again, experiment, T, and a set of generalisations, G, be-

ing tested, ensuring that the union of G and the
3The ordering is repeat, absorb and intra-construct. existing generalisation set on C is not in the failed
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generalisations of C. Failing this, attempt to find 3 Examples
the most minimal generalisation experiment pos-
sible, up to level L. Otherwise try to find another Two different sessions are presented here to illustratebody C in Step 1 and continue there, or fail. aspects of CAP's learning behaviour. The first illus-

trates the complicated hierarchial nature of the con-
3. If the experiment test, T, fails to track then re. cept learning on a single seed concept, belayed-climb.

generalise by trying to find a different experiment The second displays the autonomous discovery aspect
test, T, for a consistent generalisation on C. If while learning two different seed concepts, do-a.pour
this cannot be found, try to find another body C and do-a-fillfromtap alternately in the same session.
in Step 1 and continue there, or fail. In the domain of mountaineering, the world simila-

tion provides primitive properties (person, camp-site,
The key Li., determining success of experiments of summit, rope.attached, no.rope-attached), relations

generalisation tests is a conit ,ta sc,,t ,t1 A (ays,, iuv&L.bove, at.ope.enda, not.atopeends),
consistent generalisation exists on a concept body, C, ad actions (clmbup, climbdovn and sleepovernight).

when the generalisation list, GL, for C, containing suc- The first example shown ,' t- C-, ad., sle igth

cessively applied generalisation sets, has each succeed- persons a and b attached to the rope and level with

ing generalisation set a time invariant subset (a subset camp site camp0, and campi three rope lengths above
up to renaming of time stamps), of the preceding gen- campo. Climber a lead climbs up until reaching the
eralisation set in the list. rope end, and stops. He then belays b up. Immedi-

The constructive induction used for generalisation ately b leads up until the rope end is reached, then he
is absorption and intra-construction as described in stops. Next, b belays a up and when a leads through
{Sammut, 1981, Sammut & Banerji, 1986, Muggleton and reaches the rope end he is level with campl. Fi-
& Buntine 1988}, except that ideal tests of generalisa- nally b is belayed up until level with a and the camp
tions have been modified to generate performable tests site, campl. The grounded (prior to variablisation) seed
given the current state and execution of the simulated concept produced from this observation is4:
world. The problem is, how can we find a generalisa- belayed.climb(campO, b, a, campl) during 1 / 7 :-
tion on a concept body of a predicate being tracked one-move-climb-from-camp(a, b, camp0) during 1 / 2,
which can be tested given the current execution of the two-move-climb-from-camp(b, a, camp0) during 2 / 4,

two-move-climb-to-camp(a, b, campl) during 4 / 6,
world? The answer depends on how much the world one.move-climb-to-camp(b, a, campl) during 6 /7
and the concept body must match, and this possible
restriction must be taken into account when deciding The remainder of the hierarchy is not shown here for

what generalisation is best to test. Tests of requested lack of space. The second example is the same ex-

generalisations are constructed on an existing concept cept that the two camps happen to be an extra rope

P ~C in the following manner: length apart in height. This means that a's second
climb both starts and finishes not level with a camp5 .

L - repeat Because part of the second example shown to CAP ex-
No generalisation is to be tested, G = 0. Return actly matches (ie. is recognised by) part of the first ex-
a test equal to the concept body, T = {C). ample then the grounded seed concept belayed.climb

L -absorb description is generalised by intra-construction to:
belayed-climb(campO, b, a, campi) during 9 / 17 :-

If we think of C as composed of two parts B1 one-move-climb-from-camp(a, b, camp0) during 9 / 10,
and B2 and we hve a concept H 4- B 2, then two-move.climb-from-camp(b, a, camp0) during 10/ 12,
absorption replaces the existing concept by P +- two-move-or-move.to-camp(campl, a, b) during 12 / 17

H, B1 . The generalisation set G is {H --- B2 }, with the new, invented concepts automatically justi-
and the test of this absorption is T = {TI, B1 } fled by the examples to produce the following grounded
where H -- T1 is another concept. (prior to variablisation) description:

L = intra-construct two-move-or-move.-to-camp(campl, a, b) during 12 / 17
two-move.climb to-camp(a, b, campl) during 12 1 #8,

For intra-construction, we have a second existing one-move-climb-to-camp(b, a, camp1) during #8 / 17
concept P - B2 , B3 , and the two concepts are two-move-or.rnove-to.camp(campl, a, b) during 12 / 17
replaced by , where H is a new pred- two-move(a, b) during 12 / 14,

4-- H, B2  two-movt,climb-to.camp(b, a, campi) during 14 / 16,
icate. Also, two auxiliary concepts are invented, one-move-,limi-to-camp(a, b, campl) during 16 / 17
H - B, and H - B3 . The generalisation set G With the camps now yet another rope length apart,
is {J- R.}, And tlip tpt iq simply the second lerl.ing comixences .. ,h the system merely attempt-
concept body, T = {B 2 , B3 }. ing to perform a repeat experiment from state 18. As

In summary, two abstract influences guide the learn- the objects i,-,Jved ia the experiment are unknown,
ing process. At a high-level regeneralisation represents the arguments to belayed.climb are variables. The
a tendency in the learner to rethink a mistrack of one trace of the call to belayed.climb follows:
more general concept, as success of a different more Tracking 'belayed-climb(CampX, Personi, Person2, CampY) during
general concept. The low-level influence is consts- 18 / EndTime' at a requested generalisation level of 'repeat'

tency recognising justifiably acceptable completed ex- ' Variables are shown by leading uppercase characters,
ecutions of actions performed in the simulation given and constants by leading lowercase characters or numerals
that certain generalisation tests are current. 5This is why a camp doesn't appear in two.move.
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To track and execute this, CAP tracks each of the rope.attached(b) at 23,
components of the body of belayed.climb given the rope-attached(a) at 23,

person(b) at 23,starting state 18: person(a) at 23,
tracking one-move-climb-from-camp(Personl, Person2, CampX) above(a, b) at 23,
during 18 / TI climbup(b) during 23 / 24,
tracking two-move.climb-from-camp(b, a, campO) during 19 / T2 stwo-move(b, a) during 24 / 25

After execution of one.move.climb.from.camp some of and the two grounded invented concepts:
the variable terms have been unified with constants: symmet-at-rope-ends(a, b) at 23 at-rope-ends(b, a) at 23
Personl/b, Person2/a, CampX/campO, and Tl/19 but symmet.at-rope-ends(a, b) at 23 at-rope.enfds(a, b) at 23

symmet-not-at.rope.ends(a,b) at 24 not-at-rope.ends(ba) at 24
CampY/CampY is still variable. Now the invented con- symmet-not-at-rope-ends(a,b) at 24 not.at-rope-ends(ab) at 24
cept two.move-ormove.to.-camp is tracked by trying the Thus by observing two examples of a belayed climb
first disjunct body twomoveclmbtocamp to see if a from one camp to another, and then faced with a sit-can climb straight to the unknown camp campY: uation that exact imitation would fail to succeed, the
tracking two. move-or-move.to-camp(CampY, a, b) during 21 / TI learner has acquired the ability to climb any two per-
tracking two-move-climb-to-camp(a, b, CampY) during 21 / T2

This fails since the camp is still two rope lengths above sons from one camp to another camp in safety.

a. CAP then retries tracking the second disjunct body The second example involves concepts of water
of two.move-or.move-to-camp as shown below: transfer and containment. Here, the world simula-
tracking two-move-or-move-to-camp(CampY, a, b) during 21 / Ti tion provides primitive properties (cup, bowl, cylinder,
tracking two-move(a, b) during 21 / T2 contains-liquid and not.contains.liquid) and primi-
tracking two-move-climb-to-camp(b, a, CampY) during 23 / Ti tive actions (fill:romtap and pour). The initial state
Do. climbup(b) during 24 / 25, failure.
:: Regeneralising- backtrack looking for a successful retry consists of four objects, two cups, a closed cylinder,

but finds that after those two climbing moves by a, and a bowl. The first cup contains water.

and another two moves by b, that b is not level with The first seed example is the single action pour(a,

the unknown camp either. Thus a repeat of the exist- b) during I / 2 pouring the contents of cup a to cup

ing concept will not allow the procedure to complete b. The initial seed concept hierarchy from this obser-

execution. By increasing the requested generalisation
level to absorb, the learner can try to find such a gen- U
eralisation to enable completed execution of the belay
climbing procedure. An absorptive generalisation is
found on the bodies of two.ove-or-move-to.camp that a b c e

creates the following test of that absorption: Figure 2: World simulation in state 2
two-move(a, b) during 21 / T2,
two-move(b, a) during T2 / T3, vation is given in Example 1. The second seed con-
two-niave-climb-to-camp(a, b, CampY) during T3 / T4, cept example do.a-f illfromtap consists of the one ac-
one-movc.climb-to-camp(b, a, CampY) during T4 / TI tion fillfromtap(a) during 2 / 3, filling cup a from

This test requires another two-move to be executed an invisible tap. The second grounded seed concept
by b, thus matching the actual fact that he was not
at a camp at the end of his second climb. Thus
two-move(b, a) during 23 / 25 exits, execution con-
tinues with two.move.climb.to.camp and a finally arriv-
ing level with campi in state 27: a b c U
tracking two-move.climb-to-camp(a, b, CampY) during 25 / T4
tracking one-move-climb-to-camp(b, a, campi) during 27 / Ti Figure 3: World simulation in state 3

Finally the procedure belayed-climb exits after hierarchy is given by
having to allow an absorptive generalisation on Sorted count list [(a ,3)]
two-iaove.or.aove..to.camp in order for the procedure to Trimming to objects: [a). Each state trimmed from 8 to 2

do-a-flllfromtap(a) during 2 / 3 :-
complete execution: sdo-a-fillfromtap(a) during 2 / 3
Tracked success for 'belayed.climb(campO,b,a,campl) during 18/28' sdo-a-fillfromtap(a) during 2 / 3 :-
at requested level 'repeat' and actual level 'absorb' taking 28.38 secs ssdo-a-fillfromtap(a) during 2 / 3

ssdo-a-fillfromtap(a) during 2 / 3Because Of the success, any g,,eaisations are con- not.enntaing-liniiid(a) at 2.cup(a) at 2,
firmed, including the absorption and a number of fllfromtap(a) during 2 / 3,
unplanned low-level intra-constructions on bodies of contains-liquid(a) at 3,
two.move and others (not shown here). Two of the cup(a) at 3
completed grounded (prior to variablisation) new con- Now that these two seed concept hierarchies have been
cept descriptions are shown for brevity (stwo.move is a created, the program commcnces the learning phase.
recursive sub-concept of two.movo): Randomly, do-a-pour is attempted to be proved in the
two-move-or-move-to-camp(campl, a, b) during 21 / 28 .- world with an initial reqcGted generalisation level of

two-move(a, b) during 21 / 23, repeat, (ie. no generalisalion attempted) and the start-
two-move-or-move-to-camp(campl, b, a) during 23 / 28

stwo-move(b, a) during 23 / 25 :- ing state term bound to the cur-eat state number
symmet-at-rope-ends(a, b) at 23, 3. Thus, the body of ssdo.a-pour has a substitution
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are variablised and stored even though the generali- the current generalisations is incorrect. As we do not
sation for which they were constructed failed. This know which one, the conjunction of all the current gen-

is to prevent the same intra-construction from being eralisations on the body is recorded as a failed gen-
repeated in the future. eralisation. We also undo those generalisations thus

The failure means that this seed concept's general- unwinding the body back to the originally observed
isation level is reset to repeat to rebuild confidence in example. The unsuccessful completion of this experi-
the curreat description. As this level is less than that ment increases the generalisation level to absorb in the
of do.a-pour then a repeat experiment fiU lfromtap(b) hope that a more general test may possibly succeed.
during 11/12 is attempted on do.a.fillfromtap. This Although the other seed concept do-af illfromtap

completes successfully, increasing the generalisation is at a level of absorb experimentation remains with
level to absorb. As this is still lower than the level do.a-pour due to a delay in restarting stopped con-
of do.a-pour then the experimentation continues with cepts. In this situation, two simultaneous absorptions
the same seed concept. are found on different parts of the restricted body -

Although an absorption can be tested, it is one testing a change in the source object from the
equal to the only member of the failed generalisa,- cup to a bowl and the other testing a change in the
tions of ssdoa.Iillfromtap. A repeat experiment destination object from a cup to a cylinder. After
fillfromtap(b) during 12/13 is thus conducted. The
successful completion would increase the generalisa-
tion level to intra-construct but as this level is not
allowed do-a.Ifillfromtap is marked as stopped. Ex- KK
perimentation continues with do.-.pour requesting an
intra-construction. a b c e

An existing concept cuporcylinder means that an Figure 10: World simulation in state 16
absorption would be planned if tie cylinder was cho- pour(e,c) during 15/16 there is a test predicate that
sen as the destination. Thus the bowl is chosen for is not satisfied by the world contains.liquid(c) at
the planned intra-construction. Pouring from cup to 16 and a world predicate not covered by the test,
bowl is performed pour(b,e) during 13/14. The re- not-contains-liquid(c) at 16. Thus the experiment

must fail, with the generalisation marked as a failed
one. The generalisation level does not increase since
some knowledge (a failed generalisation) was learned.

Experimentation alternates to do.a..fillfromtap at

a b c e the same level of absorb. The only predicate in the

Figure 8: World simulation in state 14 starting state of ssdo.a-fillfromtap that can have
sulting state does not match the test but, regenerali- an absorption constructed on it is cup. As there
suiting fsae onsisnt genralisatinhn the t b y eis a current generalisation maybe-containa..liquid on
sation finds a consistent generaisation on the the body that restricted body and the combination of this

equal to the restamped initiating generaisation. The and cylinder from cuporcylinder is marked as a
new grounded intra-constructed concepts are: failed generalisation, then we try the combination of
concave-up e) at 13 - cup(e) at 13] maybecontains."liquid and bovl from concave-up as a
concave-up(e) at 13:- [bowl(e) at 13] planned absorption. Here, a following generalisation is

The success means that this seed concept's gr-ner-
alisation level is reset to repeat, and any "stopped
testing" concepts unmarked, because a new concept
was invented which may mean that other generali-
sations may now be testable. As this level is less U
than that of do-a.fillfromtap then a repeat exper- a b c e

iment is now attempted on do.-apour: The system Figure 11: World simulation in state 17
selects the first two cups for the repeat experiment required which is consistent with the initiating general-
pour(b,a) during 14/15. The fact that they happen isation, and therefore this is a successful experiment,
to be both empty satisfies the concept. After pour- and the generalisation level is unchanged. The new

0------------------------ ----- ~lpf~~ 10.
ssdo-a-fillfrowtap(e) during 16 / 17:-

concave-up(e) at 16,
maybe-contains-liquid(e) at 16,
fllfrorntap(e) during 16 / 17,

a b c e concave.up(e) at 17,
Figure 9: World simulation in state 15 contains.liquid(e) at 17

ElabJustifications:
ing, there is a test predicate not satisfied by the initiating(maybe-contains-liquid(e) at 16,

[not-contains.liquid(e) at 16), [contains-lquid(e) at 16]),
world, contains-liquid(a) at 15 and a world predi- initiating(concave-up(e) at 16, (cup(e) at 16), [bowl(e) at 16]),
cate not covered by the test, not-containsaliquid(a) following(concav-up(e) at 17, [cup(e) at 17), [bowl(e) at 17))
at 15. Thus the experiment must fail. As no gen- FailedGens:

[maybe-contains-liquid(e) at 16 - [contains-liquid(e) at 16],
eralisation was tested we know that some subset of cuporcylinder(e) at 16 :- [cylinder(e) at 16]]
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searched for that requires no generalisation on that With the body of ssdo-a.fillfromtap a substitution
body. Unfortunately this is not possible as both the is searched for that requires an absorptive generalisa-
cups are full of water (the observed example had one tion. This is possible as cup a is full of water. This
cup full and one empty). Thus a minimal unplanned generalisation means that it doesn't matter whether or
generalisation is found by intra-construction cover- not the cup you are filling already contains water, af-
ing the unmatched predicate not-contains.liquid(b) terwards it is guaranteed to contain water. The experi-
at 3. This represents a test of whether or not the
destination cup need be empty at the start of the ex-Uperiment. Thus the primitive action pour(a,b) during
3/TEnd is performed in the simulation. The succeeding
state Figure 4 is as predicted by the experiment and ba b c e

Figure 6: World simulation in state 8

ment fillfromap(a) during 7/8 is a success, the gen-K w] Ueralisation adopted, and the gencralisation level un-
b c e changed.
e 4 We Because both seed concepts are still at the same

Figure 4: World simulation in state 4 generalisation level, they are attempted alternately.
thus the generalisation is adopted. The new grounded Thus, do..&pour is now tracked for a requested ab-
intra-constructed concepts are: sorption. As no more generalisations are possible
maybe-containe-liquid(b) at 3 [not-contains-liquid(b) at 3] on the starting state6 of ssdo.a-pour's body then a
maybe-containa-liquid(b) at 3 :contains-liquid(b) at 3) repeat experiment is performed. Since nothing was
The generalisation level for do.a-pour does not increase learned during this successful experiment pour(ba)
as learning occurred from the experiment, during 8/9 the generalisation level for do-a.pour in-

The other seed concept do-.a.illfromtap is at the creases. But planned intra-construction is not al-
same generalisation level and a repeat experiment is lowed, thus testing on this seed concept hierarchy is
performed on it as there is an unfilled cup. The gener- marked as stopped. Similarly, the other seed concept
alisation level for do.a.illf romtap increases to absorb do-.a.illfromtap is marked as stopped, after a repeat
as nothing was learned. This increase corresponds to experiment fillfromtap(b) during 9/10.
confidence in the existing seed concept hierarchy stim- Although planned intra-construction is not allowed
ulating experiments for a more general description. when learning is exhausted in the world the learner

Do.a.pour is attempted next as it is at the lower gen- may conduct a once-off explicitly planned for invention
eralisation level repeat. This experiment pour(b,a) on each of the seed concepts. Learning temporarily
during 5/6 is successful and the generalisation level recommences at this level for both seed concepts, with
increases as nothing was learned. Since both seed con- do-a.fillfromtap arbitrarily chosen first.
cepts are at the next planned generalisation level of Here, ssdo-a-fillfromtap has a choice of substi-
absorb either is selected for the next complete exper- tutions that require an intra-constructive generali-
iment. With do-a-pour. CAP explicitly tests whether sation. This is possible with the test having ei-
or not the object from which the water comes must ther a cylinder or a bowl replacing the cup be-
contain liquid at the start of the action. Thus it pours ing filled. The cylinder c is selected as we can
an empty cup b into a full cup a, pour(b,a) during see in Figure 7 there is no water in the cylinder
6/7. Again the succeeding state needs no generalisa-

a b c e
a b c e Figure 7: World simulation in state 11

Figure 5: World simulation in state 7 after the action fillfromtap(c) during
tion inorder to be proved and thus the generalisation though intra-construction could allow the remainder
is confirmed. As learning occurred, the generalisation of ssdoa-fillf romtap to track, the extra construction
level i8 ,nchanged, would cause an inconsistent generaiisation. Tnis ailed

Although this generalisation was correctly tested, generalisation test actually occurs in conjunction with
the resulting description is not in the intended mean- the previous generalisation maybe.contains..liquid(c)
ing of the trainer's example of do.apour. Pouring an at 10 - contains.liquid(c) at 10, and it is the
empty cup into an empty cup would have not suc- conjunction of this with cuporcylinder(c) at 10 4-
ceeded as a different generalisation would be required cylinder(c) at 10 that is recorded as having failed.
to track completicn, and thus inconsistency. The new grounded intraconstructed concepts

But now, because both seed concepts are at new rounde d intra t cnp
the same generalisation level, an explicit absorp- cuporcylinder(c) at 10 -[cyinder(c) at 10
tion is attempted on the concept hierarchy for
do-af illf romtap. 6Actually defined as an restriction in {Hume, 1990).
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Informally, this final resulting concept description for '-
do.a.fillfromtap means that given a concave upwards
object, whether full of water of not, the result of filling
it from a tap means it becomes full of water. b c e

The ElabJustif ications is a recording of the justi- Fiur b4 Wol imlio nsae 

fication (replacing predicate, the replaced predicates, Figure 14: World simulation in state 21

and the test of replacing predicate) for each genera!-
isation on the body. FailedGena represents the set of pour(e,a) during 20/21. Again, a following generali-

conjunctions of generalisations on the original concept sation is required which is consistent and therefore this

body that have been tested as being outside the cor- is a successful experiment. The new grounded concept
rect description for this concept. description is:

Learning switches to do.a.pour with absorb. In this sado-a-pour(a, e) during 20 / 21
situation, two simultaneous absorptions are found on concave-up(e) at 20,

concave-up(a) at 20,
different parts of the restricted body - one testing maybe-contains-liquid(a) at 20,
a change from a cup to a cylinder and the other contains-liquid(e) at 20,

pour(e, a) during 20 / 21,testing whether the source object need contain wa- concave-up(e) at 21,
ter at the start. The action performed is pour(b,c) concave-up(a) at 21,
duiing 17/18. After pouring, there is a test predi- contains.liquid(a) at 21,

not-contains-liquid(e) at 21Elab Justiflcations:
initiating(concave-up(a) at 20, [cup(a) at 20], (bowl(a) at 20]),

IIIIinitiating(maybe-contains-liquid(a) at 20,
[not.contains-liquid(a) at 20], (contains-liquid(a) at 20]),

following(concave-up(a) at 21, [cup(a) at 21), [bowl(a) at 21]),
initiating(concave-up(e) at 20, [cup(e) at 20), [bowl(e) at 20)),

a b C e following(concave-up(e) at 21, [cup(e) at 21], [bowl(e) at 213)FailedGens:
Figure 12: World simulation in state 18 [cuporcylinder(a) at 20 :- (cylinder(a) at 20],

maybe-contains-liquid(e) at 20 :- (not-contains.liquid(e) at 20])],
cate not satisfied by the world contains-liquid(c) at (cuporcylinder(a) at 20 :- [cylinder(a) at 20),
18, and a world predicate not covered by the test concave-up(e) at 20:- (bowl(e) at 20]],

,n wr i t h eab tht te [maybe-contains-liquid(a) at 20 :-(contains.liquid(a) at 20],
not-contains.liquid(c) at 18. This means that the maybe-contains-liquid(e) at 20 .- [not-contains-liquid(e) at 20],
experiment must fail. From an observer's point of concave-up(a) at 20 :- (bowl(a) at 20]]
view it would have failed due to either of these elabo- Informally, this final resulting concept description for
rations alone, an empty source or an unfillable desti- do-a-pour means that given an source concave upwards
nation. We mark this as another failed generalisation. object containing water and a destination concave up-
The generalisation level does not increase since some wards object maybe containing water, the result of
knowledge (a failed generalisation) was learned, pouring means that the destination is full of water and

Experimentation alternates to do..a.illfromtap at the source is empty.
the same level of absorb. But, after a repeat ex- As no further generalisations are possible on the con-
periment fillfromtap(a) during 18/19 it is marked as cept, a repeat experiment, pour(a,b) during 21/22 is
stopped as the generalisation level cannot increase. performed. As the generalisation level cannot be in-

Experimentation continues with do-a-pour. Two si- creased, testing is stopped.
multaneous absorptions (different to any of the failed
generalisations) are found on different parts of the re- 4 Discussion
stricted body - one testing a change from the desti-
nation cup to a bowl and the other testing whether Other concepts which CAP has learned displaying dif-
the destination object need contain water at the start. ferent aspects of its behaviour, include:
The action performed is pour (a,e) during 19/20. The Climbing to summit and back with overnight camps

(uses belay-climb),
Building a arch of any height (invented level-or-above,
symmetric not.touching and level.above, and two newFj d movement disjuncts).

SeIn these examples (except water pouring) CAPFiur 13 Wrdsmltointae could only learn tie most useful concept if there was a
Figure 13: World simulation in state 20 likely repeated pattern to the actions in the intended

resulting situation requires a following generalisation concept description.
which is equal to the initiating generalisaton except In water pouring, a single action constitutes the con-
for the substitution. This satisfies consistency and cept and the system discovers and invents concepts to
thus is a successful experiment. The generalisation generalise preconditions for the action from just one
level remains unchanged and as the other seed con- observed example. Thus for single action procedures,
cept is stopped we continue with do-a-pour. CAP and LIVE {Shen & Simon, 1989} perform and

Itere, an absorption is found on the restricted body discover equivalently (but with different representa-
testing a change from the source object being a cup tions) given .) domain knowledge. This is because
to being a bowl. The action performed is this case is in LIVE one can define an empty goal causing the sys-
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tem to merely predict the effect of an action given any 5 Conclusion
state. Given only a few examples and no background knowl-The mountaineering example of climbing to the edeo oanteryi spsil o fetvl er

summit with overnight stops and returning, illustrates edge or domain theory it is possible to effectively learn

the system's ability to use concepts that it has previ- in a wide range of interactive environments. A rep-
ously learned in order to describe new concepts. Here, resentation and mechanism using first-order logic is
bolayclimb was successfully recognised and used in largely responsible for this, but at a cost of controlling
movaying be n aps . re unconstrained behaviour. In most systems with this
moving between camps. breadth of application, the solution to this results in ei-

The building an arch example displayed one prob- ther, a large amount of domain and control knowledge
lem symptomatic of the system's tendency to gener- (eg. EBL, problem solving learners), or a large amount
alise state predicates in order to execute actions. In of explicit oracle interaction (eg. Marvin, CIGOL).
this case learning an arch from blocks and a cross beam Without domain knowledge or control and without
required aligning the two base blocks just inside ar.d oracle interaction, effective learning has been demon-
infront of the ends of the beam, then building the strated that uses one very abstract control heuristic,
columns up equally and putting the beam on top of "imitate activity you see in the environment". The
the columns. If, during experimentation, only a short categorisation of positive and negative instances of
beam is available that causes the columns of blocks concepts is done by the environment, and the "drive"
to touch, then a concept maybe.touch(a,b) at 10 will to learn comes from a continual search to try and
be invented to cover the difference between the exist- match patterns by performing them. Thus, recognis-
ing predicate not.touching(ab) at 10 and the current ably successful executions of concepts that partially
predicate touching(a,b) at 10. When the generalisa- match existing concepts result in more general con-
tion causing this is tested, the rest of the experiment cepts being adopted.
succeeds, thus incorrectly accepting it as a valid gener- Additionally, concepts learnt, can be used to assist
alisation. This particular problem would be remedied learning of later concepts since they become part of
by actually using the arch for the purpose for which it the description language. Also, discovery of clusters
was constructed, ie. by passing another object through of properties, relations and actions occurs which are
the constructed arch. But as this would have to ap- grouped by facilitation of valid procedure executions.
pear as a part of the example, every use of a concept
for constructing objects would need to appear in the 5.0.1 Acknowledgments
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Abstract (denoted A I-SLD B). The process of induction can be
described in their framework as follows. Given a domain

A framework for induction has been proposed theory T and an example E, such that T I-/-SLD E (E is
in (Muggleton & Buntine, 1988) and not derivable from T using SLD resolution), their aim is
implemented in the CIGOL system. We have to generate a new domain theory T such that T' I-SLD E
extended the operators introduced in CIGOL to and T I-SLD T. 7 can then be induced from T and E by
non unit clauses. Doing this, we have the process of 'inversion of resolution'. Their system,
discovered two limitations of inversion of called CIGOL uses 3 operators : Absorption that inverts
resolution, mainly one about the Absorption one single step of resolution, Intraconstruction that
operator. We therefore propose a new operator inverts two resolution steps of two clauses with one
called Saturation that replaces Absorption in our common clause, Truncation that inverts substitutions.
system. We give a clear definition of this Finding a general solution to inversion of resolution
operator after a formal analysis of the problem. raises some problems, both from a theoretical and from a
We then describe how the two other operators, practical point of view. Some of these problems are listed
namely Intraconstruction and Truncation, can be in section 2. The first motivation of our work was to
reformulated and re-implemented. 1  find a simple and efficient solution for inversion of

resolution when using a first order logic language
without function symbols. Besides, we have used an

1 Introduction automatic representation change that transforms functions
into predicates (by creating one predicate that has one
additional argument representing the result of the

1.1 Motivations function) and vice versa, thus enabling us to deal with
Induction is the process of building a general theory arbitrary Horn clauses. The conjunction of these two

from particular facts. This definition has led to many results allows us to extend the three operators introduced
interpretations in the Machine Learning community, in CIGOL to non unit clauses. This work has been
depending on the meaning ascribed to generality. We will implemented in Quintus PROLOG in a system called
not discuss this issue here, and refer to (Plotkin, 1971; IRES (Rouveirol & Puget, 1989) and is briefly described
Mitchell, 1982; Kodratoff & Ganascia, 1986; Buntine, in section 2.
1988; Helft, 1988; Kodratoff, 1988; Niblett, 1988; With this implementation, we became aware of
Kodratoff, 1989) for a review of these different problems which are not related to our particular solution
definitions, but rather are fundamental limitations of inversion of

A very general framework states that A is more resolution. We review these problems in section 3. We
general than B if A logically implies B (denoted A 1= B). also introduce a solution that relates inversion of
This basically means that the models of A are also resolution to results obtained in Logic Programming. We
models of B; by that, no restriction is made about any therefore suggest a re-thinking of inversion of resolution
inference procedure we may use. operators in section 4 and demonstrate the expected

(Muggleton & Buntine, 1988) specializes the improvements on a small example in section 5. Finally,
previous expression stating that A is more general than we conclude on promising research directions in section
B if B can be derived from A using SLD resoiution, 6.

1The first author has a French MRT scholarship and is 1.2 Notations and definitions
partially supported by CEC, through the ESPRIT-2 We use a subset of first order logic, namely Horn
contract MLT 2154. The second author is supported by Clauses (as in Prolog) as representation language. We
PRC-IA. recall here the basic definitions used in Logic

Programming, and refer to (Lloyd, 1987) and (Genesereth
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& Nilson, 1987) for an extended treatment of this 0. We have then A0-H20. The result of the resolution
subject. step is the new clause:

A predicate is given by a predicate symbol, and an Res(C1,C2): HI0 +- 30 A OL0
arity. An atom is a predicate applied to terms, i.e., an By such definition of resolution, we impose that the
expression of the following form : p(tl, ... ,ti) where p resolution step unifies the head of (C2) with a literal
is a predicate symbol, and the ti are terms. A positive within the body of (CI).
literal is an atom, a negative literal is the negation Note that (Cl) can also be a goal clause, i.e. the
of an atom. clause without head

Briefly, a substitution is a finite set of pairs xi /ti, (Cl): - A Q

where xi is a variable and ti a term. A substitution a is in such a case the result of the resolution step is
applied to a formula F by replacing each occurrence of the Res(C1,C2): +- 00 A OC0
variables by the corresponding term, the result is noted
Fa. If {(si ,ti )) is a set of pairs of terms or a pair of 2 Inversion of resolution
atoms, a unifier is a substitution a such that for every
i, sia = tiG. A most general unifier (mgu) is a 2.1 CIGOL
substitution a such that for every unifier 0, there exists a
substitution y such that a = Oy. In order to give an hint of the difficulties to face to

A clause is a finite disjunction of literals with all its solve inversion of resolution in the general case, we give,
variables universally quantified. A Horn clause has at after (Muggleton & Buntine, 1988), the formula used for
most one positive literal. A goal clause, is a clause inverting a single step of resolution in the Absorption
with no positive literal and is denoted - B 1A... A Bin. operator. If Cl and R are clauses, all clauses C2 such that
A definite clause is a clause with exactly one positive R is the resolvent of Cl and C2 can be computed with
literal and is noted P(-BIA...ABm. P is the head of the the following:
clause, and the conjunction BIA...A Bm is the body of C2= (R - (C1 - {L1}) ) 01) • 02-1 u (L2) (1),

where, LI and L2 are the resolved literals in C1 andthe clause. A unit clause has an empty body. By C2, 01 and 02 are the associated substitutions (LI - 01 =
logic program, we intend a set of definite clauses, L2• 02), and 02-1 is the 'inverse substitution' of 02. An
i.e., it does not contain any goal clause, inverse substitution basically replaces constants or terms

P entail F is noted P = F and means that the by variables. It can be viewed as an extension of the
formula F (- P is valid. turning constant into variables generalization rule

In this framework, a concept is represented by a (Michalski, 1983).
predicate. A clause is interpreted as a concept definition: CIGOL only provides a partial solution for this
its head identifies the defined concept, its body lists the equation, that is it solves this equation in the case where
conditions for belonging to the concept. C1 is a unit clause (in other terms, C1 - (LI) is empty).

In the remaining of the paper, two definition of Cquisianunit clausei(iniothe te
generality will be used. The first one is used in CIGOL C2= (R 01) 02 1 u L2
and the first implementation of IRES : a theory T is where the unknowns are 02-1, 01 and L2. The main
more general than a formula F if and only if F can be difficulty is to build 02 - 1. During the resolution step 02
proved from T, that is T I-SLD F. In such a case formula substitutes one single variable in C2 with an arbitraryF is said to be covered, or explained, by theory T : term which is also found in (R • 01); conversely, for
explanation means proof. The second one is iused in a building 02-1, CIGOL has to choose which subterms in
latter version of IRES : a theory T is more general than a R to replace by one common variable in C2. There can
formula F if and only if T entails F, that is T 1= F. In be a combinatorial explosion at this step. In CIGOL, the
such a case T also explains F. choice of this 'inverse substitution' is guided by

1.3 Resolution optimization of information compression when replacing
C2 by R (see (Muggleton, 1988) for details about

We consider in the following special case of CIGOL strategy).
resolution, the one used in PROLOG, called SLD
resolution. It is defined as follows. Let us consider two 2.2 IRES
clauses

(Cl): Hi c- A A a 2.2.1 Working hypothesis
(C2): H2 (-- P We have chosen a different simplifying hypothesis to
where Ax and 0 are conjunctions (maybe empty) of solve inversion of resolution. We have kept in a first step

atoms. A is an arbitrary literal of the body of (Cl), and a the same structure as CIGOL (that is, with three
can be resolvedgof wthe bCdy if (C ad Ae uisy tht mC I operators Absorption, Intraconstruction and Truncation)can be resolved with (C2) if II2 and A unifies with mgu but we only deal with clauses without function symbols.
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This simplifies a lot the descriptions and
implementations of the operators. In order to overcome 2.2.2 A sample session of IRES
the strong limitation introduced by our working Let us illustrate how IRES proceeds to complete the
hypothesis, we use an automatic representation change following theory defining family relationships (CIGOL
that transforms functions into predicates (flattening) cannot handle this example because of the unit clause
and vice versa, without changing the semantics of the restriction).
overall program. Let us briefly describe this TI: grandfather(XZ) -
representation change with a small example. The clause father(X,Y) Afather(YZ).
to flatten is : T2 : father(X,Y) 4-

(Ex): member(blue,[blue])<- child o
The second argument of the predicate member, [blue], d_ f(YX) A sex(X,ale).

is in fact the term cons(blue,nil). The idea of flattening is T": mother(Y) -

to replace the function cons(X,Y) by a new predicate childo fYX) A sex(Xfemale).
consp(X,YZ), where 7 is the result of applying cons to T2 and T3 are flattened into:

X and Y. In our example, this replacement yields the new T2f. father(X,Y) +-
clause: child of(YX) A sex(XS) A ma!e(S).

(Ex'): member(blueZ)- consp(blue,nilZ) T3f: mother(X,Y) -

The new predicate consp is defined as follows to child of(Y,X) A sex(XS) A female(S).
preserve the semantics of the original clause:(CON): ons(X~Y, cns(,Y)~-.Suppose now that the following example is met.(CONS): consp(X, Y, cons(X,Y)),6. E r nf t e~ o~ i)

The meaning of the input clause (Ex) has not been E: grandfather(tom,liz) 4q
changed since the resolution of (Ex') with (CONS) gives sex(helnom malenhld). flizhelen) A

(Ex), as can be checked. This is a general property of the sexoneleneme
flattening transformation. The flattening algorithm which yields, once flattened:
performs these transformations for all the occurrences of Ef grandfather(X',Z')
functions in the clauses, in particular for the constants, faIher(X',Y') A child of(Z',Y') A
since there are functions of arity 0. For instance, blue is sex(Y',S') A tom(X') A liz(Z) A

replaced by a predicate bluep(A), etc. The final result of helen(Y') Afemale(S).
flattening is thus the following clause: is not entailed by the available theory, because

(Ex'): iember(XZ) <- father(helen,liz) cannot be derived, by resolution with one
consp(XY,Z) A bluep(X) Anilp(Y). of the clauses of the domain theory, from

together with the clauses that define the predicates child of(liz,helen), sex(helen,S) and female(S) , but

consp, bluep and nilp : mother(helen,liz) can be derived : the definition of
(CONS): consp(X Y, cons(X,Y))-. grandfather is clearly incomplete.

In the remaining of the example, IRES proposes to
(D)LUE): bluep(blue) <. the user all the operators that can be applied at one step,
(NIL): nilp(nil)-. and the user chooses which operator to apply. At this
This kind of representation transformation is -lassical step, all three operators are applicable, the user chooses

in Logic Programming and has been done manually in Absorption, as it generalizes the expression of the
the system MARVIN (Sammut, 1981). Our originality is example.
to have automatized it.

It is worth noticing that two identical subterms are 2.2.2.1 Absorption
replaced by a single variable. Here, the blue constant Absorption rewrites one clause C2 (be it an example
which appeared twice, is replaced by the single variable
X. This choice simplifies a lot the search for inverse or a rule of the domain theory) using a concept defied in
substitution in Absorption (Rouveirol & Puget, 1989). another clause C1. Absorption of a clause C (the
By doing this, we stick very much to the example, and absorbed clause) by a clause C2 (the absorbant clause) is
we are of course more sensitive to coincidental possible if the body of clause C2 can be unified with a
occurrences of one value in the example. We can get rid part of the body of C1.
of these coincidences by further generalizing the examples In our example, there is only one clause that can be
when applying Intraconstruction. absorbed by the example E, namely T3. This clause can

The flattening transformation enables to handle be absorbed by Ef because its body
arbitrary Horn clauses as input and output for the child of(Y,X) A sex(X,S) A female(S) can be
operators. In practice, it allows us to relax the unit clause unified with the subpart
assumption put on the input clauses of Absorption, child of(Z',Y') A sex(Y',S) Afemale(S')
Intraconstruction and Truncation in CIGOL. of the body of Ef with the substitution (YIZ', XIY',

sfo,).
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Absorption then replaces the body of the absorbed used to turn constants of Ticc into variables. Previous
clause C2 by its head properly substituted in the body of Intraconstruction suggested that tom(X') should be
the absorbant clause C1. dropped from E'. It gives the more general clause:

In our example, this gives the following new clause: Er-: grandfather(X'Z') f-
Ef: grandfather(X',Z') *- faher(X',Y9 A mother(Y',Z) A

father(X',Y') A mother(Y',Z) A Iiz(Z) A helen(Y).
tom(X') A liz(Z) A helen(Y). Additional information about the domain stating that

At this step, Absorption is not applicable anymore, first names are not relevant in this context, or oracle can
remains the choice between Intraconstruction and allow to drop liz(Z) and helen(Y'), but we stick to Er- for
Truncation. Let us suppose the user chooses to apply our example.
Intraconstruction.

2.2.2.4. Intraconstruction (continued)
2.2.2.2 Intraconstruction Going back to Intraconstruction , where the two input

n -constnction compares its two input clauses and clauses are now T1 and Ef,.. The generalization of the
rewrites them by introducing a new intermediary predicate two clauses remains the same as in section 2.2.2 clauses.
to get a more concise expression of the theory. The two new clauses new clauses to define newp are:
Intraconstruction can occur between two clauses C1 and Tib: newp(YZ) f- father(Y,2).
C2 if there exists a non enipty common generalization of TIcC: newp(Y',Z9 (- mother(Y',Z) A
the two clauses. This generalization must cover the heads liz(Z9 A helen(Y).
of C1 and C2.and at least one literal in the bodies of C1  The bindings for Tlb and Tlce are now symmetrical
and C2. It proceeds in three steps. due to the use of truncation. We can then proceed to the

Firstly, the system generates a new clause GG the last step of Intraconstruction that replaces Ef and T1 by
head of which is the generalization of the heads of C1 and the following three clauses:
C2. The body of is the generalization of the bodies of C1  Tla: grand-father(U,W) -- father(U,V) A
and C2 . For instance, the first step of applying newp(V,W).
intraconstruction to Er and T1 gives the following Tlb: newp(YZ) %- father(YZ).
clause: TIcc: newp(Y',Z) -- mother(Y',Z) A

GG: grand-father(U,W) (-- father(U,V). liz(Z') A helen(Y).
The second step takes care of the left-over literals in An oracle is needed to further simplify Tlce into Tle

C1 and C2. Here, the literals mother(Y',Z') A tom(X) A using truncation :
Iiz(Z') A helen(Y) of E' and father(YZ) of T have been Tic: newp(Y',Z) <- mother(Y',Z).
left over during the generalization step of The oracle is then asked to validate and name the
intraconstruction. Intraconstruction then introduces a new predicate newp. The proposed name is parent.
concept, arbitrarily called newp. This new concept is The new theory T formed of the clauses (T1a, Tlb,
defined in two clauses whose bodies are respectively the Tie, T2, T3). This theory T is able to recognize the new
the left-over literals in the initial clauses. The arguments example, and all other examples of maternal grandfathers.
of newp have to be carefully chosen to keep the variables
bindings that were present in C1 and C2, such that no 3 Saturation
generalization occurs during this step. In our example,
these new clauses are:

Tib: newp(YZ) e- father(Y,Z). 3.1 Two problems with inverse resolution
TIcc: newp(X',Y',Z9 - mother(Y',Z) A While implementing the above described operators in

tom(X') A liz(Z) A helen(Y). the Ires system, we have discovered some rather
We notice that in Te cc , we need one more argument fundamental limitations of inverse resolution.

than in Tlb to keep to bindings between the leftover
literals and the generalization. The system therefore 3.1.1 Truncation
suggests to simplify E' before proceeding to The first problem when we consider non unit clauses
Intraconstruction in order to have symmetrical bindings arises with Truncation. Truncation as pure inversion of
for arguments of newp. resolution operator allows to get rid of literals introduced

dturing the flattening step. It corresponds in a functional2

2.2.2.3 Truncation notation to generalize a clause by replacing some terms
Truncation generalizes a single clause by turning

terms into variables. This is done by dropping some 2 By functional notation we mean the unflattened
literals among the ones introduced by the flattening representation for clause, as opposed to the flattened
algorithm. In our example, Truncation can at most be representation.
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by variables. It seems appealing to extend Truncation so F +- [C A D] A E A B
that we can drop any literal in a flattened representation. then applying Absorption again with the first clause
Dropping literals that were not introduced by flattening gives
corresponds to the dropping condition rule in a functional F +- [ C A D A E A B] A A
representation (Michalski, 1983). One single rule in a Brackets denote that the literals have been already used
flattened representation (dropping any literal) is sufficient for an absorption step, and are therefore optional (they
to express the two generalizaion rules that are necessary can be dropped in a later simplification step). This
in a functional representation (that is, turning terms into notation is taken from (Loveland, 1978).
variables, dropping literals). Thus the Saturation operator overcomes the destructive

The problem with this extension is that it is out of effects of Absorption by doing a kind of forward chaining
the scope of pure inversion of resolution. From a clause on the body of one clause as the following logical
A +- B A C, we can now obt.in the clause A +- C with analysis will show. It also offer a good alternative to the
Truncation. However this is not the reverse of a search need- for Absorption. The clause
resolution step. Using SLD resolution it is not possible F +- [ C A D A E A B] A A
to derive the clause A +- B A C from the clause A <- C. is a compact way of representing all the clauses that

This is one of the reasons that led us to intromuce a should to be tried with Absorption. These clauses are
different definition for generality. A is more general than obtained by removing some of the bracketed literals.
B if A 1= B. This definition allows us to say A +- C is Some of the possible 16 clauses are given below:
more general than A +- B A C because F - C A D A E A L A A

(A-C =(A -- B AC), F4- DA E A R AA
whereas F- E A
(A +- )I-/- SLD (A - B AC). F- A
This extension of our definition of generality will be

also justified by the sections to come. 3.2 Logical analysis
3.1.2 Absorption The preceding remarks led us to introduce a sensibly

different framework for induction. The starting hypothesis
Saturation has its origin in some chaining problem we remains the same: a domain theory T (definite clause

had with Absorption. Absorption is destructive : it program) is given, as well as an example clause (B +- BI
replaces in the body of one clause the body of another A B2 A .... A Bn ) not explained by the domain theory, i.e.
clause by its head. The literals that have been replaced are not entailed by T. The goal of learning is to obtain a
lost, and this can have harmful effects on further clause H, known as induction hypothesis, such that
generalizations or Intraconstructions if the wrong choice T A H 1= (B +- B1 A B2 A .... A Bn)
has been made for the clauses involved in the Absorption, This can be transformed into
or concerning the order in which Absorptions occ~r 3 . T A -, (B + B1 A B2 A .... A Bn) 1= -, H
For the sake of clarity, let us take an example with the The next step is to remove all the variables in the
two following clauses in our domain theory: negated example clauses by skolemizing them.

A +- B A CA E Skolemizing amounts to apply a substitution 0
B-- CA D. involving constants which do not appear in the theory.
and then the following example comes T A -, (B +- B1 A B2 A .... A Bn )0 I=-H
F +- C A D A E. This can be transformed into
Absorption of the example with the second clause T a-, B0 B10B20 .... Bn = H

would yield the clause The problem of finding H is now reduced to deduction.F+- B A E Our solution is to use a forward chaining deduction on
Literals C and D are removed, thus preventing one B10 A B20 A .... A l3O (which is the body of the example

more absorption with the first clause of the theory. c ui t th io h T. t us o nsde a ny
Beside the fact that Absorption is not complete since all clause) using the theory T. Let us consider any
possibilities cannot be tried, this have another bad effect. conjunction of atoms A1 A A2 A.... A Am that can be
The order into which Absorption is applied is very proved that way. We thus have
important. However the good choice cannot be known in TA B10 A B20 A .... A Bn0 1=
advance. Thus a large search has to be performed. A1 A A2 .... A Am

A better solution would be to keep all the literals in We then have, by adding-, BO to both sides
the body of the clause when performing Absorption. We TA- B A B10 A B2 0 A .... A Bn0 1=
call this method Saturation. This would first yield the -, B0 AA A A2 A .... A Am
clause By factorizing negations we obtain

TA - (B +- BI AB2 A.... A Bn)0 =3 This point has been made by S; Muggleton in a -(BO - A1 A A2 A .... A Am)
private communication.
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The. ist s.ep is to undo the skolem substitution, i.e. Saturation builds in one pass the bottom up parsing of
replace each skolem constant introduced by 0 with a new this sentence, rewriting parts of the clauses in terms of
variable. We nL',e this operation 0-1. We have proved that higher level concepts. The result of Saturation will be:
we then have the logical entailment: (Iss) : sentence(sO,s) (-

T A - (B +- B1 A B2 A .... A Bn) 1= [consp(sue,slsO) A consp(loves,s2,sl) A
-, (BO -- A1 A A2 A .... A Am)0 "1 consp(a,s3,s2) A consp(mans,s3) A

Thus H is taken as (BO +- A1 A A2 A .... A Am )0"1. name(sO,sl) A determiner(s2,s3) A noun(s3,s)
We have also proved that all the hypothesis H having the A transitiveverb(sl,s2) A noun.phrase(sO,sl)
same predicate symbol in the head as in the example can A noun.phrase(s2,s).
be obtained that way, which was not the case with The last step is to undo the skolem substitution,
Absorption. which gives:

The last refinement of this method is the use of (If) : sentence(SOS) F-
optional literals (which ate put between brackets) when [consp(sue,Sl,SO) A consp(loves,S2,S1) A
performing deduction . This refinement of resolution is consp(a,S3,S2) A consp(man,S,S3) A
analyzed in details in (Loveland, 1978). name(SOS1)] A transitive.verb(SlS2) A

Saturation has already been applied in the context of Xdeterminer(S2,S3) A noun(S3,S)J A
generalization (Bisson, 1989), although the use of noun.phrase(SO,S1) A noun.phrase(S2,S).
saturation to get to a generalization ir the two approaches
is quite different. From now on we will not indicate the skolemizing

step since it is straightforward. The result of Saturation
3.3 Example can be clearly seen on the following graph, where nodes

We present the principle of Saturation on an example stand for literals of the clause and arrows denotes the
taken from (Wirth, 1988) as the application domain, deduction made while saturing. Low level as well as high
namely completion of Definite Clause Grammars, is level concepts appears in the body of the clauses. There
particularly suited for ,.hi. The domain theory expresses are of course redundancies, but all the information
natural language p.rsing rules. Casting Wirth's contained in the body of the clause is explicit.
representation into ours gives the following:
(LFP1): sentence(SOS) -.- sentence(SO,S)

noun.phrase(SOS1),r
verb_phrase(S1,S)

(LFP2) : noun~phrase(SOS) (-
determiner(SO,SJ) A nounphrase(SOSl) nounphrase(S2,S)
noun(S) ,S).

(LFP): noun phrase(SOS) f- name(SO,S). transitive verb(S1,S2)
(LFP4): verbphrase(SO,S) n6- determiner(S2,S3)noun(S3,S)

intransitive verb(SO,S). name(S0,S 1) +
(LFPS): noun(X,S) f-- consp(man,SX). A consp(loves,S2,S 1) '4
(LFP6): name(XS) 6- consp(sueS,X).
(LFP7): determiner(XS) f- consp(a,SX). consp(sue,S 1,SO) consp(a,S3,S2) consp(man,S,S3)
(LFP8): determiner(X,S) - consp(the,SX).
(LFP9): intransitive verb(Xs) (- consp(sleeps,S]X). Figurel : Graphical representation of a saturated clause
(LFPIO): transitiveverb(X,S) <- consp(loves,SX). 3.4 Boundaries of generality

We start with the flat representation of the input
clause sentence([sue,loves,a,manSJ,S) (for the sake of The above graph can be interpreted with a generality
readability, we did not flatten constants in the example): relation : the higher level literals are more general than
(1): sentence(SO,S) E- the others. This seems to contradict the definition of

consp(sueS1,SO) A consp(lovesS2,S1) A generality we have used before since the higher literals are
consp(aS3,S2) A consp(manSS3). deduced from the lower ones.

This examole is skolemized by replacing all variables In fact, what is compared is not literals, but clauses.
by new constants s, sl,s2,s3: i lnl act die above graph P...lly "-" sL' alo
bs) : sentence(sO,s)ss- different clauses, and what should be compared for

consp(sue,s],sO) A consp(lovess2,sl) A generality are these clauses, not simple literals. To obtain
consp(a,s3,s2) A consp(man,ss3). one of these clauses, one should draw a line across the

graph, called boundary of generality, and keep all
the literal just above this line. For instance, if we use the
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boundary of generality (BI) in figure 2, we obtain the
clan~e: 4. Intraconstruction and Truncation

revisited
sentence(SO,S)%-

noun..phrase(SO,S1) A trans"tive-verb(S1,S2) A
noun.phrase(S2,S3). 4.1 General algorithm of N-IRES

The previous remarks implies a total rethinking of ourIf take the boundary of generality (B2) we obtain: previous approach to inversion of resolution.
sentence(SOS)( Intraconstruction and Truncation will from now on

consp(sue,S1,SO) A transitive-verb(S1,S2) A operate on the graphs produced by Saturation. This will
noun phrase(S2,S3). allow us to define explicit control by taking into account

level of generality in the graphs. The generalization step
The first clause is more general than the second oni. of Intraconstruction becomes a matching between the two

This is why we can say that noun.phrase(SO,S1) is more input graphs, where nodes are literals partially ordered
general than consp(sue,S1,SO) with respect to the above with subsumption. As the literals do not have the same
graph. Thus the graph represents generality level of generality level, Truncation operates with higher priority
literals : the higher a literal is, the more general will be a on low level literals, which are already subsumed by
clause with this literal in the body. Note that this notion some other terms in the generalization. Truncation
of boundary of generality is similar to the one opf becomes a central operator that prevents the resulting
boundary of operationality from (Braverman & Russel, clauses after Saturation to grow immoderately in size.
1988). This will be used in the intraconstruction and Intraconstruction also benefits form the graph structure.
truncation operators as described in section 4.2. Of course, partial matching of two graphs is np-

complete, but matching can be seen as finding some
sentence(SO,S) paths in the graph starting from the heads of the clauses

(w, are then brought back to a tree-matching problem).
We can use as well the fact that the literals are ordered in
the graph to constrain the order in which the literals are

nounp going to be generalized. A possible bias for the
uphrase(SOS 1) noun_phrase(S2,S) generalization step is proposed in the next section.B tas e verb(S1,S2) The global algorithm of N-IRES is now the

S-- " -L following. We suppose that examples comes one by one,and are handled as soon by the system.
name(S0,S1) determiner(S2,S3) noun(S3,S) For each new example, a subsumption test is

- I p,-formed (like the one from (Buntine, 1988)). If the
B2 consp(-ves'S2,S 1) A e-ple is subsumed by the domain theory, nothing is

do,.:. If the example is not explained by the theory, the
consp(sue,S1,SO) consp(a,S3,S2) consp(man,S,S3) input is saturated using the original domain theory, then

it may undergo Intraconstruction or Truncation. The
Figure 2 : Saturated clause with boundaries results of these operators are submitted to the oracle thatof generality validates them or not. Once a result has been validated, it

is added to the domain theory. The system then checks
whether any clause of the original theory can beDepending on the learning goal, it is now possible to simplified (by a sequence of Saturation - Intraconstruction

favour higher level terms, and to prune some parts of this si ng hise ne cf itis thcsthe
graph. The control of the operators is thus easier than - Truncation) using this new clause. If it is the case, the
gpthe otolofall the opleatifor ti n s e itn expression of the theory is simplified. This is similar towith Absorption : all the relevant information is explicit the rule-reexamination from (Hall, 1988) and allow the
when choices have to be made. Various bias can be used t o ele sentive o tH order of the
at this point. If we retain only the connected top (see system to be less sensitive to the order of the examples.
section 4 below) we obtain the clausec: The small following example gives a hint of
(Ir) : sentence(SO,S)- improvements of Intraconstruction made possible by

( irw) soveI(/S , ao - Saturation.
_pn hrase"' "&) /% ircnsiiveverb(Si,S2)

noun.phrase(S2,S3). 4.2 Example
which was the missing clause in the theory. This

clause can now undergo intraconstruction with (LFP1) to We concentrate here on learning the rule for the
complete the definition of verb_phrase. general case of arithmetic addition. Integers are

represented using the constant 0 and the successor
function s: s(X) represents the integer X+l.
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The first input is generalization produced by Truncation to the user. If the
(II) : 1+1 = 2, which is represented by user does not validate the generalization on its own, N-

plus(s(O),s(O)M(s(O))). IRES then proceeds to Intraconstruction (i.e., introduces a
Since two identical constants are replaced by identical new predicate to cover the leftover literals), where no

terms, this will give the following flattened induction is done.
representation : Generalizing means finding a partial match of the two

(11) : plus(XX,Y) - graphs. Finding the maximal partial match is np-hard,
zero(() A succ(,X) A succ(XY). but on this example, we are going to show that we are

The next input is (12) : 1 + 2 = 3. Its flattened not necessarily interested in the maximal partial match.
representation is The heads of the clauses are first generalized, and then the

(12) : plus(X,YZ) -- match is extended by exploring in priority nodes which
zero(O A succ(CX) A succ(X,Y) A are near the root node (most general generalizations are
succ(Y,Z). privileged).

Saturation is fired, giving the clause:
(12fs) : plus(X,YZ) -plus(X,ZU

zero(Q A succ(CX) A succ(X,Y) A
succ(Y,Z) A plus(X,X,Y). plus(XY'

This can be described graphically as follows, using the
same conventions as in figure 1: -Z

plus(XXz ero( succ(,X') succ(Y',Z') succ(Z','U')

Figure 5: Best graph matching for learning addition
zero() succ(Vx) succ(XY) succ(Yz) The geierazation is :

Figure 3: Saturated graph of '1+2 = 3' (G) : plus(AB,C) &

plus(A.D,B) A succ(B,C) A succ(DB)
A zero ( ') A succ(',4A).The third example is (13) : 1 + 3 = 4. The This generalization covers completely the I2fs graph,corresponding flattened clause is: and leaves two nodes of the I3fs graph unmatched. It is(131) :( succ(X',Y') A near from the expression we wish to learn, but it stillzero(C) A SUCC(4'.') A SA contains irrelevant terms.

succ(Y',Z') A succ(Z', U').
Saturation provides (firing Ilfs and I2fs on the body of 4.3 Connectivity

130 the clause:
(13fs) : plus(X',Z',U') 6- This generalization can be further simplified : literals

zero(z') A succ(',X) A succ(X',Y) that are already covered by some terms in the
A succ(Y',Z') A succ(Z', U') A generalization, (such as zero(C) and succ(CA)) can be
plus(X',X',Y') A plus(X',Y',Z'). dropped from the generalization, as long as it remains

connected (roughly, there must exist one path linking
plus(X',Z',U) each variable in the body of the generalization to one

variable that appears in the head predicate through
plus(X',Y'Z predicates in the clause). This can be called the

plus(X',X',Y,) connectivity heuristic and it keeps us with the minimal
links (one path) between variables in the body of the
generalization and variables in its head).

We are looking for relaxation of this fairly strong
zero( ) succ(X',Y) succ(Y',Z) succ(Z',U) contraint. A similar kind of constraint has been

considered in (Helft, 1988). Using simplifying heuristics
Figure4 : Saturated graph of '1+3 --4' should lead us to drop the two literals zero(C) and

succ( ,A). We thus obtain:
We then compare the two graphs that represent the plus(A .B,C) --

saturated clauses. They are compared because their two plus(A,D,B) A succ(B,C) A succ(DB)
heads match (which was not the case for Ilf and 120 in which gives once unflattened:
order to find some regularities in the expression of the
two additions. The first step is to propose the
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plus(Asucc(D),succ(B)) (- plus(A,D,B). This means Hall R. J.: "Learning by failing to explain",
that A+succ(D) = succ (A+D). We recognize here a Machine Learning Journal, vol 3-1, pp 45-77, august
definition of addition in the general case. 1988.

Helft N. : "L'induction en Intelligence Artificielle:
5 Conclusion Th6orie et Algorithmes", these de l'Universt6 d'Aix-

Marseille II, septembre 1988.
After implementing a simple solution to inversion of Kodratoff Y. & Ganascia J.G.G. : "Improving

resolution when the representation language used does not the generalisation step in Learning", in Machine
include function symbols in the IRES system, we noticed Learning, An Artiicial Intelligence Approach, volume II,
some more fundamental limitations to the inversion of pp 215-244, Morgan Kaufman, 1986.
resolution approach. The major limit affects the Kodratoff Y. :Introduction to Machine Learning,
Absorption operator. To overcome this limit, we relate Pitman, 1988.
our work to results in Logic Programming and replace Lloyd J.W.: Foundations of Logic Programming,
the Absorption operator with the Saturation operator that second extended edition, Springer Verlag, 1987.
makes all the possible deductions on the body of one Loveland D. W.: Automated Theorem Proving : A
clause. To handle efficiently saturated clauses, we Logical Basis, North Holland, 1978
represent them in the form of a graph ordered with the Michalski R.S. : A Theory and a Methodology of
subsumption relation. Intraconstruction and Truncation Inductive Learning, Artificial Intelligence, vol 20, pp
then operate on these new structures that allow to reduce 111-161, 1983.
search for applicable operator. In the same way, the graph Mitchell T. M.: "Generalization as search",
structure allow to easily express bias to constrain the Artificial Intelligence 18, pp203-226, 1982
search for a good generalization while applying Muggleton S. & Buntine W.: "Machine
Saturation and Intraconstruction (details can be found in invention of first order predicates by inverting
(Rouveirol, 1990)). resolution", proceedings of 5th international Machine

We see two major research directions at this point. Learning Workshop, Morgan Kaufman, pp 339-352
First of all, we are going to study way to express bias to Muggleton S. : "A strategy for constructing new
simplify the graphs after Saturation (that is, how to predicates in first order logic", proceedings of EWSL 88,
choose among all the potential generalizations contained Pitman, pp 123-130.
in a saturated clause and how to prune the irrelevant Niblett T.: "A study of generalisation in logic
terms) and to constrain the graph matching step in programs", proceedings of EWSL 88, Pitman, p 131-
Intreaconstruction. A second important issue will be to 138.
evaluate the system, and in particular to scale up to large Plotkln : "A further note on inductive
applications. generalisation", in Meltzer and Michie editors, Machine

Intelligence 6, pp 101-124, Edimburgh University Press
Sammut C.: "Learning Concepts by PerformingAcknowledgements: We would like to thank Yves Experiments", PhD dissertation, University of New

Kodratoff, who is our thesis supervisor for the support he South Wales, Kingston, 1981.
gave to this work, Steve Muggleton and Nicolas Helft for Rouveirol C. & Puget J.F.: "A simple solution
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KeyM . "0 Programming research, namely the building of
artificial nervous systems ("brain building"), and

Genetic Algorithm, Time Dependent Neural on the tools which will be needed to evolve
Network Modules, GenNets, Guiwetic them, called Darwin Machines.
Programming, Artificial Nervous Systems,
Sequential Evolution, Behavioural Memory,
Brain Building, Nanobrain, Darwin Machines. Introduction

Abstract
This paper shows that fully (self) connected neural

This paper introduces a new programming networks [RUMELHART et al 1986], whose weights and
methodology, called Genetic Programming, signs are evolved with the Genetic Algorithm
which is the application of the Genetic [GOLDBERG 1989], are powerful enough to control a
Algorithm to the evolution of the signs and system which is highly time dependent in its behaviour,
weights of fully (self) connected neural network e.g. a pair of walking stick legs. Normally, recurrent
modules which perform some time (in)dependent neural networks (i.e. those with feedback links betwcei
function (e.g. walking, oscillating etc.) in an neurons) require a certain "settling time" for the output
"optimal" manner. Genetically Programmed neurons to stabilize their output signal values given fixed
Neural Net (GenNet) modules are of two types, (clamped) input values to the input neurons.
functional and control. A series of functional What is interesting in the experiments in this paper is
GenNets can be evolved, and their weights frozen. that the inputs change faster than the settling time, so that
Control GenNets are then evolved whose outputs the neural network never settles. Under such
are the inputs of the functional GenNets. The size circumstances, it is not obvious how the usual neural
and timing of these control signals are evolved network learning algorithms can be applied to teach such a
such that the combination of control and network to walk. The Genetic Algorithm (GA) however
functional GenNets performs as desired. This does not really care how the neural network performs this
combination can then be frozen and used as a task, so long as it performs it.
module in a more complex structure. This Section 1 of this paper summarises briefly the
procedure can be repeated indefinitely, thus principles of the Genetic Algorithm (GA). Section 2
allowing the construction of hierarchical neural introduces the concept of Genetic Programming. Section 3
networks. Genetic Programming has recently describes the particular GenNet used and how the GA is
proven to be so successful that the building of applied to its evolution. Section 4 presents the results of
artificial nervous systems becomes a real some GenNet experiments. Section 5 discusses ideas for
possibility, future research and in particular, the concepts of Brain

This paper illustrates both the conceptual Building and the Darwin Machine.
simplicity and the power of Genetic
Programming by showing how a GenNet can be I The Genetic Algorithm
evolved which teaches a pair of stick legs to
walk. This is followed by a description of work The Genetic Algorithm is a form of simulated
in progress on the next major phase of Genetic evolution to solve optimization problems in a Darwinian
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"survival of the fittest" approach. Solutions to problems If one can analyze a complex behaviour (of a system)
are coded onto (usually binary) strings called into its component behaviours and their corresponding
"chromosomes", (e.g. parameter values in a control control inputs, then Genetic Programming is a useful
problem), which compete with each other to reproduce the approach. One can solve problems in this way which are
next generation. A quality value for the encoded solution too complex to solve with traditional algorithmic
of each chromosome is determined, and the probability of approaches.
reproduction of each chromosome into the next generation
is proportional to this value. The number of chromosomes 3 e Gen N1C t
per generation remains fixed. Genetic operators such as
mutation (bit flipping), crossover (cutting two One of the aims of this paper, as mentioned in the
chromosomes at the same position and swapping abstract, is to show that GenNets are powerful enough to
portions), inversion (inverting a section of a provide highly time dependent control. The vehicle used to
chromosome). Occasionally, the application of these show this possibility is a simple pair of stick legs, which
operators to the offspring causes them to have higher is to be taught to walk. FIG. 1 shows the basic setup.
quality values than their parents. Hence they will The output values of the GenNet are interpreted to be the
reproduce with higher probability, and squeeze out inferior angular accelerations of the four components of the legs.
chromosomes. Over time, the average quality of the
population will increase. The GA can be seen as a form of
hill climbing where there may be many hills in the HIP JOINT
configuration space. For an excellent introduction to the Al
principles of Genetic Algorithms see [Goldberg 1989].

2 Genetic Programming A 12

1 A4 1
Genetic Programming is a new programming

methodology which uses the Genetic Algorithm to design RIGHT LEG LEFT LEG
neural network modules [de GARIS 1990]. The
programmer specifies the behavioural characteristics that
the neural network should possess, the number of neurons FIG. 1
in the network (which will be fully (self) connected),
identifies the input and the output neurons, the quality
criterion for the performance of the network, the number 0 I

of binary places after the binary point of the numbers AG1ANG ACCL I
which represent the size of the weights connecting ANG2
neurons, the initial input signal values, the number of
cycles, etc. The user also provides a list of parameters ANG3 ANGaOCEL
necessary to control the GA, such as the number of ANACCEL2

generations, the size of the population, the probability of ING4 -o ur:IN lf

mutation, the size of the scaling factor to avoid premature ANG VEL --- "O ON -E* D
convergence, etc. A concrete example is shown in the nextL ANGACCEL3

two sections. ANG VEL 2 - E-IV-f

The GA is then used to find both the signs and the AGVEL"3

values of the weights of the network which provides the Va ACCEL4

functionality desired. Once these weights are found, they ANGVEL4
are frozen (fixed) and the GenNet module thus evolved can
be used as a component in a more complex structure.
Usually a set of GenNet modules consists of a subset of FIG. 2
low level modules which execute some simple functions.
These low level modules are usually managed by control
modules which are themselves GenNets. i.e. they too are Knowing the values of the angular accelerations
evolved with the GA. The outputs of the control modules (assumed constant over one cycle - where a cycle is the
are the inputs to the low level modules (without any time period over which the neurons calculate
intervening weights). Once the control and low level (synchronously) their outputs from their inputs), and
modules (considered now as a unit) are functioning knowing the values of the angles and the angular
together as desired, the weights of the control modules are velocities at the beginning of the cycle, one can calculate
frozen and the unit can then be considered as a module or the values of the angles and the angular velocities at the
component for an even more complex structure. end of the cycle.
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As input to the GenNet (control module) were chosen moved to the left scored zero and were eliminated after the
the angles and the angular velocities. FIG.2 shows how first generation.
this feedback works. Knowing the angles, one can readily
calculate the positions of the two "feet" of the stick legs. 4 Results
Whenever one of the feet becomes lower than the other,
that foot is said to be "on the ground", and the distance A series of experiments was undertaken. In the first
(whether positive or negative) between the positions of the experiment, no constrairnt was imposed on the motion of
newly grounded foot and the previously grounded foot is the stick leas (exr, pt for -- tu move right across
calc,,latd, the screen). The resulting motion was most un-lifelike. It

The aim of the exercise is to evolve GenNets which consisted of a curious mixture of windmilling of the legs
make the stick legs move as far as possible to the right in and strange contortions of the hip and knee joints.
the user specified number of cycles, and cycle time. The However it certainly moved well to the right, starting at
GenNet used here consists of 12 neurons; 8 input neurons random angles and angular velocities. As the distance
and 4 output neurons (no hidden neurons). The 8 input covered increased, the speed of the motion increased as
neurons have as inputs the values of the 4 angles and the 4 well and became more "efficient", e.g. windmilling was
angular velocities. The input angles range from -1 to +1, squashed to a "swimmers stroke".
where +1 means one half turn (i.e. 180 degrees). The In the second experiment, the stick legs had to move
initial (start) angles are chosen randomly, ranging between such that the hip joint remained above the floor (a line
0 and 1. The initial angular velocities are chosen randomly drawn on the screen). During the evolution, if the hip
between -I to +I, and are given in half turns per secon joint did hit the floor, evolution ceased, the total distance

The activity of a neuron is calculated in the usual way, covered was frozen, and no further cycles were executed.
namely the sum of the products of its inputs and its After every cycle, the coordinates of the two feet were
weights, where weight values range from -1 to +1. The calculated and a check made to see if the hip joint did not
output of a neuron is calculated from this sum, using the lie below both feet. This time the evolution was slower,
symmetrical sigmoid function presumably because it was harder to find new weights
(-1 + (2/(1 + exp(-sum)))), which ranges fro. -1 to +1. which led to a motion satisfying the constraints. The
The outputs of neurons are restricted to have absolute resulting mrtion was almost as un-lifelike as in the first
values of less than I so as to avoid the risk of explosive ,;,perime ., again with w'ndmilling and contortions, but
positive feedback. at least the hip joint remained above the floor.

The chromosomes used to evolve the weights and their In the third experiment, a full set of constraints was
signs in the GA are simple binary strings. The user imposed to ensure a lifelike walking motion. The result
specifies the number P of binary places after the binary was that the stick legs moved so as to !ake as long a
point of the numbers representing the values of the single step as possible, and "did the silits" with the two
weights (where weights have an absolute value less than legs as extended as possible and tA'. -t ti! just above
1). Imagine this is 6. One bit is used per weight to specify the floor. From this position, it w~' s .,le to move
the sign of the weight (0 is positive, i.e. an excitory any further. Evolution ceased. T' .luable lesson
"synapse", 1 is negative, i.e. an inhibitory "synapse"). and focussed attention upon ,,c t concept of
Thus, for a GenNet of N neurons, a chromosome will be "evolvability", i.e. the capacity for ,,,,ther evolution. A
N*N*(P + 1) bits long, since there are N*N weights in a change in approach was needed.
fully (self) connected network. This led to the concept of Behavioural Memory, i.e.

The initial population of chromosomes is generated the tendency of a behaviour which was evolved in an
randomly with each bit equally likely to be a 0 or a 1. The earlier phase to persist in a later phase. For example, in
ith group of (P + 1) bits corresponds to the sign bit phase 1, evolve a GenNet for behaviour A. Take the
followed by the P bits giving the weight value of the ith weights and signs resulting from this evolution as initial
weight, e.g. 100101 represents a weight of -0.15625. values for a second phase which evolves behaviour B. One

For our experiments, no crossover was used. GenNet notices that behaviour B contains a vestige of behaviour
neurons are so highly interdependent that crossing over A. This form of Sequential Evolution can be very useful
chromosome portions is detrimental. GenNet GAs in Genetic Programming, and was used to teach the stick
typically function with no sex (i.e. no crossover) and no legs to walk, i.e. to move to the right in a step like
inversion, using only mutation and selection. The manner, in n I .venltiornrv nhaqC.S.
selection technique used was standard "roulette wheel", (see In the first phase, a GenNet was evolved over a short
[GOLDBERG 1989]). time period (e.g. 100 cycles) which took the stick legs

The quality criterion used for selecting the next from an initial configuration of left leg in front of right
generation was usually the total distance covered by the leg to the reverse configuration. The angular velocities
stick legs in the total time T, where (T = C*cycletime) for were all zero at the start and at the finish. By then
the user specified number C of cycles and cycletime. The allowing the resulting GenNet to run for a longer time
quality is thus the velocity of the stick legs moving to the period (e.g. 200 cycles) the resulting motion was "step-
right. Right distances are non negative. Stick lcgs which like", i.e. one foot moved in front of and behind the foot
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on the floor, but did not touch the floor. The quality present day technology, but this will change. A discussion
measure for this GenNet was the inverse of the sum of the of future prospects in this regard will follow later.
squares of the differences between the desired and the actual This section is concerned principally with the
output vector components (treating the final values as an 8 description of the simulation of just such a nanobrain. The
component state vector of angles and angular velocities), point of the exercise is to show that this kind of thing can

This GenNet was then taken as input fo a second be done, and if it can be done succeSsfully ... i a ere
(o.qu nu cvuti oiiy) paw, whk .i was to get the stick dozen or so GenNets as building blocks, it will later be
legs to take short steps. The quality measure this ti, - was possible to design artificial nervous systems with GenNets
the product of the number of net positive steps taKen to numbering in the hundreds, thousands and up. One can
the right, and the distance. The result was a definite imagine in the near future, whole teams of human Genetic
stepping motion to the right but distance covered was very Programmers devoted to the task of building quite
small. The resulting GenNet was used in a third phase in sophisticated nano (micro?) brains, capable of an elaborple
which the quality measure was simply the distance behaviour range.
covered. This time the motion was not only a very definite To show that this is no pipe dream, a concrete
stepping motion, but the strides taken were long. The proposal will now be presented showing how GenNets
stick legs were walking. can be combined to form a functioning (simulated)

The above experiments were all performed in tens to a artificial nervous system. The implementation of this
few hundred generations of the GA. Typical GA parameter proposal has not yet been completed (at the time of
values were - population size = 50; mutation rate = 0.001; writing), but progress so far inspires confidence that the
scaling factor = 2.0 (a linear scaling of quality scores in project will be completed successfully. The "vehicle"
the GA (max.value = sc. fact.*av.value), which prevents chosen to illustrate this endeavour is shown in FIG. 3.
premature convergence); cycletime = 0.03; number of
cycles = 200 to 400.

A video of the results of the above experiments has
been made. To obtain a real feel for the evolution of the
motion of the stick legs, one really needs to see it.

5 Future Research - Brain Building and
the Darwin Machine

The great advantage of Genetic Programming in
comparison to traditional neural network learning schemes
(e.g. the popular backpropagation or backprop method
[RUMELHART et al 19863) is that it can be
unsupervised, i.e. one need not know the desired output
vectors of the neural network. If one is dealing with a time
dependent phenomenon in a supervised method, one needs
to know the desired output vectors as a function of time,
which implies that one already understands the FIG. 3
phenomenon well enough to be able to know what the
outputs should be. With Genetic Programming, the only This lizard-like creature (called LIZZY) consists of a
thing that is necessary is that one has a quality measure rectangular wire-frame body, four two-part legs and a fixed
(usually a scalar) of the performance as a whole, which can antenna in the form of a V. LIZZY is capable of reacting
be fed back to the device being Genetically Programmed. to three kinds of creature in its environment, namely :-

The success of these experiments raises the mates, predators and prey. These three categories are
fascinating prospect of building artificial nervous systems represented by appropriate symbols on the simulator
("brain building"), i.e. combining functional and control scpren E achate emit s s oi sinao

Gen~ts t buld smpl brans.screen. Each category emits a sinusoidal signal ofa
GenNets to build simple brains, characteristic frequency. The amplitudes of all these

Obviously, if one can.voi.. one GenNt, one can signals decrease inversely as a function of distance. Prey
wu uive nIany, eacht hahving hs own charactcrris:i c properties emit a high trequency, mates a middle frequenuy, and
and behaviour. By combining the actions of many predators a low frequency.
GenNets, it seems likely that it will be possible to build The antenna picks up the signal continuously. Once
artificial nervous systems or "nanobrains". The term the signal strength becomes large enough (a value called

nanobrain" is appropriate, considering that the human the "attention" threshold), LIZZY detects the frequency of
brain contains some trillion neurons, and that a nanobrain this signal, and depending upon the outcome, executes an
would therefore contain the order of hundreds of neurons. appropriate sequence of actions. If the object is a prey,
Simulating several hundred neurons is roughly the limit of LIZZY rotates toward it, moves in the direction of the

object until the signal strength is a maximum, stops,
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alligns its legs, pecks at the prey like a her, (by pushing direction). Similar fitness measures can be defined for the
the front of its body up and down with its front legs), and two rotation GenNets. (In fact only one needs to be
after a while, moves away randomly. If the object is a evolved, and one can then simply switch body side
predator, LIZZY rotates away from it. and flees until the connections, for reasons of symmetry).
signal strength is below the attention threshold. If the The "allign legs" is used to pousition the, leg ready for
object is a mate, LIZZY rotates toward it, moves in the either pecking or mating. Since rotations and move
direction of the object until the signal strength is a forward are automatically switched on and off by the input
maximum, stops, alligns its legs, mates (by pushing the from the antenna, there is no need for timeouts, as is the
back of its body up and down with its back legs), and after case for the allign legs, peck prey and mate. It is not too
a while, moves away randomly. difficult to design fitness measures for each of these

The above is merely a sketch of LIZZY's behavioural GenNets, and since they are more or less single function
repertoire. In order to allow LIZZY to execute these GenNets (see below), their evolution should not present
behaviours, a detailed circuit of GenNets and their problems, especially after the experience gained from
connections needs to be designed. FIG. 4 shows an initial implementing the WALKER GanNet.
attempt at designing such a circuit. The black dots indicate Understanding the GenNet circuit shown in FIG. 4 is
a blocker function, i.e. if the signal is active (non zero), fairly straightforward, except perhaps for the mechanism of
then the traversing signal is blocked. There are 7 different rotating toward or away from the object. The antenna is
motion GenNets, of which "random move" is the default fixed on the body frame of LIZZY. It is assumed in this
option. When any of the other 6 motions is switched on, simulation that the object is always placed initially
the random move is switched off by a "blocker". LIZZY (approximately) in front of LIZZY's body (rather than
moves in the following way. Each motion GenNet behind it). Hence if the signal strength on the left antenna
consists of 8 output neurons, whose output values (as in is larger than that on the right, and if the object is a prey,
the WALKER GenNet) are interpreted as angular then LIZZY is to turn towards it by rotating clockwise, or
acceleratations (rather than as angles, which would pose away from it by rotating anticlockwise ;f the object is a
continuity problems when switching from one motion predator. Eventually, the two signal strengths will become
GenNet to another). The position of the upper (and lower) approximately equal, because the two antenna will be
part of each leg is defined by the angle that the leg line equidistant from the object. When this happens, LIZZY
takes on a cone whose axis of symmetry is equidistant moves forward. Admittedly, since FIG.4 is only a plan for
from each of the XYZ axes defined by the body frame.The future research, there will probably be conceptual and
leg line is confined to rotate around the surface of this logical errors in the design. But I am confident that it will
cone. This approach was chosen so as to limit the number be realizable. When it does work, a videc, will be made of
of degrees of freedom. If each leg part had two instead of its antics. It will be interesting to see just how life like it
one degree of freedom, and one wanted to keep the GenNet will appear to be.
fully connected, with 16 outputs and 32 inputs (angles, Implementing a score or so of different GenNets,
and angular velocities), i.e. 48 neurons per GenNet, hence (assuming a generation time of the order of a minute or
48 squared connections, the resulting chromosome would less for several hundred generations per GenNet) makes
have been huge. one conscious of the need for Genetic Programming tools.

LIZZY's motion is determined as follows. One Initially this could take the form of a software package
calculates the positions of the legs relative to the body which could ask the user for the values of the parameters
frame. LIZZY as a whole is raised (or lowered) vertically needed for the GenNet to be evolved (e.g. the number of
so that the lowest "foot" touches the "floor" at a point neurons, the input/output neurons, the fitness measure,
called the "base point". LIZZY is then rotated about the the number of binary places for the weights etc) and the
base point in the vertical plane cutting the base point and parameters for the Genetic Algorithm (e.g. population
the next lowest "foot" until this second foot touches the size, mutation probability, scaling factor etc). However, in
floor at the second base point. LIZZY is then rotated about the age of VLSI, one can readily imagine VLSI chips
the line joining the two base points until the third lowest being designed which perform the same task as the
foot touches the floor. The fourth foot will normally be software package, but much faster. I call such a tool, a
raised relative to the plane defined by the first three Darwin Machine. With suitable Darwin Machines, one can
feet.When one motion GenNet is switched off and another imagine teams of Genetic Programmers undertaking large
switched on, the current angles and angular velocities are scale projects to build much more sophisticated nervous
iaput (U IV dii. UiitkN, t U .oiilitk) o IIAULiolI. bybLt.iA v, ith aiy tiiousaiids o, Gciw.t. OIR lyai

The power and the fun of GenNets is that one can imagine GenNet cc,,.panies being established which
evolve a motion without specifying in detail, how thz supply Genetic Programmers with catalogues containing
motion is to be performed. For example, the fitness (or detailed descriptions of their companys' GanNets. In time,
quality) measure for the "move forward" GenNet will be a whole GenNet subsystems could be sold as units.
simple function of the total distance covered in a given The empirical "engineering" approach to brain building
number of cycles, (modified by a measure of its total ought to attract the attention of the neuro biologists. As
rotation and its drift away from the desired straight ahead GenNets become more biologically realistic, the solutions
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found by Genetic Programmers to concrete problems of [LANGTON 1989]. [SCHNEIKER 1989]) and even
nervous system design may inspire the neuro biologists to quantum computing, will give humanity the means to
perform new experiments. We may see a much closer build machines with [in, b, tr, ...]illions of GenNets
collaboration between theoretical and experimental neuro within a human generation. How on earth are we going to
biology in the near future. know how to put them all together? Once I have

D I-he nttraction of the GenNet with its incredible finished getting LIZZY to work, I would like to try three
ability to evolve almost any desired (inic, epnndent things. The first is to give GenNets the capacity to learn.
output, there are some inherent limitations in the Genetic LIZY t.,uamt adapt its behaviour. Its reactions are merely
Programming approach. These limitations are of two "instinctual". The second thing Is to attempt to
types, intra GenNet and inter GenNet. Intra GenNet Genetically Program robots. There is a limit to what one
limitations concern what an individual GenNet cannot do. can do with simulations and it seems to me that
There is now a crying need for a new branch of theoretical Genetically Programming robots is a goal which should
(mathematical) neuro dynamics to consider what be aimed at. The third thing is to attempt to get the
behaviours GenNets can and cannot evolve. At the Genetic Algorithm itself, rather than a human Genetic
moment, I am working blind, and am guided more by an Programmer, to connect the GenNets. At this point, the
empirical "Fingerspitzengefuhl" than any theoretical Darwin Machine could really come into its own. One can
guidelines. Genetic Programming at the present time is imagine populations of simulated "creatures" competing
very much an art. in an environment consisting of other creatures, all of

After having played with GenNets for nearly a year which are "constructed" with the GA. The fitness measure
now, what have I learned about intra GenNet limitations, would be truly Darwinian. Real time Darwin machines
or at least GenNet evolutionary tendencies? These lessons could be put into robots and a sequence of experiments
can be summarized as follows :- undertaken on the same machine. The GA population
a) Use shaping. Don't try to evolve the whole behaviour would be derived from the stored results of each
in one step - break it up (e.g. if you try to evolve a full experiment in the sequence. With nanotechnology, zillions
sinusoid cycle in one go, you will probably get a straight of nanorobots ("nanots"), could function in parallel in a
line as a result. Instead, evolve a half sinusoid, and take molecular environment, and report back to some central
the resulting GenNet as a starter for the full sinusoid), molecular processor, which determines the next
b) When shaping, make sure your output curve has non generation. Nanotechnology will probably be a reality
zero slope during the last few cycles. GenNets tend to find before the end of my research career, and considering the
stable (i.e. constant) outputs fairly easily, which is fine if staggering potential complexity of nanobased devices, I
that is what you want, but can block further evolution, if believe that an evolutionary approach to its foundation
the output needs to change during later cycles, will be inevitable. The complexity will be such, that a
c) Avoid multi-function GenNets. I was curious to see if system will have to be treated as a black box, whose
it was possible to evolve a GenNet which performs two performance only is of concern. This approach lies at the
functions, e.g. to get the stick legs to move either left or heart of Genetic Programming. I neither know nor care
right depending upon a change of input signal on one about what takes place inside a GenNet. I merely mutate
input neuron. Yes, it is possible. I got it to move both and select, mutate and select. In a future of overpoweringly
ways. But when I tried to get two separate full cycle complex systems, there may be no other way. It is the
sinusoids, I failed. I got two half sinusoids (of different approach that nature uses. Maybe we should too.
frequencies) without any problem, but I could not get two
adequate full sinusoids. I lost two weeks work trying to do Acknowledgments
that, and eventually gave up.
D Keep the number of evolutionary cycles small. It is This research is supported by the Belgian National
harder to evolve a desired output over a large number of Incentive Program for Fundamental Research in Artificial
cycles than over a small number. A large number increases Intelligence, under contract RFO/AI/19.
the generation time too, of course.
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The primary parameters of a standard GA are popula-
Abstract tion size, crossover and mutation rates, and number of

Genetic Algorithms are generally compute crossover points. These parameters have a significant
intensive procedures that require the evalua- impact on performance (Schaffer, 1989; Goldberg, 1989;
tion of many candidate solutions to a given Jog, 1989). Adaptive selection methods (Baker, 1985)
problem. In the application area we study and reproductive evaluation techniques (Whitley, 1987)
(routing and scheduling), the genetic algo- have also been shown to speed up GA searches. Parallel
rithm sets parameters for a mathematical implementations of a GA have demonstrated consider-
heuristic. To reduce the computational over- able speedup (Grefenstette, 81).
head of this approach, we developed three The Vehicle Routing Problem (VRP) is a highly com-
mechanisms for improving the performance binatorial problem (NP-Hard) that has been extensively
of the genetic search. First, we employ a studied. In the VRP, there is a known collection of stop
method of using multiple sharing evaluation points that have demands for service, and a fixed fleet of
functions, permitting the parallel investiga- limited capacity vehicles to serve the stops. The problem

is to find the minimum distance way to assign the stops totion of multiple peaks in the search space. vehicles and specify the orders in which each of the vehi-
parallel, using a network of heterogeneous cles visits its stops. All the vehicles begin and end their
processors. Third, a neural network system is tours at a fixed location depot. Researchers have
employed to inject heuristic knowledge into developed many heuristic strategies for these problems
the initial population of the genetic algo- ',o In et al., 1983). A major shortcoming of these
rithm, resulting in relatively fast conver- hcwistics is the inability to deduce the kind of strategy to

gence. When the methods are used together, adopt, given the characteristics of the problem at hand.
the result is high quality solutions with con- The need to discover the parameters to use in a heuristic
siderable speedup in computational time. for a given problem instance, led to the identification and
Our overall system, called XVI'P-PGA, is a use of GA techniques.
distributed software system that. lemonstrates This paper describes ways to use GA's more effec-the increased efficiency of geneti algorithms tively to discover parameters for mathematical heuristics,
in the automated discovery of parameters for in the domain of computer-aided vehicle routing and
mathematical heuristics, in the domain of scheduling problems. A method of using multiple sharing
computer-aided vehicle routing and schedul- evaluation functions is described, permitting the parallel
ing problems- investigation of multiple peaks in the search space. Limi-

tations of single processor systems and the increasing
1 Introduction availability of networked heterogeneous workstations, led

to investigations of utilizing the abundance of unused
in the pst few ycarb iluuy reaeru.hurb have irlvebfi- CPU u.yLc in die neLWork in order to uverume the lung

gated ways of improving the performance of Genetic Al- search time of the GA':. In most GA's the initial popu-
gorithms (GA) (Holland, 1975). GA's have shown to be lation consists of entirely random structures. In routing
useful in many optimization problems. GA's are general- problems, it is possible to formulate reasonably good
ly compute intensive. Methods of improving the perfor- structures for the initial population using a trained neural
mance and efficiency of GA's are of significant impor- network system.
tance.
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2 Functional Description of the Multiple are new algorithms that are relatively fast and well suited
Sharing Evaluation Functions for the genetic search. The third method, FGAA, is a

modified version of the generalized assignment method
In the parameter discovery task we seek a set of developed by Fisher and Jaikumar (1981). The fourth

parameters, under the guidance of a evaluation function. method is a combination method, which uses the same
GA's use bit strings as chromosonal encodings of param- UA recommended seed points for the three methods
eters of the problem they are trying to solve. The control mentioned above. Each of the method is described below.
parameters in our case are seed-point locations. We Clustering Method 1 [FAA1I]: In this method, one
model each vehicle tour with a location called a seed, seed-point is active at a time. The nearest stop is as-
with the vehicle conceptually traveling from the depot tO signed to the active seed-point, if doing so does not
the seed and back. The seed-points represent an average violate the corresponding capacity constraint. For each
location around which the truck serves. We use binary stop assigned, a weighted distance factor is added to the
bit strings to encode the seed-points. The number of seed active seed-point. The seed-point with the minimum
points recommended by the GA is equal to the number of weighted distance is made active for the next assignment.
vehicles available. The example string shown below This process continues until all the stop points are as-
represents one seed-point, each with an x and y coordi- signed to some seed-point.

,at, shown in both binary and decimal. Clustering Method 2 [FAA2]: The second method
FAA2 uses a simple heuristic to do the clustering. Here

String: 000010ii i10 1010110010 all the seed points are actively in the contest for receiving
Parameter: SSt syI the next stop point assignment. The stop point with the
Decoded Value: 55 803 minimum distance to any of the seed point is selected and

assigned to that ,ecr poirnL

''N1023 __

... . ............................... ....

0

Assign Stops i F OS
to Seeds A PFM AI~ P AWp~ch POAAj S. 3

to eed 0 ............. ........... ........... .'-: :J .............

0
Sequence . . . . .......... .............

0
0

0 )

Total Cost P 0 00000 0 0 0 1023

000010000100000000100001I0

Figure 1: Unified Architecture of the
overall system. The same control parameters Figure 2: The 1023X1023 grid is parti-
are supplied to the three different clustering tioned into 25 sectors for encoding the neural
heuristics (FAA1, FAA2 and FGAA). network system. The seed-points are shown

in the shaded regions.

2.1 The Evaluation functions Clustering Method 3 [FGAA]: A generalized assign-

We use a "cluster first route second" heuristic tech- ment problem is solved to assign the stops to the seed-
nique as a VRP solver in the evaluation function. There points (Fisher and Jaikumar, 1981).
are two fundamental decisions that have to made before Clustering Method 4 [COMBO method]: Many optim-
using this heuristic. First, we need to determine the clus- ization problems require the investigation of multiple lo-
ters or groups of stops served by the same vehicle. cal optimas. Here the concept of sharing functions (Gold-
Second, we i;ed to efficiently sequence the stop loca- berg 1987) is used to investigate the formation of stable
tions of each vehicle. We experimented with four subpopulations of different strings in the GA, thereby
methods of determining the clusters. The first two permitting the parallel search of many peaks. This
methods, Fast Assignment Approaches FAA1 and FAA2, method uses the string recommended by the GA on all
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three methods (FAA1,FAA2,FGAA) and the function control parameter strings. Each individual is submitted
with the best performance value is selected to return the for evaluation as a control parameter for the VRP pro-
fitness value for that particular string to the GA as shown cess, saving the assocated performance measure. Finally,
in the Figure 1. The three methods (FAA1,FAA2,FGAA) using selection probabilities, these control parameter
all use the same string, and due to the competition strings undergo reproduction with crossover and mutation
between widely disparate points in the search space, help genetic operators.
maintain a diverse population which searches many The population is collection of candidate control
peaks in parallel. parameters C. Fixing one of the control parameters and

leaving the other parameters free defines a hyperplane.
2.2 The Mechanics of the Adaptive Search Each parameter has (1023 X 1023) possible locations. In

The complex process of multiple vehicle routing op- our case, there is one control parameter for each available
timization is working in an environment E. There is a set vehicle. Over all possible hyperplanes, the search space
of control parameters C available for the adaptive search is complex and multimodal. We observe the GA rapidly

strategy. Within each environment there is a fitness meas- exploits accumulating information about F, to restrict

ure for the performance of the VRP process under the sampling to those hyperplanes which have a high expec-

control parameters. Each environment e in E to which tation of good performance.
the controlled VRP process is subjected defines a perfor- The search space defined by F, is multimodal. Due to

mance response surface over the control parameter space the competition between widely disparate points in the

C, defined by a fitness function F t. It is the response search space, using multiple sharing evaluation function
fCn. defined by o ytt is r a t resposear .ur- helps maintain a diverse population, which could prevent...C .dei e y F e s" a As p o e y d d pi s a a p cc,-m._-t'!r convergence to a loc al optim a. FA A 1,
strategy in order to generate a good performance of VRP FAA2 and FGAA ate ov r ontrolled by the same set of
process. In our problems, the function F, is extremely controlled by me e of
complex, high-dimensional, multimodal and discontinu- control parameters C, available form the adapla-'- GA.
co x As the adaptive search progress, each of the methods is011s. likely to be sampling different hyperplanes looking for

peaks in parallel, and occasionally use the control param-
eters discovered by the other functions to start searching
a hyperplane that is providing good performance.

Table 1, illustrates the mechanics of a crossover
1023 - 6 genetic operator. Figure 2 shows the seed-points pro-

a ,A- duced by the COMBO method. The seed-point string
, • , shown in Table 1 is the value that the COMBO method

0 uses. The encoded version of the string is used by the
• * GA. To illustrate the effect of crossover, lets assume we

U . eare using the standard 2-point crossover method. C I1 and
• *C12 are the crossover points in Parent 1 and C21 and

o C22 are the crossover points in Parent 2. Now, if the

genetic material between ClI and C12, C21 and C22 are
exchanged, two offspring strings are generated. The use

0 0 uauie ciossover has ... u... in .wo cadiu-t .....- p-li-

0 , g 8 locations, with seed-point 3 not being effected by the
crossover operation, but seed-point 1 and 2 are moved to

Y0 a new location. These new location of the seed-points
results in different clusters, which -'n,'n resultin a difr-
ferent fitness measure (total ditance). We then sequence
the stop locations in each of the candidate clusters in a

Figure 3: The Figure illustrates the activi- cost effective way (TSP) and return the iesult to the GA.
in the last 50 trials concentrated around The first few generations start with seed-point locationty in t he serae. ach values uniformly distributed over the sewrch space. As

fuew odpines esed- aint, generations evolve, seed-points tend to be concentrated
in tight geographical areas due to the survival of the

The GA exploits te accumulating knowledge of the fittest mechanism of the GA. This is illustrated in Figure
VRP process being controlled. Each point in the control 3 where only the last 50 trials are plotted. A trial is a sin-cgle execution of the evaluation function on a candidate
parameter space is represented as a genetic string. This control parameter and a generation consists of many tri-
string is represented in binary. In XVRP-GA, the control als. The three performance curves on the graph shown inparameter is the location of the seed-point in 2 dimen- l.Tetrepromnecre ntegahsoni
sionlspame Eac string haiedalcationo s ed-poin th en- Figure 4 illustrates the survival of the fittest nature of the
sional space. Each sting has a field allocated for the per- GA search. The performance measure is total distance
formance function F, which is returned by the evalua- traveled by the fleet, so small values are desirable. The
tion function. The GA maintains a population of these
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Table 1 The Table illustrates the mechanics of a crossover genetic operator. The Seed
string shown in Table is the actual value that the COMBO method uses. The encoded
version of the seed string is used by the GA in COMBO method. ClI and C12 are the
crossover points in Parent 1 and C21 and C22 are the crossover points in Parent 2.

The Mechanics of the Crossover Operator

String S.1 Syt S.2 S2 S.3 Sy_

Seed-Points 100 100 900 100 900 900
Genetic Encoding 0001100100 0001100100 1110000100 0001100100 1110000100 1110000100

Parent 1 0001100100 0001100100 clll1000 100  00011 C120 0 100 1110000100 1110000100
Parent 2 0001100100 c21 0001100100 11100 c22 00 100 0001100100 1110300100 1110000100

Offspring 1 0001100100 0001100100 0001100100 1110000100 1110000100 1110000100
Decode 1 100 100 100 900 900 900

Offspring 2 0001100100 1110000100 0001100100 0001100100 1110000100 1110000100
Decode 2 100 900 100 100 900 900

curve indicates the worst performance of the evaluation
function as function of generations. The bottom curve in
Figure 4 indicates the best performance in each genera-
tion. The middle curve is the plot of the average perfor-
mance of the evaluation function. The decreasing trend
in the curves illustrates the survival of the fittest candi- 8+0o6-
dates in the population, and indicates that the GA is doing
much better than a random walk in the control parameter
search space.

Table 2 presents empirical work that illustrates the 1.6e*o6

parallel nature of the search on a four vehicle problem.
The values shown in Table 2 are generated when each l,
evaluation function (FAAI: FAA2. FGAA) finds a seed- o A
point parameter which produces a performance value
better than the best found up to that point in time. The
FAA1 method produces the first best solution (example I 2e.o6
1). FAA2 then identifies a sequence of seven improving A 'Aab
solutions, as shown in examples2 through 8. The seed- Nmber

points that produce these solution are the result of of Generations

searches centered around a few "good" spots. At genera-
tion 14, the GA produces a seed-point location that FAA1
adopts and improves. The coordinate value revel that this
seed-point location is essentially the one FAA2 was using
In ;mnmiya thp cnhtinn rPrfnrmn n, ne chnwn in Aynm-

ple 9. The FGAA method which had not generated a best Figure 4: The three graphs illustrates the
solution in earlier generations, produces one at genera- performance of the GA search in a particular
ion 17 using seed-points from generation 2. Also note generation. The middle curve indicates aver-
that the seed-points in example 11 are in a completely age performance of the evaluation.
different area of the search space. This illustrates the
parallel search of a multimodal response surface occur-
ring in the algorithm.
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Table 2 Parallel nature of the adaptive search. Each of the three methods is able to ex-
ploit promising seed-points locales discovered by the other methods.

Ex S.1  S1_ S,2  S12  S,3  S 3  S, 4  S 4  Perf Method Generaion
1 572 61 959 623 742 43 125 463 12373 FAA1 1
2 812 824 316 528 981 405 181 816 12082 FAA2 2
3 759 851 85 371 49 136 968 279 11880 FAA2 2
4 580 928 105 396 963 818 82 275 11685 FAA2 2
5 466 716 805 75 114 769 494 873 11518 FAA2 2

6 279 488 865 65 51 747 944 660 11132 FAA2 2

7 232 791 865 79 901 672 197 720 10958 FAA2 2
8 757 329 110 833 55 136 968 663 10761 FAA2 7
9 714 182 90 841 52 141 976 652 10732 FAA1 14
10 714 342 105 833 55 128 1006 648 10606 FAA2 16
11 232 151 873 185 53 795 958 464 10490 FGAA 17
12 232 150 873 185 54 868 958 464 10450 FGAA 30
13 773 181 150 185 55 868 945 431 10394 FGAA 32

14 688 197 118 185 55 868 977 524 jJ10373, FGAA 35

15 693 169 83 838 72 151 943 908 J 10299 FAA2 38

3 Functional Description of the communicate between processes on different processors
Parallel/Distributed Schema as well as for communication between different processes

on the same processor. RPC's are blocking, meaning the
XVRP-PGA uses the genetic algorithm's population client procedure waits until the serve processor completes

structure to parallelize the evaluation process. XVRP- is task. This would defeat the purpose the parallelism. In
PGA is an asynchronous distributed genetic algorithm XVRP-PGA, we use multiple daemons and immediate
that is designed to use the idle CPU cycles on a hetero- acknowledgment to avoid the blocking problem of the
geneous network of workstations. Each workstation RPC.
varies in speed, CPU architecture and operating system.

Distributed programming supports the creation of
multiple processes with disjoint address spaces, and pro-
vide a means of communication among them. XVRP-
PGA uses a star topology in which there is a special node
called the root. Each processor is connected to the root Algorih
processor which administers thiiieLWUlk traf1,lc. A -

ure 5 indicates, this star topology does not create a bottle $ " o

neck at the root processor. This is because the root pro-
cessor is only doing the reproduction and selection pro- Machine A
cess of the GAs and Oe dispatching and the polling of D r1
the results, while the remote processors are doing the t 1  e

compute intensive evaluation.
Remarkable speedup achieved is even with a small

number of processor working in parallel because of the
long computational time of the evaluation functions. At
any given time only a fraction of the total CPU cycles is
used in a heterogeneous network of many workstations. MachineB MachineC MachineD MachineE MachineF
XVRP-PGA detects and utilizes these wasted CPU cycles
and uses them in parallelizing the GA evaluation of the Distributed Parallel Architecture
population. We use the Remote Procedure Call (RPC)
paradigm, in which a client communicates with a server.
In this process, the client first calls a procedure to send a Figure 5: The heterogeneous network of
data packets to the server. When the packet arrives, the workstations used for parallel evaluation of
server call the dispatch routine, performs the service re- population members.
quested, and sends back the reply. RPC can be used to
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When data is being shared by two or more distinct are described in Section 5.
processor types, there is need for portable data. Integers
are represented differently on distinct architectures and
alignment of word boundary causes the size of a data 4 Functional Description of the Neural Net-
structure to vary from processor to processor. The eXter- work Module
nal Data Representation (XDR) standard is used to solve
the data portability problem. In many parallel and distri- In this section we describe how the neural network
buted algorithms the time spent for interprocessor data system accumulates and preserves knowledge gained
communication is a sizable fraction of the total time re- from past experiments. The neural network system
quired to solve the problem. The communication delays described in (Kadaba et. al., 1990) is employed to inject
are due to the cummunication processing time, schedul- this heuristic knowledge into the initial population. The
ing time, transmission time and medium (Ethernet) pro- transfer of previous experience is of significant benefit in
pagation time. However, in our experiments, the time acquiring task dependent expertise necessary to solve
spent evaluating each solution candidate is considerably complex real world problems. The neural network sys-
more than the total communication delays. tem XVRP-NN acts as an pattern associator, matching

the descriptors of the incoming problems with that of the
previously solved problems. The outcome of this match-
ing is a promising initial population for the GA. In this
way, the search space is considerably pruned and the

................................................................................................ computational effort is reduced (Grefenstte, 1981; Hay-
Ctic, LOW .ong, 1985). The neural networks store parameters of pre-

go,,patcher Mention, viously solved problems. Figure 2 shows how the param-
eters are encoded. The parameters are seed-points gen-

S,,,, o..,,,,,,,. . . ........... erated by the GA. These seed-points are recorded in the
.t,,,,,,CPU course of experimentations with various problems and

............... various environments of the GA. A potential problem in
initializing a GA populations is premature convergence.

SRe t To overcome this, we seed only half the population from
Daemon #I the recommendation of the neural networks and the other

half of the population with random strings. Also, a
a i matcher first checks if the descriptors of the incoming

i Functiontask are similar to the training set of the neural network.Processes on

. .CPU The degree of similarity is the sum of squared errors
between the incoming descriptors and the set of training
patterns. If this measure is high, the neural network sys-
tem detects no match, and the GA population is initial-
ized only with random strings. However, due to the

Figure 6: The communication between the parallel, multi-modal nature of the GA, even highly
master processors and the various remote suboptimal initial starting points in the search space in-
slave processors, utilizing daemons. jected into the population will die out in subsequent gen-

erations.
Figure 6 illustrates the communication between the XVRP-NN basically consists of three stages each of

root processor and the various remote processors. The which is described in more detail in this section The first
dispatcher gets a set of solution candidates selected for stage consists of the Stop Data Feature Extraction
evaluation. This happens at every generation. Tl. (SDFE) network. - In essence, a feature extraction neural
dispatcher, as shown in Figure 6. scnds the decoded solu- network condenses the problem at hand to its essential
tion candidate to a remote site for evaluation. The remote characteristics, then passes the condensed information to
site accepts the parameter and sends ai -knowledgment. a classification network that that is used for training. The
The dispatcher then sends the next cannlidate to the next teaching stimulus is identical to the input stimulus, letting
available remote machine. After dispatching the candi- the internal layers of the network adjust to "summarize"
date solution to all the avaiiable sites, tie dispatciir pulls the input dat,. Sc,-h neural netw,:rksc -ae aso called
the local.daemon for results. In the meantime, a remote self-organizing. All of the networks were trained with
site which has completed an evaluation sends the result to the back-propagation learning paradigm (Rumelhart and
the localdaemon. The dispatcher receives the result McClelland, 1986). The first stage creates and encodes
from the local_daemon and immediately dispatches the domain specific data. The problem data consists of
another candidate to the site which returned the result. In cartesian coordinates of the stop locations. This data is
case of a remote processor malfunction, the dispatcher pre-processed to make it invariant to scaling ane rotation
retransmits the candidate parameter to a functioning pro- (Fukushima & Miyaki, 1982), producing a 30 unit prob-
cessor. The specific processors used in our experiments lem descriptor vector. Routing problems are usually un-

changed under rotations and translations of the locations
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of stops to visit. However, it is well known that neural value close to 1.0 to represent the best seed-point location
networks cannot easily discriminate among rotated and for the given instance of the test stop data. Finally, the
translated data sets. In general, the problem representa- raw seed-point data is presented to the GA.
tion decision is critical.

5 Experimental Results

25 problems were generated to test the system. The
problems are fully dense with 200 stop points, 4 vehicles

Stop Data with a utilization factor of 95 %, and were generated in a
Feature extraction square, 1023 miles on each side. The problems were run

on a network of SUN, HP, VAX, and NeXT worksta-
tions. All experiments were performed using a modified

Generalioion GENESIS (Grefenstette, 1984) system. The Backpropa-
Network gation learning paradigm (Rumelhart ' 88) was employed

Ar to train the neuial networks.

FAAi a FAA2

.1"FGAA a COMBO
Im 12500 OGenetic Seeds stringo.,

Algorithm .. ... , Feature extraction

12000

W

S11500-

Figure 7: XVRP-NN basically consists of
three modular neural networks. The Stop 11000-

Data Feature Extraction (SDFE) network, the
Seed String feature extraction (SSFE) net- 10500-
work, and the generalization network GN. 6 s0 10o0 150b 2000

Trials

The seed-point data consists of 25 values. These COMBO VS other Methods

values represent the location of the seed-point for a given
instance of a problem. As shown in Figure 7, the 25
seed-point values are normalized between 0.0 and 1.0 in
the output encoding module and is used as a teaching out- Figure 8: Comparison of performance of
put in the Seed-string feature extraction (SSFE) network., igure 8: an O meof
The second stage extracts the features from the problem for a single problem. The best solution in
descriptors and seed-point descriptors which is then fed fora s probe.
to the generalization network GN, as training data. The
SDFE vectors and the SSFE vectors are stored in two
separate files. These two files are then used to train the 5.1 Performance Improvement with Multiple Shar-
generalizing network. Thus, there are 3 off-line trained ing Evaluation Functions
networks (SDFE, SSFE and GN) which are subsequently
used for on-line recall. The third stage is on-line general- In order to show the performance improvements of the
izatior,, resulting in the seed-point location recommenda- COMBO method, each of the 25 problems were run for
tion vector. 2000 trials using the FAA1, FAA2 and FGAA methods.

The testing data is presented to the data encoding All the GA parameters were kept constant through out
module, which produces a 30 unit problem descriptor the exveriments. The performance improvement of the
vector. This problem descriptor is exposed to the SDFE GA by using multiple sharing evaluation functions
network which in turn produces the 4 unit feature vector (COMBO method) for a single problem is illustrated in
of stop data. This feature vector of stop data is then ex- Figure 8. Note, the three individual methods do not im-
posed to the trained generalization network. The general- prove the search after about 1000 trials, but the perfor-
izing network, on recall, produces the 4 unit feature mance curve of the COMBO method continues to drop
recommendation vector, which is presented to the recon- through subsequent trials. This result isi consistent over
struction network. The original dimension of 25 units in all 25 problems tested, and is indicated in Figure 9.
the performance vector is generalized by the reconstruc-
tion network. This vector is decoded by using a high
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5.2 Performance Improvement with the
Parallel/Distributed Schema

It is very difficult to report performance improvements
of parallel algorithms when the processors are of varied
strength. In a typical heterogeneous network of comput- o Method-1 a .Athoc.2
ers, the load on each processor at any give time is very 20000
different. The dispatcher we designed does not preempt
other processes in the network but utilizes the unused
CPU cycles of the computers on the network. The net- 1500
work consisted of various processors, including SUN
3/260, SUN 3/110, SUN 3/50, VAX 11/780, NeXT, HP ,
9000, and AT&T 3B2. Figure 10 shows the speed up _E 10000-
achieved in running 1000 trials using Method_l, when
we start with the weakest processor and add the stronger
processors. Method_2 starts with a strong processor. 5000
Note that for a given population size, there is a limit on
the number of remote processors we can use. The paral- 0
lel algorithm is robust and considerable speed up is
achieved without affecting the GA search mechanism. Machine

Performance of the Parallel Genetic Algorithm

o FAA1 a FAA2

FGAA 0 COMBO

11500

Figure 10: Performance improvement
with the parallel implementation. The value

11000 plotted is the CPU time required to run 1000
trails with the COMBO method. In Method_1

10500 - the weaker processors are added and in
Method_2 the stronger processors are added.

10000 -

9500 -

1 2 3 4 .6 7 8 9 101' 1314 16 761 19202122232425
proolem RAND AINI

COMBO Vs other Methods
12400

Figure 9: Multiple evaluation functions 12200

results. The COMBO method consistently _
performs better than that achieved using any
single evaluation function. 1 2ooo

5.3 Performance Improvement with the Neural
Network Initialization 11800

The neural network system is employed to inject :,..q
heuristic knowledge into the initial population. Figure 11,
shows the improvement that GA search received on a
typical problem when its initial population was seeded
with the recommendations from the neural network sys- Figure 11: Performance improvement
tem. The seeded method finds a high performance param- achieved on a single problem when the initial
eter initially, and continues to improve during subsequent population of the genetic search is seeded
trials, with the recommendations from the neural

network system.
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6 Conclusion Jog, P., Suh, J.Y., and Gucht, D.V. The Effects of Po-

The results demonstrate considerable impro- in pulation Size, Heuristic Crossover and Local Improve-
the GA search by using multiple sharing evaluauoji func- ment on a Genetic Algorithm for the Traveling Salesman
tions. Seeding the initial population with heuristically Problem, Proceedings of the Third International Conf.
chosen population structures using a neural network sys- on Genetic Algorithms , June 4-7, George Mason
tern also achieves a significant speedup. The heterogene- University, 110-115, 1989.
ous network of computers is a growing trend in many Kadaba, N., Nygard, K.E., and Juell, P.L. Integration
research institutions. It is often the case that only a frac- Of Knowledge-Based System And Adaptive Learning
tion of the total CPU cycles is used in such a network. Techniques For Routing And Scheduling Applications,
XVRP-PGA utilizes CPU cycles throughout the network forthcoming in Expert Systems with Applications: An
and uses them in parallelizing the evaluation of the popu- International Journal, 1990.
lation structure within the genetic search. Each of the I atal Jour, 1.
methods described in this paper can be used separately or
together. When all three are used, relatively powerful Modular Back-Propagation Neural Networks for Large
genetic search can be conducted for parameter discovery, Domain Pattern Classification, Proceedings of the
in an environment of networked desktop workstations. International Joint Conf. on Neural Networks, Wash-

ington D. C., January, 11-551 - 11-554, 1990.
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Abstract population to produce a single boolean answer. In this
way the GA's population represents a disjunctive nor-

In this paper we address the problem of mal form boolean formula.
learning disjunctive normal form rules from The individua,- are comprised of genes which may
boolean-classified examples. Whereas GA's take on the alleles true, false and don't-care. There is
often present their solution in the form of a a one-to-one correspondence between the genes of an
single individual, here we use the entire pop- individual and the boolean variables of the parameter
ulation of individuals to disjunctively repre- space to be searched. If the gene string of an individ-
sent a solution. We explain example sharing, ual, acting as a template, "matches" the boolean value
a method of payoff sharing, and we explain string of an example, then that individual includes or
over-population, a modification for increasing covers that example. Thus, each individual represents
GA exploration. the conjunction of its non-don't-care variable values.

The question becomes, how does one get a GA to
1 Introduction learn a population of templates that will disjunctively

cover the positive examples to be learned, but avoid
Problems with disjunctive solutions do not lend them- covering the negative examples. One obvious solution
selves to the traditional Genetic Algorithm (GA). Typ- is to use a niche-formation approach to prevent con-
ically, the successful Simple Genetic Algorithm pro- vergence of the population to a single individual. We
duces as its result the one individual representing the accomplish this niche-formation by example sharing.
best evaluated point in the parameter space. Since
individuals usually have constant length and disjunc- 2 Example Sharing
tions are by nature variable in length, some departure
from the Simple GA is necessary. Disjunctior. -. ight Payoff sharing is a well-known method of niche-
be achieved by either "messy" GA's (using variable- formation. Goldberg and Richardson implemented
length individuals) [Goldberg et al., 1989], or by meth- sharing by decreasing an individual's payoff accord-
ods that use multiple individuals. ing to its proximity to other individuals [Goldberg and
The last approach was taken by Wilson's classifier Richardson, 1987]. This method successfully produced

system, called "Boole", [Wilson, 1987]. The "Boole" clusters of individuals on the peaks of the evaluation
classifier system learned disjunctive boolean concepts function, thus jperforming niche-formation [Deb and
by addressing the animat problem-thus, "Boole" op- Goldberg, 1989].
erated under the constraints of learning incrementally Niche-formation bchavior is what we need. We want
and of noisy and/or partial feedback. individuals to cover clusters of positive examples (the

For many inductive learning tasks, however, these peaks) while avoiding covering the negative examples
constraints do not hold, and we can learn non- (the valleys). In this way clusters of positive examples
incrementally with a database of correctly classified in the parameter space are desirable niches.
examples. In this case, the classifier approach seems
to complicate the model unnecessarily. 2.1 Definition of Example Sharing

We present a model based on the Simple GA which Instead of sharing based on a proximity measure, howy-* I* . • *rl• I 1 * 0 1 I .I II 1 "I it

ieurs, udsjumAiitu uiUiLIAi. 'ILL LobLltidlc LlAilILL ('VLL, YtL ILIliU thait il., pliul iub imb~LI LU a 111uml

ments of our model are 1) a niche-formation method directly applied forim of sharing - individuals share
which utilizes a novel version of payoff sharing, and 2) the value of each example they cover with other indi-
an exploration-increasing scheme of population man- viduals that also coxer the same example. Instead of
agement. using a measure based on the geometry of the param-

Our GA produces as its result the entire popula- eter space, independent of the specific examples to be
tion. We let each individual rcpresent a conjunction learned, this enforces diiect dependence on the distri-
of variables, and then take the disjunction of the whole bution of these examples. Conceptually this sharing
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performs equally well in areas of the parameter space no negative examples with an individual that covered
where clasters of positive and negative examples are four positive examples and one negative example. Is
small and close together as in areas where the exam- this what we want? Well, that depends on how much
ple clusters are expansive and widely spaced. It is not specificity versus sensitivity and simplicity we want. If
based on a constant distance factor, but varies viti we penalizz an individudl heavily for covering a neg-
the layout of the positive and negative examples. This ative example, the GA will tend to produce highly
method is much like Wilson's distribution of environ- specific individuals. This may be desirable, but what
mental feedback among the action set of classifiers, we gain in specificity we may lose in sensitivity (the

We begin the calculation of example sharing payoff population will tend not tu bc able to cover all positive
as follows: The positive examples each have a posi- examples), and lose in simplicity (the prpulation will
tive value, and the negative examples each a negative be raore diverse, have less duplication of individuals,
value, i.e. 1 and -1. Determine the number of individu- and therefore translate into longer disjunctive normal
als that cover each example, and divide the example's form formulas). Thus, we introduce a user-settable
value by this number. The result is the payoff from specificity factor by which we multiply the values of
this example (e) that is given to each individual (i) the negative examples. A specificity factor of one will
covering it. One can intuitively think of each exam- make no change from the above calculations; increas-
ple as having only a finite amount of payoff to give, ing the factor will tend to create more and more spe-
and this finite payoff being shared equally among its cific individuals.
recipients.

o (0, if i doesn't cover e 3 Increasing GA Exploration
payoffi co vane, if i covers e In addition to modifying the sharing mechanism

used to develop niche-formation, we hai made some

Then the fitness of an individual is changes to improve the exploration of t' GA so that

fitness = E' payoff ie fewer positive niches will be left unco,ed. Increas-
ing the probability of mutation and the probability of

all e crossover have the obvious effect of increasing the ex-

2.2 Adjusted Payoff ploration of a population, but unfortunately they also

There is, of course, one immediate problem with the tend to introduce lethals and remove desirably fit in-

above calculation. It is possible for an individual which dividuals. We have developed a modification we call

covers negative examples to receive a negative pay- over-population which increases exploration, yet alle-

off value, confounding completely the "roulette wheel" viates this problem.

method of selection. The probability that a certain in- 3.1 Over-population
dividual will be chosen at a single spin of the wheel is Over-population is a population management strategy

fitness somewhat like population overlap [DeJong, 1975]. In
p(i reproduce) = fitnessi population overlap a certain percentage of the indi-

all , viduals in a population are chosen to skip crossover

Clearly, an individual with a negative fitness produces and mutation, and pass unchanged to the next gen-

a negative probability-an impossibility. In order to eration. In over-population the entire population is

properly decide the probability of an individual's selec- passed on unchanged. How does any innovation take

tion according to its evaluation, all evaluation values place, you ask? Each individual of the population does

must be positive, go through crossover and mutation to produce new in-

Giving negative examples a value of zero is not dividuals for the next generation-but the parents andGivig ngatie eampes avale o zer isnot unmutated individuals also remain in the population.
a viable solution, since this would give no penalty In this way, each operation doubles the population size.

to individuals which cover them. Instead, we pass

the above calculated fitness through a function which For example, an initial population of 20, after mat-

makes negative numbers positive while roughly keep- ing, will contain both the parents and the children, fora total of 40 individuals. Mutation of this set of in-
ing the proper relation between the individuals' fitness

and their probabilities of selection. dividuals will produce both the mutated parents and
children, and the unmutated parents and children, for

= f fitnessi + 1, if fitnessi _> 0 a total of 80 individuals. Payoff sharing now occursadjusted fitness i  efitness., if fitnessi < 0 among all 80 individuals. This quadrupled population
2.3 Specificity Factor is brought back to its original size of 20 in the selec-

tion step, which only spins the fitness roulette wheel

There is still a problem with our approach thus far. 20 times.
The above calculations count equally both positive and This procedure can be thought of as a global best-
negative examples. How many positive examples do we preserving algorithm. It allows us to make all in-
want an individual to gain in order to justify covering dividuals mate (p(cmos) = 1.0, no mating restric-
an additional negative example? The implementation tion), and all individuls mutate (p(gene change) =
of the above model could conceivably rank equally an 1/lcngthindividual), in oider to increase CA exploration
individual that covered three pobitive examples and to the maximum, while it also retains the best of both
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the pre- and post-exploration population for consider- 4.2 Implementation Details
ation in selection. Intuitively one can imagine a sit-
uation where the birthrate far exceeds the sustaining The example-sharing GA with over-population was

are dying implemented in Allegro Common Lisp on a NeXT
support of the environment, and individuals acube. The following simulation results were obtained
off not from old age, but from competition with each in an average of 60 seconds of CPU time.
other-thus, we say over-population.

3.2 Over-population Performance 4.3 Simulation Results

This method quadruples the number of individuals to We set the population size to 50 and the specificity fac-
be evaluated, but the increased exploration makes the tor to 3. Note that example sharing inherently spec-
GA converge to a solution more quickly. We performed ifies a p(cross) of 1.0 and p(gene change) of 1/indi-
experiments using the AP. 10 data set of bacterial vidual length. Uniform crossover was used for mat-
classification [Robertson and MacLowry, 1975]. The ing [Syswerda, 1989]. Based on ten runs, the example
bacteria are described by ten binary attributes and sharing GA achieved perfect performance (100% accu-
are classified as either e col: or not e coli. There are racy) on the 6-multiplexer example set after a median 5
37,555 examples of 276 diffcrent 10-bit patterns, the generations, or 1000 trials. This compares very favor-
more common bacteria bebig replicated proportion- ably with Wilson's 12,000 trials and 97.3% accuracy
ally more times. Using a population size of 30 and [Wilson, 1986].
a ipecificity factor of 3, we ran the example-sharing
GA both with and without over-population ten times 5 Future Work
each. The median number of generations required to
learn the bacterial classification to 98% accuracy with One question, as yet unresolved, is whether this ap-
over-population was 5 (range 1 to 26) versus 46 (range proach to learning disjunctive concepts has any ad-
4 to 138) without over-population, vantage over known methods such as AQ [Michalski et

We believe that enhanced exploration resulting from al., 1986] and C4 (ID3) [Quinlan, 19861.
over-population is especially helpful in situations such We did some preliminary comparisons with C4 using
as this, where not all of the points in the parameter the same bacterial classification data previously men-
space have a specified value. tioned in section 3.2. The example-sharing GA with

In addition to faster convergence, we expect over- over-population converged after a median of 5 gener-
population to allow the use of smaller populations than ations to a simple 2-term solution that has 99% accu-
are otherwise necessary to keep genetic diversity. We racy. C4, after pruning, produces a tree with 10 nodes
have not yet shown this experimentally, and 11 leaves with 99.5% accuracy. Thus our GA pro-

duces a simpler representation with slightly less accu-
4 Comparison with "Boole" racy. Changing the specificity factor would very likely

-Experimental Results alter the accuracy and simplicity.

In this section, we present the performance of our GA Efficient performance is another concern. Scale-
and up may be better because of the implicit parallelism

on examples from a disjunctive boolean function, of GA's. However, Quinlan's assessment of "Boole"
compare the results with "Boole." indicated that C4 and "Boole" scaled approximately

4.1 The Example Set equally (Quinlan and Compton, 1987].

The examples to be learned conform to the "6- . Furthermore, the global nature of our example shar-

multiplexer" function also used by Wilson [Wilson, ing (considering the entire population and all the ex-

1986]. The function can be described as follows. Of amples together) may permit this approach to find

the six bits of the parameter space, the first two bits more desireable DNF rules than would be found using

can be thought of as address bits, while the last four the more local search involved in decision-tree algo-

make up the data bits. The value of an example is rithims or AQ-like approaches.

determined by the value of the data bit found at the
location specified by the address bits. For instance, 6 Conclusions
the example (0 0 1 0 0 0) would be classified as a pos-
itive example since the fir wo bit., bpecify address This wnor presets twn modifications to fli Sir-

zero and the zeroth data bit is a one. The example (1 pie GA that accomplish the learning of disjunctive
1 0 1 1 0) would be classified as a negative example boolean concepts. Example sharing has been shown

because the third bit is a zero. to successfully form niches over clusters of positive
For instance, one possible set of disjuncts that covers examples. We have introduced over-population as a

all the positive examples and no negative examples of method of increasing exploration and have shown that
the six-multiplexer is: it can improve the successful convergence rate by a

factor of nine. Our modified GA successfully learned
0 0 1 * * * the 6-multiplexer boolean function in one-twelfth the
0 1 * 1 * * number of trials as "Boole." Additional work will be
1 0 * * 1 * needed to determine its value as a general-purpose in-
1 1 * * * 1 ductive learning method.
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Abstract1  2. Slow learning rates in GBMLsystems.
Genetics based machine learning systems are

considered by a majority of machine learners as A number of realizations in the domain of CS
slow rate learning systems. In this paper, we have shown their undisputed ability to learn. Classifier
propose an improvement of Wilson's classifier Systems [Holland, 86] form a family of inductive
system BOOLE that shows how Genetics learning systems which acquire rules incrementally.
based machine learning systems learning rates However, these realizations all share the common
can be greatly improved. This modification drawback of slow rate learning when compared to other
consists in a change of the reinforcement widespread learning algorithms such as decision tree
component. We then compare the respective classification (such as ID3) or neural net back
performances of this modified BOOLE, called propagation.
NEWBOOLE, and a neural net using back Wilson's classifier system BOOLE [Wilson, 87]
propagation on a difficult boolean learning is an example of such a realization. BOOLE is an
task, the multiplexer function. The results of incremental learning system that learns intricate
this comparison show that NEWBOOLE boolean functions such as logic multiplexers. However,
obtains significantly faster learning rates. more recently, Quinlan [Quinlan, 88] compared the

respective performances of an improved version of the
ID3 algorithm (C4) and BOOLE on the multiplexer

1 Introduction problem, and evidenced a much faster convergence rate
with C4. We show in this paper that this drawback can

In recent years, Genetics Based Machine Learning be greatly weakened by modifying the reinforcement
(GBML) has received increasing attention from the ML component of the original algorithm. Furthermore, C4
community due to the emergence of Classifier Systems. is non incremental, and as Booker mentions in [Booker,
However, despite the demonstrative results obtained by 89], having access to all the examples at once is a
various researchers with Classifier Systems (CS) definite advantage. Therefore, in our experiments, we
[Goldberg, 89], the slow learning rates that are usually decided to compare the improved version of BOOLE
observed have considerably affected their credibility. The (NEWBOOLE) with a widely used incremental learning
results reported in this paper, using an improvement of system: a neural net using back-propagation.
Wilson's BOOLE system, tend to show that convergence
speed of GBML systems can be greatly improved.

I This research was partially supported by MRT
through PRC IA.
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3. The BOOLE Classifier System genetic operations (crossover and mutation), and
deletion.

We now present BOOLE with some detail concerning
the parts that have been changed, in order to explain the BOOLE's version of the genetic algorithm is
NEWBOOLE system in the following section. quite particular in the sense that only one offspring is

BOOLE is a simplified version of the standard added per invocation of the genetic algorithm. In this
Classifier Systcm (CS) which was designed by Wilson context, the parameter p will represant the average
to test the ability of a GBML system to learn difficult number of invocations of the genetic algorithm per
boolean functions. cycle (i.e. the number of offspring added per cycle). For

Like any CS, Boole maintains a population of the detailed algorithm, please see [Wilson, 1987].
classifiers (which can be thought of as bit-level zero
order rules) according to Darwinian evolution principles.
However, classifiers are not chained; they directly Wilson experimented in [Wilson, 87] with this
provide an output and the decision is made within a system using a highly disjunctive function, the
single step during recognition; consequently there is no multiplexer function, also used by Barto [Barto,1985].
message list nor Bucket Brigade Algorithm. Thus each In the case of the "6-multiplexer", for each six-bit input
classifier consists of a condition (taxon) and an action string (a0 , a1, x0, x1, x2, x3), the boolean expression
which are fixed length strings over the (0,1,#) alphabet. of the output is:

Like other CS, BOOLE has the following F6 =-na0 .l--,a .x 0 + a0.-,a, .x 1 +
components: +-,a. 1 . 2 + a0 .a 1 .x 3  (1)

1/ Performance component: in the performanc+

cycle, an input string is presented to the system, the Figure 2 shows an experiment in which BOOLE
match set M of all classifiers whose taxa match the learned to respond correctly to this problem. The
input string is formed, and a single classifier from M is parameters used for this experiment are given in section
selected (using a probability that is proportional to its 4.
strength) whose action is output as the system's At each cycle, an example is chosen at random and is
decision. presented to the system. The graph plots the system's

average score which is the percentage of correct
2/ Reinforcement component: this component decisions over the past 50 cycles versus the number of

modifies the strengths of classifiers according to cycles since the experiment began.
performance level: The results obtained by BOOLE show that a

"rather difficult disjunctive incremental learning task"
a/ Form the action set [A] consisting of classifiers can be solved by GBML. However, the learning rate is

from [M] whose action is the same as the chosen extremely slow, as was pointed out by Quinlan in
action; the remaining members of [M] form the set [Quinlan, 88], where he compares the respective
Not[A]; performances of BOOLE and C4 on the same

b/ Deduct a fraction e from the strengths of all multiplexer task.

classifiers in [A]; 4. The NEWBOOLE CS

c/ * If the system's decision was correct, distribute NEWBOOLE is a CS derived from Boole which
a payoff quantity R to the strengths of [A]; but obtahis much faster learning rates. We examine in this

* If the decision was wrong, distribute a payoff section the improved learning algorithm.

quantity R' (where 0 5 R' < R) to the strengths of [A]
and deduct a fraction p from the strengths of [A] (at least 4.1 A new payoff strategy:
one of R' and p is equal to 0);

"Symmetrical payoff-penalty
d/ Deduct a fraction t from the strengths of Not [A]. BOOLE's reinforcement component, under the

"nayoff-penafty" reinforcement regime (p -6 0) adjusts
The distribution of payoff is done so that rules which classifier strengths in the following way:

have many # 's (thus more general) are favored.

- if the system's decision is correct, distribute a3/ Discovery component, which modifies the quantity R to the strengths of the Actionset [A].

classifier population according to Holland's genetic

algorithm [Holland, 75] and employs reproduction,
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- if the system's decision is false, penalize the As in Boole, the payoff R to [C] is distributed
strengths of [A] by deducting a fraction p from their by a biased distribution function D, which favors more
values, general rules (i.e. with many "don't cares" #) as follows.

- finally, whether the system's decision is correct First, the generaity of each classifier i of length L is
or not, deduct fractions e and t respectively from the computed as:
strengths of [A] and Not[A]. number of #'s in i()

Thus, following each performance cycle, only the gi - L (5)
strengths of [A] are ajusted according to the system's
performance. Let us define:

However, once we know that [A] contains
accurate classifiers, we also know that Not[A] only di = 1 + G x gi (6)
contains inaccurate classifiers; in this case it would
make sense to penalize the rules in Not[A]. This where G is a "generality emphasis" parameter.
acknowledgement led us to a "symmetrical payoff-
penalty" algorithm, in which we respectively reward and Then, the portion of reward Ri that is given to
penalize the accurate and inaccurate classifiers present in classifier i becomes:
the Matchset.

The new reinforcement component is the di
following: Ri=D(i)xR = - R (7)

1/ Form the subset of [M] consisting of those Y di
classifiers whose action is accurate; this is the correct
set [C]. The remaining members of [M] form the set
NOT[CJ. 4.2 Experiments with NEWBOOLE

We experimented with NEWBOOLE using the
2/Deduct a fraction e from the strengths of [C]. multiplexer problem, our main concerns being on the

one hand to compare BOOLE's and NEWBOOLE's3/dSince [C] contains the accurate classifiers, respective performances, and on the other, to comparedistribute a payoff quantity R to the strengths of [C]. NEWBOOLE and a neural net using Back Propagation

4/ Since Not[C] contains the inaccurate (BP). We describe two sets of experiments, one with the

classifiers, deduct a fraction p from the strengths of 6-multiplexer, the other with the 11-multiplexer.
lasfes dEach experiment was conducted by making 4

Not[C]. independent runs with different random initializations
Thus, the effect of the reinforcement component and averaging the values over these runs.
tus The table below gives a complete description of the

can be written as: genetic experimental parameters used.

S[cl(t+l) = (1-e) x S[c](t) + R (3)

4.2.1 NEWBOOLE and the 6-multiplexer
SNot[C](t+l) = (l-p) X SNot[C](t) (4) problem.

where SIC] and SNot[C] are respectively [Cl's and 1/In the first experiment (Figures 1, 2), we
Not[C]'s total strengths. tested NEWBOOLE's performance using exactly the

same parameter values as in BOOLE in order to evaluate
This new algorithm constitutes a clear departure the effect of the change in the reinforcement component.

from Boole: indeed, if we have several possible output As it can be seen, the results are quite demonstrative:
values then the knowledge of the correctness of the without any "parameter tuning", we are able to enhance
output of each classifier from the match set is used. importantly the system's learning rate to 97.3 % after
This information can be provided by the knowledge of only 2000 trials. The learning rate only takes into
the correct output for each example, as is done in most account the system's performance.
learning systems. However, this does not make any The lower plot in Figure 1 shows a quantity called
difference with boolean functions such as the the relative solution count, equal to the relative number
Multiplexer since only two values are possible: if one of instances of the solution set 'S6], which represents
is known as wrong, then the other one is right, the minimal set of classifiers capable of solving the

problem perfectly.
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e xG R p p t P deter-
Param. cross- mutation genera- reward penalty renewing popula- mini-stic

over rate lity coef. tion output
Experi. rate enfor-

cement
Boole 0.1 0.125 0.001 4 1000 0.8 1 0.1 400 NO
6Mux
Fi 1,2 ___ ___

NewBoole 01 015 001 4 10 .8 11 40 N
6Mux

NewBoole 0.1 0.15 0.00 1 4 1000 0.951 41/ 400 YES
6Mux
(Fig. 1,) 1 ___ 1____ 1___1

NewBoole 0.1 0.5 0.001 4 1000 0.95 4 111 100 YES

11 Mux
(Fig. 4) 1 =L .-- ____ ___

Table 1: Exrgrimental parameters for Boole and NewBoode.

6-multiplexer with untuned NewBoole

80-

60-

40- Validity

20-
cycles

0 2500 5000 7500 10000 12500 15000 17500
Figure 1: Untuned New Boole with stochastic output

1p is taken as 0.78 and not 0.80 in order to ensure total equivalence between the experiments with Boole and
untuned Newboole, since the parameter t is no longer used in the Newboole algorithm.
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Hence, this ratio is a measure of the validity of the It is interesting to notice that eventhough the system
population: the predominance of [S61 in the evolved attains quasi-perfect response (99.8) after 3200 cycles,
population would show that the system is capable of the validity (solution count) continues to grow at a
finding the best among the accurate classifiers, similar rate than in BOOLE.

NewBoole versus Boole
120-

U)

110 -0
C)

100

90

80- 
Score NewBoo.

70 Score Boole

60 cycles

50*, ,
0 5000 10000 15000

Figure 2: Comparison between untuned NewBoole and Boole.

Cycles coreo(r) %E(%) E %r(%) -rror (%) * Secondly, we modified the Performance
ooie ntuned Boole lewBoole Component in the following way: instead of selecting

qewBoole the "decision" classifier probabilistically, we
0 148 50 52 50 systematically picked the highest ranked classifier in the
500 75,9 86.7 24.1 13,3 match set: this deterministic selection affects in no way
500 75,6 9 2867 524 1 1 the learning process, since the Correct and NotCorrect
1000 84 6 92 9 15 4 7r 1sets are not determined in function of the selected
3200 91 2 99,8 8,8 0,2 classifier. This modification, as noted in [Booker, 89],
5200 93,9 100 61 0 permits a more steady convergence level; furthermore,
12000 97,3 100 2,7 0 since we are comparing NEWBOOLE with a

deterministic algorithm (Back Propagation), it seemed
Table 2: Comparison between Boole's and NewBoole's logical to include some "determinism" in the algorithm.

convergence rates
We obtained an impressive learning rate after

2/ We present in the second experiment (Figure only 800 trials by modifying the value of the fraction
3) a "tuned" version of the NEWBOOLE algorithm. deducted from the set of inaccurate classifiers (p = 0.95),the frequence of invocation of the genetic algorithm per

* Firstly, we modified the values of certain cycle (p = 4), and the crossover rate (Z = 0.5). This
parameters in order to speed up the learning process (see constitutes approximately a 17 fold improvement over
Table 1). Boole's original convergence rate.
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6-multiplexer
110 "-0

0C/)

100-

80o -0- BACK PROP.

Cycles

0 1000 2000 3000 4000 5000
Figure 3: Comparison between deterministic NewBoole

and Neural Net with BP on the 6 multiplexer problem

3/ Also in Figure 3, we present an experiment using Please also note that the simplest NN that can solve
a Neural Network with a Back-Propagation learning our problem (6:4:1) needs 7500 cycles to converge; this
algorithm. The architecture (6:20-20-10-10:1)1 and the compares with the number of cycles NEWBOOLE needs
parameters were tuned for this problem. Indeed, we see to find the minimal set (around 5000 cycles for 80 % of
that convergence is reached after 1600 trials, minimal rules; the other rules have a very low strength

and can easily be removed); however, NEWBOOLE finds
Of course, we noticed that a more complex network this set automatically, whereas the NN architecture had

(6:100-50-40-30:1) converges within 900 trials, to be provided at first.
However, the performance is not better than with
NEWBOOLE, and the memory occupied ( 6 x 100 + 4.2 NEWBOOLE and the 11-multiplexer
100 x 50 + 50 x 40 + 40 x 30 + 30 = 8830 problem.
connections = 8830 x 4 = 35320 bytes) is unreasonably
beyond what our population occupies (400 classifiers of Figure 4 shows the results obtained using
7 units each with 2 bits per unit = 800 bytes). NEWBOOLE to solve the I-multiplexer compared with

Therefore, when comparing NEWBOOLE with a those obtained using the following neural net: (11:40-
Neural Net (NN) using BP, we restricted ourselves to 40-20-20:1).
reasonable networks. The population was increased by a factor of 2,5 in

order to fit the considerably larger classifier search space
which grew by a factor of 311 x 2 / (36 x 2) = 243.

1This notation means that the multilayered network The number of links of the neural net rose much
ld, 6ilipuLs, ten two layers of 20 cells, then two iayers ,,rc (b a faLu1 of / 173 ",5) L1,11 the
of 10 cells, and one output layer of one cell. population size.

In all the networks, the parameters of each cell
depend on the number of cell inputs Nin: Nonetheless, one notices that NEWBOOLE still
learning rate e = 0.1/sqrt(Nin), decay 8 = 0, noise 0 = 0, converges at a faster rate than the neural net.
momentum a = 0; weights Wij(0) are initialized
randomly over the interval [-1.5/Nin; 1,5/Nin].
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11-multiplexer
100-

0
Cn NewBooleoo

80

70-

Cycles
60 .... 1 , , , '

0 2000 4000 6000 8000 10000

Figure 4: Comparison bet Veen deterministic NewBoole and Back-Propagation on the 1 1-multinlexer problem,

(symmetrically smoothed over 1000 cycles)
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Learning Functions in k-DNF from Reinforcement

Leslie Pack Kaelbling*
Teleos Research

and
Stanford University

Abstract it may also choose an action in order to gain in-
formation about its expected results. The tradeoff

An agent that must learn to act in the world between acting to gain reinforcement and acting to
by trial and error faces the reinforcement gain information makes this problem especially in-
learning problem, which is quite different teresting. The formal foundations of reinforcement
from standard concept learning. Although learning have been widely studied [Kaelbling, 1989b,
good algorithms exist for this problem in Kebig 99,Nrnr n htahr 99

the general case, they are quite inefficient. Kaelbling, 1989a, Narendra and Thathachar, 1989,

One strategy is to find restricted classes of Berry and Fristedt, 1985, Williams, 19861.

action strategies that can be learned more This paper will focus on a simple case of the re-

efficiently. This paper pursues that strat- inforcement learning problem in which the following

egy by developing algorithms that can effi- assumptions hold:

ciently learn action maps that are express- * the agent has only two possible actions
ible in k-DNF. Both connectionist and classi- 9 the reinforcement signal at time t + 1 reflects only
cal statistics-based algorithms are presented, the success of the action taken at time t
then compared empirically on three test
problems. Modifications and extensions that * reinforcement received for performing a particu-
will allow the algorithms to work in more lar action in a particular situation is 1 with some
complex domains are also discussed. probability p and 0 with probability 1-p and each

trial is independent

1 Reinforcement Learning 9 the expected reinforcement value of doing a par-
ticular action in a particular input situation stays

Consider an agent that must learn to act in the world. constant for the entire run of the learning algo-
At each moment in time, it gets information about rithm
the world from its sensors and must choose an action
to take. Having executed an action, the agent gets a Section 6 discusses the extension of the results in this
signal from the world that indicates how well the agent paper to situations in which each of the above assump-
is performing; we shali call this a reinforcement signal. tions is relaxed.
The reinforcement signal can be binary or real-valued
and it will typically be noisy. 2 Complexity Versus Efficiency

This learning scenario is quite different from stan- There are a number of good algorithms for the
dard concept learning, in which a teacher presents reinforcement-learning scenario we are interested
the learner with a set of input/output pairs. In the in, including learning-automata algorithms [Naren-
reinforcement-learning scenario, the agent must choose dra and Thathachar, 1989, Sutton's reinforcement-
an output to generate in response to each input. The d rin Ththchar , 198], n reinorceent
reinforcement signal it receives indicates only how suc- interval-estimation methods [Kaelbling, forthcoming].
cessful that output was; it carries no information about These algorithms were originally developed for the case
how successful other outputs might have been. In ad- when the agent has no inputs other than reinforce-
dition, the fact that the reinforcement signal is noisy ment and merely needs to decide which action it should
.e.. ta.e.. ot.t.. have......t... e .......... a take all the time. They can be extended to the case
number of times in order for the agent to acquire an of having many input situations simply by making a
accurate picture of which is better. In reinforcement-learingsitatins, n aentmaychooe a acion copy of the algorithm for each possible input situation.
learning situations, an agent may choose an action This method works well, but results in algorithms with
because it expects it to have good results; however, space complexity proportional, at least, to the number

'This work was supported by the Air Force Office of of possible input situations. In addition, no general-
Scientific Research under contract F49620-89-C-0055. ization is exhibited, that is, the combined algorithms
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do not take advantage of the common intuition that performc ace. For each algorithm, the inputs are bit-
"similar" input situations are likely to require "simi- vectors of length M, plus a distinguished reinforce-
lar" actions. ment bit; the outputs are single bits.

We can think of agents as learning action maps:
mappings from input situations to actions. If an agent 3 Connectionist Methods for
must be able to learn action maps of arbitrary com- Learning k-DNF
plexity, then the methods described above are as good
as any. However, if we restrict the class of action maps There has been interesting work in the connectionist
that we expect an agent to learn, we can invent algo- community on learning from reinforcement, which is
rithms for learning those maps that are much more relevant to our goals because it focuses on using more
efficient than algorithms for the general case. efficient algorithms to learn action maps in a restricted

A restriction that has proved useful to the concept- class of functions. This section will describe three con-
learning community is to the class of functions that nectionist methods: a linear reinforcement-comparison
can be expressed as propositional formulae in k-DNF. method, a multi-layer backpropagation method, and
A formula is said to be in disjunctive normal form a hybrid method that combines Valiant's algorithm
(DNF) if it is syntactically organized into a disjunc- for concept learning with the linear reinforcement-
tion of purely conjunctive terms; there is a simple comparison method.
algorithmic method for converting any formula into These and other algorithms will be described in a
DNF [Enderton, 1972]. A formula is in the class k- standard form consisting of three components: so is
DNF if and only if its representation in DNF contains the initial internal state of the algorithm; u(s, i, a, r)
only conjunctive terms of length k or less. There is no is the update function, which takes the state of the
restriction on the number of conjunctive terms-just algorithm s, the last input i, the last action a, and the
their length. Whenever k is less than the number of reinforcement value received r, and generates a new
atoms in the domain, the class k-DNF is a restriction algorithm state; and e(s, z) is the evaluation function,
on the class of functions. which takes an algorithm state s and an input i, and

Valiant was one of the first to consider the re- generates an action.
striction to learning functions expressible in k-DNF
[Valiant, 1984, Valiant, 1985]. He developed the fol- 3.1 Linear Reward-Comparison Method
lowing algorithm for learning functions in k-DNF from Most of the connectionist methods are simple single-
input-output pairs, which actually only uses the input- layer algorithms that can learn action maps in the class
output pairs with output 0: of linearly separable functions [Widrow et at., 1973,

Sutton, 1984, Barto and Anandan, 1985]. Sutton [Sut-
Let T be the set of conjunctive terms of length ton, 19841 performed extensive experiments on such
k over the set of atoms (corresponding to the methods and found that reinforcement-comparison al-
input bits) and their negations and let L be gorithms tend to have the best performance. The
the number of learning instances required to equations below define Algorithm 8 from his disser-
learn the concept to the desired accuracy.1  tation [Sutton, 19841, which uses a version of the

for i := 1 to L do begin Widrow-Hoff or Adaline [Widrow and Hoff, 1960]

v := randomly drawn negative instance weight-update algorithm.

T := T- any term that is satisfied by v The input is represented as an
end M-dimensional vector i. The internal state,
return T so, consists of two M-dimensional vectors, v

and w.
The algorithm returns the set of terms remaining

in T, with the interpretation that their disjunction is u(s, i, a, r) = let p := vjij
the concept that was learned by the algorithm. This for j = 1 to M do begin
method simply examines a fixed number of negative in- wj : wj + a(r - p)(a - 1/2)ij
stances and removes any term from T that would have vj : vj + P(r - p)ij
caused one of the negative instances to be satisfied.2  end

The following sections describe algorithms for learn- I if EM
ing action maps in k-DNF from reinforcement and e = ( u otherwise
present the results of an empirical comparison of their

'This choice is not relevant to our reinforcement- where t > 0, 0 < 3 < 1, and v is a normally
learning scenario-the details are described in Valiant's distributed random variable of mean 0 and
papers [Valiant, 1984, Valiant, 1985]. standard deviation by.2Valiant's presentation of the algorithm defines T to be
the set of conjunctive terms of length k or less over the set The output, e(s,i), has value 1 or 0 depending on
of atoms and their negations; however, because any term the inner product of w and i and the value of the ran-
ot length less than k can be represented as a disjunction of dom variable v. The addition of the random value
terms of length k, we use a smaller set T for simplicity in causes the algorithm to "experiment" by occasionally
exposition and slightly more efficient computation time. performing actions that it would not otherwise have
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taken. The updating of the vector w is somewhat com- the one described in Section 3.1 above.
plicated: each component is incremented by a value If there are M input bits, the set T has size C(2M, k)
with four terms. The first term, a, is a constant that because we are choosing from the set of bits and their
represents the learning rate. The next term, r - p, negations. However, we can eliminate all elements that
represents the difference between the actual reinforce- contain both an atom and its negation, yielding a stt of
ment received and the predicted reinforcement, p. This size 2kC(M, k). The space required by the algorithm,
serves to normalize the reinforcement values: the abso- as well as the time to update the internal state or to
lute value of the reinforcement signal is not as impor- evaluate an input instance, is proportional to the size
tant as its value relative to the average reinforcement of T, and thus, O(Mk). It is important to note that
that the agent has been receiving. The predicted re- this algorithm (as well as the other three discussed in
inforcement, p, is generated using a standard linear this paper) is strictly incremental its time and space
associator that learns to associate input vectors with requirements depend only on the size of the input and
reinforcement values by setting the weights in vector v. on the fixed parameter k and do not increase over the
The third term in the update function for w is a- 1/2: course of a run.
it has constant absolute value and the sign is used to
encode which action was taken. The final term is il, 4 Interval-Estimation Algorithm for
which causes the jth component of the weight vector k-DNF
to be adjusted in proportion to the jth value of the
input. The interval-estimation algorithm for k-DNF is, like

The space required for the state, as well as time for the hybrid algorithm described in Section 3.3, based
both update and e-aluation operations is O(M), where oni Valiant's algorithm, but the interval-estimation al-
M is the number of input bits. gorithm uses standard statistical estimation methods

rather than connectionist weight-adjustments. The
3.2 Multi-layer Back-propagation Method technique of interval-estimation has also been applied

Error back-propagation is a method for training con- to other reinforcement-learning problems [Kaelbling,

nectionist networks that are comprised of multiple lay- forthcoming.
ers. Anderson [Anderson, 1986] has designed a connec- 4.1 General Description
tionist system with multiple layers that uses backprop- This section will describe the algorithm independent
agation as a method for learning from reinforcement.Andesons sysetemd usrerng tw o m t rkoneforlen. of particular statistical tests, which will be introduced

Anderson's system uses two networks: one for learn- in the next section. We shall need the following defi-
ing to predict reinforcement and one for learning which nitions, however. An input bit-vector satisfies a termaction to take. Each of these is a two-layer network, whenever all the bits mentioned positively in the term
with all of the hidden units connected to all of the have value 1 in the input and all the bits mentioned
inputs and all of the inputs and hidden units con- negatively in the term have value 0 in the input. The
nected to the outputs. The system was designed to quantity er(t,a) is the expected value of the reinforce-
work in worlds with delayed reinforcement (which are ment that the agent will gain, per trial, if it generates
discussed here at greater length in Section 6), but it is action a whenever term t is satisfied by the input and
easily modified to work in our simpler domain. This action -a otherwise. The quantity ubra (t, a) is tie up-
algorithm is rather complex, so space does not allow actiond oherwise. The)quantityncerintera)lis the
it to be described further. A clear description can be per bound of a 100(1 -a)% confidence interval on thefound in Anderson's dissertation [Anderson, 1986]. expected reinforcement gained from performing action

a whenever term t is satisfied by the input. We can
This method is theoretically able to learn very com-

plex functions, but tends to require many training in-
stances before it converges. The time and space com- so = the set T, with a collection of statistics
plexity for this algorithm is O(MII), where M is the associated with each member of the set
number of input bits and H is the number of hidden e(s, i) = for each t in S
units. if i satisfies t and
3.3 A Hbubra(t, 1) > ubra(t,0) and

A Hybrid Algorithm Pr(er(t, 1) = er(t, 0)) < 1

Given our int.ere t in restricted cln.sos nf fiinctions, the. r.trn 1
we can construct a new hybrid algorithm for learning return 0
action maps in k-DNF. It hinges on the simple obser- u(s, i, a, r) = for each t in S
vation that any such function can be expressed as a ups, i, a, r) = for each t in S
linear combination of terms in the set T, where T is return s
the set of conjunctive terms of length k over the set
of atoms (corresponding to the input bits) and their At any moment in the operation of this algorithm,
negations. It is possible to take the original M bit in- we can extract a symbolic description of its current
put signal and transduce it to a wider signal that is the hypothesis. It is the disjunction of all terms t such that
result of evaluating each member of T on the original ubr,(t, 1) > ubr0(t, 0) and Pr(er(t, 1) = er(t, 0)) < fi.
inputs. We can use this new signal as input to a rela- This is the k-DNF expression according to which the
tively simple connectionist learning algorithm, such as agent is choosing its actions.
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The evaluation criterion is chosen in such a way as where z,/ 2 is such that Pr(Z > z, 1 2) = Pr(Z <
to make the important trade-off between acting to gain -Zo/2) = a/2 when Z is a standard normal ran-
information and acting to gain reinforcoment. A naive dor variable [Larsen and Marx, 1986). This allows
method would be for each term to generate a 1 when- us to define ubra(t, 0) as h(so, no, a) and ubrQ(t, 1) as
ever action 1 has had a higher success rate than action h(sl, nl, a), where so, no, si, and ni are the statistics
0. This would be a very bad strategy, however, be- associated with term t.
cause if the first trial of action 0 failed, its success rate To test for equality of the underlying Bernoulli pa-
would be 0, causing action 0 never to be chosen again. rameters, we use a two-sided test at the 9? level of
The interval estimation method works because of the significance that rejects the hypothesis that the pa-
fact that the value of ubr. can be high for two rea- rameters are equal whenever
sons. It may be high because the confidence interval
is very large due to the action not having been tried LL _ i :. -z- 2
very often-this will cause the action to be chosen in no ,i is either or
order to gain information. The upper bound may also ,o+, -- ..no+n > +zP12
be high because the confidence interval is small and non,
the action has a genuinely high payoff-this will cause
an action to be chosen in order to gain reinforcement, here z1 2 is a standard normal deviate [Larsen and
At the beginning of a course of execution of this al- Marx, 19861. Because sample size is important for this
gorithm, actions are chosen almost at random, until test, the algorithm is slightly modified to ensure that,
the upper bound of the worse action is driven down at the beginning of a run, each action is chosen a min-
by sampling, while the upper bound of the other stays imum number of times, referred to by the parameter
high. The value of a determines the size of the confi- lmn.
dence interval: when it is small the confidence interval The complexity of this algorithm is the same order
is large and the algorithm is very conservative. It is as that, of the hybrid connectionist algorithm of Section
not likely to converge to the wrong action, but it may 3.3, namely O(Mk).
take a long time to converge. As c is increased, the
confidence intervals become smaller, the learning rate 5 Empirical Comparison
faster, and the chance of gross error higher. This section reports the results of a set of experiments

Let the equivalence probability of a term be the prob- designed to compare the performance of the algorithms
ability that the expected reinforcement is the same no discussed in this paper.
matter what choice of action is made when the term is
satisfied. The second requirement for a term to cause 5.1 Algorithms and Environments
a 1 to be emitted is that the equivalence probability be The following algorithms were tested in these experi-
small. Without this criterion, terms for which no ac- ments:
tion is better will, roughly, alternate between choosing
action 1 and action 0. Because the output of the entire * LItCON Linear reinforcement-comparison algo-

algorithm will be 1 whenever any term has the value rithm

1, this alternation of values can cause a large number * LINCONN+ Linear reinforcement-comparison with
of wrong answers. Thus, if we can convince ourselves an extra input wired to have a constant value
that a terni is irrelevant by showing that its choice of * CONNKDNF Hybrid connectionist algorithm for k-
action makes no difference, we can safely ignore it. DNF

4.2 Statistics * IEKDNF Interval-estimation algorithm for k-DNF

In the simple reinforcement-learning scenario we are . EP Anderson's error back-propagation algorithm

considering, the necessary statistical tests are also * I1 Basic interval-estimation algorithm
quite simple. For each term, we store the following The basic interval-estimation algorithm 1E [Kaelbling,
statistics: no, the number of trials of action 0; so, the forthcoming] is included as a yardstick, it is computa-
number of successes of action 0; ni, the number of tionally much more complex than the other algorithms
trials of action 1; and sl, the number of successes of and will very likely out-perform them.
action 1. These statistics are incremented only when Each of the algorithms was tested in three different
the associated term is satisfied by the current input environments. The environments are callbd btnomial
instance. Boolean ezpression worlds and can be characterized by

If n is the number of trials and s the number of the following parameters: M, expr, Pis, pi, poi, and
successes arising from a series of Bernoulli trials with pon. The parameter M is the number of input bits,
success probability p, the tipper bound of a 100(1 - a) ezpr is a Boulean expression over the input bits, pi, ib
percent confidence interval for p can be approximated the probability of receiving reinforcenicnt value I gixcii
by that action 1 is taken when the input instance satisfies

± + ~2 + ~f 1. (+ erpr, pin is the probability of receiving reinforcement
_2. + z v(.,)(1 ;)+ ' value 1 given that action 1 is taken when the input

h(s, n, a) = 2 , instance does not satisfy expi, PoJ is the probability
+ of receiving reinforcement value I given that action 0
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Task M Pis Pin POs POn
1 3 .6 .4 .4 .6
2 3 .9 .1 .1 .9
3 6 .9 .5 .6 .8

Table 1: Parameters of test environments for k-DNF
experiments.

ALG-TASK 1 2 3
LINCONN

is taken when the input instance satisfies ezpr, and a .0625 .125 .125
pn is the probability of receiving reinforcement value LINCONN+
1 given that action 0 is taken when the input instance a .125 .0625 .25
does not satisfy expr. Input vectors are chosen by the CONNKDNF
world according to a uniform probability distribution. (T .125 .25 .03125

Table 1 shows the values of these parameters for each IEKDNF
task. The first task has the simple, linearly separable Z,/2 3 3.5 2.5
expression (io A il) V (il A i2 ); what makes it diffi- ZO/2 1 2.5 3.5
cult is the small separation between the reinforcement /3 msn 15 5 25
probabilities. Task 2 has highly differentiated rein- BP
forcement probabilities, but the function to be learned, /f .1 .25 .1
(ioA-ii)V(i A-,i2 )V(i 2 A-io), is a complex exclusive- )3h .2 .3 .05
or. Finally, Task 3 is the simple conjunctive function, p .15 .15 .35
i2 A -,i5 , but all of the reinforcement probabilities are Ph 1 .2 .05 .1
high and there are 6 input bits rather than only 3. IE

5.2 Parameter Tuning Za/2 3.0 1.5 2.5

Each of the algorithms has a set of parameters. For Table 2: Best parameter values for each k-DNF algo-
both IEKDNF and CONNKDNF, k = 2. The simple rithm in each environment.
connectionist algorithms LINCONN and LINCONN+ as
well as CONNKDNF have parameters a, /3, and o. Fol-
lowing Sutton [Sutton, 1984], parameters / and a in
OONNKDNF, LINCONN, and LINCONN+ will be fixed to
have values .1 and .3, respectively. The IEKDNF al-
gorithm has two confidence-interval parameters, Z,/ 2
and ZP/ 2, and a minimum age for the equality test
)3mi,, while the m algorithm has only Z,/ 2. Finally,
the BP algorithm has a large set of parameters: l,
learning rate of the evaluation output units; /3h, learn-
ing rate of the evaluation hidden units; p, learning rate
of the action output units; and Ph, learning rate of the
action hidden units. In each of the tasks, the BP algo-
rithm had as many hidden units as inputs.

All of the parameters for each algorithm were be ALG-TASK 1 2 3
chosen to optimize the behavior of that algorithm on LINCONN .5329 .7418 .7769
the chosen task. The success of an algorithm was mea- I,INCONN+ .5456 .7459 .7722
sured by the average reinforcement received per tick, CONNKDNF .5783 .8903 .7825
averaged over the entire run. For each algorithm and IEKDNF .5789 .8900 .7993
environment, a seri,s of 100 trials of length 3000 were BP .5456 .7406 .7852
run with different parameter values. Table 2 shows the 1E .5827 .8966 .7872
best set of parameter values found fbr each algorithm- Irandom .500 .5000 .6750
environment pair. optimal 1.6000 .9000 .8250 1

5.3 Results Table 3: Average reinforcement for k-DNF problems

Having chosen the best parameter values for each al- over 100 runs of length 3000.
gorithm and environment, the performance of the al-
gorithms was compared on runs of length 3000 using
the parameter settings of Table 2. The performance
metric was average reinforcement per tick, averaged
over the entire run. The results are shown in Table
3, together with the expected reinforcement of execut-
ing a completely random behavior (choosing actions
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1E
IEKDNF

IEKDNF CONNKDNF)1

LINCONN+ BP
SP

100,LINCONN
C ONNKDN

Figure 1: Significant dominance partial order among
k-DNF algorithms for Task 1. "LINCONN

IE I

IEKDNF CONNKDNF Figure 3: Significant dominance partial order among
k-DNF algorithms for Task 3.

LINCONN+
iekdnf

0 opt
LINCONN BP

O. 58confkdnf

Figure 2: Significant dominance partial order among er 0.56 linconnb
k-DNF algorithms for Task 2. 0.54 l-- -onn

0 and 1 with equal probability) and of executing the 0 avg

optimal behavior. These results do not tell the entire 5 10 15 20 25 30
story, however. It is important to test for statistical bucket of 100 ticks
significance to be relatively sure that the ordering of
one algorithm over another did not arise by chance. Figure 4: Learning curves for Task 1.
Figures 1, 2 and 3 show, for each task, a pictorial rep- max

resentation of the results of a 1-sided t-test applied to 0.9 ie -onnkdnf

each pair of experimental results. The graphs encode a Lekdnf

partial order of significant dominance, with solid lines er 0.8 bp
representing significance at the .95 level and dashed inconn+
lines representing significance at the .85 level. 0.7_ _inconn

With the best parameter values for each algorithm,
it is also of some interest to compare the rate at which 0
performance improves as a function of the number of 0.6
training instances. Figures 4, 5, and 6 show superim-
posed plots of the learning curves for each of the al- 0 1 20 25 30 avg

gorithms. Each point represents the average reinforce- bucket of 100 ticks

ment received over a sequence of 100 steps, averaged
over 100 runs of length 3000. Figure 5: Learning curves for Task 2.

5.4 Discussion
max

On Tasks 1 and 2 the basic interval-estimation algo- 0.82 ..
rithm, ik, perlorned sigz'M"ifkdity butt thian any Of -. conn
the other algorithms. The magnitude of its superior- 0.78 , [+bp
ity, however, is not extremely great-Figures 4 and er 0.76o
5 reveal that the IEKDNF and CONNKDNF algorithms 0.74

have similar performance characteristics both to each
other and to IE. On these two tasks, the overall per- 0.72
formance of EKDNF and CONNKDNF were not found to
be significantly different. 5 o 1 20 25 30g

The backpropagation algorithm, BP, performed con- bucket of 100 ticks

siderably worse than expected on Tasks I and 2. It
is very difficult to tune the parameters for this algo- Figure 6: Learning curves for Task 3.
rithm, so its bad performance may be explained by
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a sub-optimal setting of parameters. 3 However, it is solved by N interconnected modules that learn to gen-
possible to see in the learning curves of Figures 4 and erate one output bit from reinforcement. Thus, the
5 that the performance of BP was still increasing at algorithms presented here could be applied, using this
the ends of the runs. This may indicate that with method, to problems with many possible outputs.
more training instances it would eventually converge The problem of delayed reinforcement has been
to optimal performance. addressed by Sutton [Sutton, 1988] and Watkins

The simple linear connectionist algorithms per- [Watkins, 1989], among others. Sutton's solution,
formed poorly on both Tasks 1 and 2. This poor per- called the temporal dsfference method (TD) can be
formance was expected on Task 2, because such algo- abstracted away from the particular reinforcement-
rithms are known to be unable to learn non-linearly- learning mechanism being used. It provides a mod-
separable functions. Task 1 is difficult for these al- ule that learns to transduce the delayed reinforcement
gorithms because, during the execution of the algo- signal that is coming from the world into an immedi-
rithm, the evaluation function is often too complex to ate reinforcement signal that evaluates each state of
be learned by the simple linear associator. Adding a the world to be the expected future reward based on
constant input value to the simple linear connectionist the agent's current strategy. Because this local rein-
algorithm made a significant improvement in perfor- forcement signal must be learned, using a TD module
mance; this is not surprising, because it allows dis- violates a different one of our assumptions: that the
crimination hyperplanes that do not pass through the expected reinforcement of performing an action in a
origin of the space to be found. situation be fixed over the course of a run. This will

Task 3 reveals many interesting strengths and weak- be addressed below.
nesses of the algorithms. One of the most interesting If the reinforcement provided by the world cannot
is that iE is no longer the best performer. Because the be modeled as independent trials of some sort, then
target function is simple and there is a larger num- it is very difficult to use explicit statistical methods.
ber of input bits, the ability to generalize across input The connectionist algorithms are implicitly statistical
instances becomes important. The IEKDNF algorithm and would also have trouble in such worlds. How-
is able to find the correct hypothesis early during the ever, if the trials are independent, we have a variety of
run (this is apparent in the learning curve of Figure different statistical models available. The CONNKDNF

6). However, because the reinforcement values are not algorithm, as presented, can be used when the rein-
highly differentiated and because the size of the set T forcement is real-valued. The IEKDNF algorithm can
is quite large, it begins to include extraneous terms due be implementcd with different statistical tests. For
to statistical fluctuations in the environment, causing instance, if we know that the reinforcement values for
slightly degraded performance. each input-action pair are normally distributed, we can

The JE, BP, and CONNKDNF algorithms all have very use standard statistical methods to construct confi-
similar performance oil Task 3, with the linear connec- dence intervals and to test for equality of means. If we
tionist algorithms performing slightly worse, but still have no model, we can use non-parametric methods.
reasonably well. Finally, we consider the case of having the expected

reinforcement of performing an action in a situation

6 Relaxing the Assumptions change during the course of a run. The CONNKDNF
algorithm will work in such cases, although it might be

This section will discuss the consequences of relaxing necessary to adjust its parametcrs. The statistically-
the assumptions made at the begianing of this paper, based IEKDNF algorithm can be modified to work, by
especially in the context of the two better-performing causing its statistics to decay over time. If an action
algorithms, IEKDNF and CONNKDNF. In some cases, has not been tried for a long time, its n value will
simple changes can be made to the algorithms that will slowly decay, which will cause its confidence interval
allow them to work in the more general situations. In to grow larger. Eventually it will grow large enough
others, there are theoretical problems that make ex- for that action to be chosen again. If the action has
tensions difficult. Each of the concrete extenisions pro- good results, the policy will be changed to favor this
posed to the IEKDNF algorithm has been implemented action.
and tested.

Thus far we have assumed that the avent ha only 7 Conclusion
two possible actions. Many of the early learning- From this study, we can see that it is useful to de-
automata algorithms are directly applicable to prob- sign algorithms that are tailored to learning certain
lems with more than two actions. It has also been s rithm ha t ar tiore to ear i ainshow [Kclbing forhcoing tht th prble of restricted classes of functions. The two specially-shown [Kaelbling, forthcoming] that the problem of designed algorithms r.' out-performed standard meth-
generating actions specified by N output bits can be sd agomsabe ouperforme stnDa d

C ods of comparable complexity. The CONNKDNF and
3ln the parameter tuning phase, the parameters were IEKDNF algorithms each have their strengths and

varied independently-it may well be necessary to perform weaknesses, It is possible that CONNKDNF may out-
gradient-ascent search in the parameter space, but that is perform IEKDNF to some extent because in CONNKDNF
a computationally difficult task, especially when the eval- each term gets to contribute to the answer with differ-
uation of any point in parameter space may have a high ent degrees. This avoids errors that occur in IEKDNF
degree of noise,. when a single term is barely over the threshold for gen-
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erating a 1. On the other hand, the state of IEKDNF [Sutton, 1988] Richard S. Sutton. Learning to predict
has internal semantics that are clear and directly in- by the method of temporal differenceb. Machine
terpretable in the language of classical statistics. This Learning, 3(1):9-44, 1988.
simplifies the process of extending the algorithm to [Valiant, 1984] L. G. Valiant. A theory of the learn-
apply to other types of worlds in a principled manner. able. Communications of the ACM, 27(ll):1134-

Important future work will be to identify other re- 1142, 1984.
stricted classes of functions that can be learned effi-
ciently and effectively from reinforcement and demon- [Valiant, 1985] L. G. Valiant. Learning disjunctions
strate that these classes contain functions that solve in- of conjunctions. In Proceedings of the Interna-
teresting and important problems from the real world. tional Joint Conference on Artificial Intelligence,

volume 1, pages 560-566, Los Angeles, California,
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Abstract with a broad range of problems of the same type. In the
course of performing experiments with a variety of

The most frequently used measure of per- learning algorithms (Sammut, 1988) we discovered
formance for reinforcement learning algo- that, while these algorithms could learn to balance a
rithms is learning rate. That is, how many pole, the control strategy that had been acquired could
learning trials are required before the pro- not be frozen and transferred to another attempt atbal-
gram is able to perform its task adequately. ancing a pole. In other words, the control strategy that
In this paper, we argue that this is not had been learned was very specific. Furthermore, the
necessarily the best measure of perform- more rapidly the program learnt to control the pole,
ance and, in some cases, can even be mis- the more specific was its control strategy. We will give
leading. In control tasks, such as pole bal- reasons why this should be so and suggest ways of creat-
ancing, we have found that a program that ing more general control strategies.
learns to balance the pole quickly produces The first method, called "voting" requires the
a control strategy that is so specific as to learning task to be repeated a number of times and the
make it impossible to transfer expertise results of these learning runs are collected into a single
from one related task to another. We exam- controller that is very robust. We then examine how the
ine the reasons for this and suggest ways of results of this style of reinforcement learning can be
obtaining general control strategies. We turned into general and readable control rules.
also make the conjecture that, as a broad All of the experiments described here use the
principle, there is a trade-off between rapid BOXES a'orithm (Michie and Chambers, 1968) as a
learning rate and the ability to generalise. starting point, however, we believe that our con-
We also introduce methods for analysing clusions are applicable to most reinforcement learning
the results of reinforcement learning algo- algorithms, including connectionist and genetic algo-
rithms to produce readable control rules. rithms. Indeed, we make the conjecture that, as a broad

principle, there is a trade-off between rapid learning
1. Introduction rate and the ability to generalise. This was character-

ised by Michie and Chambers as "exploration vs. ex-
The most frequently used measure of performance ploitation".

for reinforcement learning algorithms such as connec- In the following section we describe why rapid
tionist and genetic algorithms is learning rate. That is, learning rates do not lead to general solutions. The fol-
how many learning trials are required before the pro- lowing sections described a number experiments aimed
gram is able to perform its task adequately. In this at building more general controllers.
paper, we argue that this is not necessarily the best
measure of performance and, in some cases, can even 2. The Problem
be misleading. We illustrate our argument with a spe-
cific learning task, namely, pole balancing. The pole balancing problem will only be described

We are especially interesting in learning control very briefly since it has been the subject of a number
tasks (or skill acquisition) and one of our primary goals previous papers and we are more interested in looking
is to be able to create a controller capable of dealing at the results of the learning algorithms and what to do
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Figure 1: The 162 boxes displayed as a four-dimensional array

after they have done their job. Sammut (1988) gives a mapped to the same decision (Michie and Chambers,
survey of previous work. The pole and cart problem can 1968). In the experiments reported here, all the learn-
be stated as follows: ing algorithms were tested against a simulation of the

pole and cart. The simulation uses the equations of mo-
A rigid pole is hinged to a cart, which is free tion as described by Anderson (1987). We use the same
to move within the limits of a track. The partitions as Selfridge, Sutton and Barto (1985):
learning system attempts to keep the pole
balanced and the cart within its limits by ap- cart position: _ 0.8, ± 2.4 metres

plying a force of fixed magnitude to the cart, cart velocity: - 0.5, ±- metres/sec

either to the left or to the right. (Selfridge, pole angle: 0, ± 1, ± 6, ± 12 degrees

Sutton and Barto, 1985) angular velocity: ± 50, ± - degrees/sec

Four parameters describe the state of the pole and This creates 162 "boxes" that fill the problem space.

cart at any instance in time. They are: the position of After one time step in the simulation, the system will
land in one box. The next move is determined by the

the cart on the track (x), the velocity of the cart (x), action setting of that box i.e. push left or push right. We
the angle of the pole (0), the angular velocity of the will display the action settings in the set of boxes as an

pole ).These parameters contain sufficientinforma- array of zeros and ones as in Figure 1.
tion to allow a controller to correctly decide whether to If the pole and cart system falls in a box containing a
push left or right. zero then the next control action is to push left. If it falls

The problem space can be thought of as a four di- in a box containing a one then the control action is to
mensional space, where each dimension is defined by push right. Other pole balancing algorithms need not
one of the four state variables. Translating this to a represent the state space as explicitly as we do here.
computational structure creates a four dimensional However, later we will argue that the conclusions
look-up table. Given infinite storage, each point in the drawn from these experiments are applicable to other
space contains a boolean value which tells the system to systems.
push left at that point or to push right. A practical ap- Suppose we allow the program to learn how to con-
proximatlon to this approach is to partition the state trol the pole and cart system by conducting a number of
space so that neighbouring points within a region are trials, i.e. attempts at balancing the pole, until it finally
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Figure 2. State transition representation of pole and cart problem

succeeds. Let us then freeze the learning element and When a program learns to balance the pole quickly,
use the control strategy that has been learnt on a new that mepns that it hasbeen able to rapidly find acycle in
trial where the pole and cart are placed in a random, which to keep the system and because the success cri-
but recoverable, initial state. This can be repeated a terion is keeping the pole balanced, the program does
number of times to obtain the average length of time not explore other parts of the graph. Looking at the
that the controller is able to avoid failure. All of the array of boxes in Figure 1, one can imagine that the pro-
learning algorithms tested by Sammut (1988), including gram learns reliable settings for a small subset of boxes
BOXES (Michie and Chambers, 1968), the AHC algo- and if the pole and cart system can be kept within that
rithm (Sutton, 1984) and a genetic algorithm (Odetayo, reliable set of boxes then the pole will remain balanced.
1988), could not successfully balance the pole again Since very little of the problem space has been ex-
even for a short time. To see the reason for this, let us plored, if the system is restarted with different initial
look at another way of representing the problem. Imag- parameters, then the program will be lacking in expert-
ine that each box represents one node in a non-deter- ise and fail to keep the pole balanced.
ministic state transition diagram as in Figure 2. On While this effect can be observed using the BOXES
entering a node, the program must chose whether to representation, we claim that this also applies to other
push left or rignt, i.e., exit the node on a zero transition representations. For example, if a connectionist system
or a one. is used and it has a number of hidden units and inputs

Where possible, the program should choose a directly from the four state variables, the learning pro-
transition that will put the system into a cycle since a gram must explore a large space of settings for weights
cycle indicates that the pole and cart are avoiding the before settling on a solution. If the sole criterion for
failure nodes (shown as heavy circles). The dotted lines success is keeping the pole balanced just once, then
in the diagram indicate a possible cycle. Note that very little of the space of weight combinations need be
choosing a 0 (left push) or 1 (right push) does not uni- explored. Thus, as in other systems that learn by
quielydeterminewhich node th 'Sytem will ientersince Peamph, in nrepr tngpnerali , the nrrrrn m ,l,t P
non-determinism has been introduced by approximat- number of instances of a concept. However, here the
ing each point in the state space by a region or box. For instances are complete control strategies, in our case,
example, the node marked 'X' in Figure 2 has two out- represented by a set of boxes.
going edges labelled '1. If the system were to land in Selfridge, Sutton and Barto (1985) have shown that
this node and the action in 'X' is a right push, then we once the pole balancing task has been learned for one
cannot predict which of the two neighbouring nodes configuration of the system, learning algorithms can be
reachable by the '1 edges would be entered. created that will learn more rapidly how to control a
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new configuration. So is it still desirable to be able to usual. In one experiment, after 832 trials, 100 trials had
find a single control strategy? In a system that does not been successful, thus giving 100 rounds of voting. The
change too radically it would obviously be less wasteful majority vote from each box was extracted and used to
not to have to re-learn each time a new control task ar- create a new set of boxes that could be tested for relia-
ises. More importantly, in regular systems such as pole bility. That is, each box in the new set of boxes was ob-
balancing (Makarovic, 1987) and satellite control (Sam- tained by comparing the '0' and '1' votes and if '0' had
mut and Michie, 1989), it can be shown that very simple more votes then the box in the new set was set to'0' and
control rules can be effective. We wish to explore the similarly for boxes where '1' won the "election". Test-
possibility of learning these rules. ing the new set of boxes resulted in 20/20 successful

In the following section we give one method for de- trials. Thus, voting holds some promise as a method for
riving a robust control strategy. generalising control strategies.

How many elections are required before we can be
sure of having a robust control strategy, if at all? To

3. Experiment 1: Voting examine this question, we performed the reliability test

The apparent cause of the learning algorithm's after each round of voting. The results are plotted in

"over specialisation" is that it converges too quickly on Figure 3 where the vertical axis shows the average

one strategy for balancing the pole and therefore does of the reliability test.

not try to explore more of the problem space. Our sol- The graph suggests that it is necessary to learn to

ution to this problem requires that we derive a number bae th pole n a t 0 difert oc a n bo
of tesespeialsedconrol traegis ad podue a balance the pole on about 20 different occasions before

of these specialised control strategies and produce a we can construct a reliable control strategy using the
generalisation of them. The method can be viewed as BOXES algorithm. When different learning algo-
running a number of independent versions learning of rithms are used in conjunction with voting, the results
the learning algorithm and averaging the outputs (cf. myvr.I atclr efudta ainso

Buntie, 189).may vary. In particular, we found thai variants of

To tesu the reliability of a control strategy, we freeze BOXES that learn to the balance the pole more rapidlyTo ts, he elibilty f aconrolstrteg, w freze can take much longer to stabilise when used in voting.
the boxes and then use them to try to control the pole

and cart from a new random starting position. This is 4. Experiment 2: Coercion
repeated 20 times. The starting range is restricted to re-
gions of the problem space from which it is possible to Now that we have a way of producing a reliable con-
avoid failure, e.g. we do not start the pole learning so trol strategy, how do we extract simple and readable
far over that it is impossible to swing it back towards rules if they exist? One of the advantages of the boxes
vertical. If the pole can be balanced for 10,000 time representation is that provides a simple "map" of the
steps in 20 out of 20 different runs then we deem the problem space that can be examined for regularities
control strategy to be reliable. After one learning run and we can use these regularities to simplify the con-
whose success criterion is 10,000 time steps we usually troller. For example, the set of boxes shown in Figure 1
get 0/20 performance on the reliability test. Even when was obtained by having a program learn how to balance
the criterion is set at 100,000 we do little better. Thus, a the pole 32 different times and then collecting the votes
single long learning run still does n6t guarantee good from each attempt. There are hints of regularity in the
search of the state space. Details of all of the experi- patterns of zeros and ones, e.g. the rightmost column
ments described in this paper are given in Cribb (1989). consists entirely of ones except for the last box. There

To collect information from a number of successful, also appears to be some symmetry which we would ex-
but specific, control strategies we require each box to pect in this problem. Perfectly clear patterns do not
maintain a count of "votes" for each possible control emerge because not all boxes are visited with equal fre-
action and at the end ofasuccessful trial, the box casts a quency, thus some will have fewer opportunities to
vote for the action to which it is currently set. Thus, learn than others and will have settings that rely on
after learning to balance the pole we scan each of the statistically unsound information. Thus the set of boxes
162 boxes and if a box has an action setting of '0' then contains "noise" which we can try to clean up.
the '0' vote is incremented by 1 and similarly boxes that It is worth noting that in some regions of the state
have an action setting of '1' have the '1' vote in- space (i.e. in some boxes) it doesn't really matter which
cremented. The program then starts the next trial as action is chosen. If the poie is balanced and the cart is
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Figure 3: Scores after successive "elections"

near the middle if the track, or if the system is on the set of boes can be thought of as forming a four-dimen-
brink of failure and irrecoverable then whether the cart sional "retina" that contains an image of the world.
is pushed left or right makes very Jittle difference. The Just as in image processing we wish to produce clean
votes for different control actions in these boxes are images and to detect patterns in the image. At this
usually very close, giving an indication of their inde- stage we have not pursued this analogy further but it
cision. By applying a e test to the votes, we can ident- appears to be worthwhile to investigate how other

ify those boxes that are indecisive and "coerce" the methods from image processing could be borrowed to
votes so that boxes conform with their surroundings. assist us.
We use a nearest neighbour averaging m, thod to In the next section, we discuss how we can use the

chooqe the settings of indecisive boxes. In this way, we coerced boxes to simplify the representation of the

obtain the new set of boxes shown in Figure 4. It is ap- state space and obtain control rules for the pole and
parent that the array now displays a symmetry that cart problem.
would be expe. Ad in this particular task. 5. Experiment 3: Merging

From Figure 4 it is clear that there is very little dif-
001 001 001 001 001 011 ference between the outer two major columns and the
001 001 001 001 011 011 inner two. There is also some horizontal symmetry.

This observation leads us to try to merge regions of the

001 001 001 001 011 011 state space.
001 001 001 011 011 011 One of the limitations of the BOXES algorithm is
001 001 011 011 011 011 that partitioning the state space must be done by hand,

001 001 011 011 011 011 prior to any learning. If partitioning is too coarse, it may
001 001 011 011 011 011 be impossible to learn the control task since a box may
001 011 011 011 011 011 cover a region of the state space that is tooiarge to class

as requiring only a left push or a right push. If partition-
Figure 4: "Coerced" boxes ing is very fine then it is more likely that a successful

control strategy can be learnt but the time required in-
After experimenting with this averaging met' J for creases with the number of boxes and the strategy also

cleaning up noise we began to realise that there are becomes difficult to express simply. For example, in our
similarities between the this and image processing. The original set of boxes we effectively have 162 control
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rules for a relatively simple task. This rimber can be Having obtained the coerced set of 162boxes in Fig-
reduced significantly if we merge boxes by eliminating ure 4 we proceeded to simplify the partitions. This can
and adjusting some of the partitions. be done in a conservative way:

As an example of merging, let us eAamine the two 1. Merge only those partitions with the highest de-
left-most major columns in Figure 4, i.e. the "pole gree of similarity.
lenns far left" and "pole leans mid left" columns. They 2. Learn how to control the system using the new
differ in only one box, which we will cail B. Any attempt partition.
to coerce this box renders the whole control strategy 3. Collect votes from at least 20 learning runs.
unreliable. At first, this appears to prevent us from
merging the two columns, but it is possible. 4. Coerce the indecisive boxes.

The BOXES algorithm treats each box as an inde- 5. Repeat the whole process.
pendent learning unit, i.e. individual boxes do not know Steps 1 and 4 may have several candidates, not all of
what any other brx has learnt. However, boxes do learn which are reliable according the the criterion described
to operate in a cooperatihe mannerbecause the scheme earlier. Therefore one candidate is selected by runing
of rewards and punishments that the algorithm uses the reliability test.
tells each box implicitly hew well it is doing in relation By iterating through this procedure we obtained a
to the whole system. Michie and Chambers (1968) de- set of 108 boxes, then 72 and finally the 54 boxes shown
scribe this scheme in detail. In fact box B cannot be in Figure 5.
changed because it cooperates with other boxes in the 001 001 0 1
centrecolumns.Soifoneboxistobechanged, itmaybe 001 001 011
necessary to change others as well. Since we do not 001 0 1 0 O1
know which boxes cooperate with each other, when we
re-partition the state space, we also have to re-learn 00 1 0 0 1 0 11
box settings. 001 011 011

We adopted the policy that only those boxes that did 00 1 0 11 0 11

not pass the X2 test could be coerced. Box B did pass Figurc, 5: Simplified set of boxes after merging
the test, i.e. the majority of attempts at learning to con-
trol the pole set this box to one. Therefore there is a The representation is now simple enough that we
genuine, small difference between the control strat- can read off a set of rules in the form of an if-then-else
egies required for the two different regions. To account statement.
for this, when we merge the regions we shift the adjac- if 0 < -5 then left
ent partitions. We define the merging operation as fol-
lows: else if 0 > , then right

else if 0 < -2 then left

1. Two partitions are candidates for merging if the else if 0 > 2 then right
set of boxes contained in them are similar to a else if t < -0.1 then left
given degree, say 95%. else if k > 0.1 then right

else if x < 0 then left
2. We can measure their degree of similarity by else if X < 0 then rigt

taking each box in turn in one of the regions,

comparing its setting with that of the correspon- This can be restated simply: "If the pole is swinging
ding box in the other region and keeping a tally rapidly or leaning well over in one direction then push
of the proportion of matches to mismatches. in that direction. If the pole is balanced but the cart is

over to one side then push toward that side". The sec-
3. It the tallies indicate that the two regions are ond part of the rule is interestir g because it seems

sufficiently similar, we can eliminate the thresh- counter-intuitive at first but in order to move the pole
old that separates them and reset the adjacent and cart toward the middle of the track, the pole should
thresholds, making their new %alues mid-way first be leaning in the direction we in which we want to
between their old values and the value of the go so the first step is to move in the opposite dircction
eliminated threshold. to swing the pole in the correct direction.
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At th!s point we should also note a further analogy quired before we could not guarantee that a reliable set
with region finding in image processing. Region finding of boxes would result. Thus we need to investigate
algorithms attempt to either merge or split neighbour- much more thoroughly the conditions under which the
ing regions in an attempt to find a meaningful structure voting method can be used with confidence. This ex-
in the image. In our case we are merging regions only, periment also supported our view that rapid conver-
however, in discussing future work Michie and gence is not always consistent with generality.
Chambers (1968) suggested that automatically merg- To properly validate our approach it will be necess-
ing and splitting boxes was desirable. Our work goes ary to repeat these experiments using other control
some way toward this goal but further work is required, tasks. We have begun preliminary work on learning to
particularly to obtain a data structure for boxes that can control a double pole, that is, one pole is balanced on
makes splitting and merging simple. the end of another as shown in Figure 6. This gives us a

6-dimensional state space. This task is useful because
with six dimensions it is impossible to visually inspect6. Experimental Variations and Future Ex- boxes for regularities and thus eliminate any possibility

periments of bias on our part when writing our algorithms.

Cribb (1989) has performed an extensive array of ex-
periments other than those we are able to report here.
These include variations on the original BOXES algo-
rithm and different methods for voting and coercion.
Some of these experiments are summarised below and
we also discuss further experiments that we intend to
carry out.

In Figure 3 we showed how combining results from
independent learning sessions allowed us to produce
more reliable control strategies. This graph was de-
r ¢ed from experiments where sets of boxes were com-
bined and later coerced. We also attempted to coerce
boxes "on the fly" and use the coerced boxes in voting.
This method did not produce a reliable control strategy Figure 6: The double pole and cart
as consistently as the original method. It appears that
coercion is only worth doing on sets of boxes that have We have also used a satellite control problem in
already been found to be reliable, some experiments. Sammut and Michie (1989) give a

The experiments described in this paper have been full account of this work. We adapted the pole balanc-
repeated on a pole and cart system where the forces ing rules above so that they could control the thrusters
applied to the cart were asymmetrical. That is, the force of a satellite, the goal being to maintain a stable atti-
applied when pushing to the left was 10 Newtons while tude for the satellite. This domain is somewhat more
the force used to push to the right was only 5 Newtons. complicated than pole balancing because there are
This is an inherently less stable system and therefore many more actions. In the case of the pole balancer
takes longer to learn to control. The asymmetrical na- there are only two possible actions: push left or push
ture of the problem is also parallelled by asymmetry in right. To control a satellite we can apply positive or
the boxes. negative torques for either roll, pitch or yaw. Thus

We mentioned earlier that the BOXES algorithm there is a minimum of six actions. Furthermore, bang-
has a systems of rewards and punishments that implicit- bang control is not acceptable since propellant usage is
ly forces ooxes to cooperate with each other. When the critical for the iongevity of the space craft. As the
problem is asymmetrical it appears that this global number of control actions increases, the number ex-
knowledge is less useful. A variation of the learning al- periments required to find an appropriate box settings
gorithm that only used local knowledge of boxes on av- increases dramatically.
erage converged more quickly than the original algo- Sammut and Michie (1989) used the experience
rithm. Hocvever, when this algorithm was used in gained from learning pole balancing control strategies
conjunction with voting, many more elections were re- to manually construct a controller for the simulation of
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a commercial satellite. The control rules are best ex- quarter of full thrust. Note that we are no longer using
pressed as a decision table, which happens to corre- bang-bang control. Instead we use discrete steps in
spond closely to the boxes representation. The thrust: no thrust (0) one quarter of full thrust (1/4), one
strongest similarity between pole balancing and satel- half (1/2) and full thrust (1). There a three such tables
lite control is that we compare the rate of change and for each of roll pitch and yaw. At each time interval in
value of each variable with a threshold. One of the dif- the simulation, all three table are consulted so that
ferences is that each of the variables roll, pitch and yaw three actions may be enabled simultaneously. We have
can be treated independently. Thus each variable has not yet attempted to learn control strategies in this do-
its own decision table. Table 1 shows the control strat- main but intend to do so since the additional computa-
egy for yaw only. Th illustrate how the table works, tional demands brought about by the complexity of the
when the yaw is positive but the yaw rate is very nega- task require us to find more efficient methods of learn-
tive then the satellite fires its yaw thruster using one ing.

Table 1: Yaw Decision Tble

Yaw
positive 1/4 0 -1/4 -1/2 -1

Yaw 1/2 0 0 0 -1/2
ok

Yaw 1 1/2 1/4 0 -1/4
negative

Yaw rate Yaw rate Yaw rate Yaw rate Yaw rate
very negative ok positive very

negative positive

7. Discussion The goal of this work has been to use a reinforce-
ment learning algorithm to acquire expertise in con-

One of the most exciting results of this work has trolling a dynamic system and then analysing the results
been the convergence of the experimentally derived to produce simple, readable control rules. In the course
rules shown above and rulcs that Makarovic (1987) ob- of this analysis, we found that fast learning algorithms
tained from a mathematical analysis of the equations of tend to produce controllers that are very specific to the
motion of the pole cart. Except for small differences in task, i.e. they do not generalise well. In some respects
threshold values, the rules are the same. Moreover, we this is similar to the tendency of some learning algo-
were able to transfer much of what we had learnt from rithms to over-fit data (Quinlan, 1987; Fisher, 1989).
pole balancing to other control tasks (Sammut and
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Active Perception and Reinforcement Learning

Steven D. Whitehead and Dana H. Ballard*
Dept. of Computer Science
University of Rochester
Rochester, NY 114627

Abstract The immediacy of decision making puts RLM sys-
tems in close relationship with other reactive systems

This paper considers adaptive control archi- [Agre and Chapman, 1987; Brooks, 1986; Drummond,
tectures that integrate active sensory-motor 1989; Firby, 1987; Georgeff and Lansky, 1987; Nilsson,
systems with decision systems based on rein- 1989; Schoppers, 1987]. However, RLM systems dis-
forcement learning. One unavoidable conse- tinguish themselves from these and most reactive sys-
quence of active perception is that the agent's tems in that they are adaptive. The vast majority of
internal representation often confounds ex- reactive systems do not learn. Instead, their decision
ternal world states. We call this phenomenon knowledge is hand coded into them by their design-
perceptual aliasing and show that it desta- ers; either explicitly (e.g. [Agre, 1988; Brooks, 1986;
blitzes existing reinforcement learning algo- Georgeff and Lansky, 1987; Firby, 1987]) or through
rithms with respect to the optimal decision hand coded causal models which eventually get com-
policy. A new decision system that over- piled into a set of reactive rules (e.g. [Blythe and
comes these difficulties is described. The Mitchell, 1989; Fikes et al., 1972; Laird et al., 1986;
system incorporates a perceptual subcycle Schoppers, 1989]). RLM systems do not rely on hand
within the overall decision cycle and uses a coded decision knowledge. They learn the optimal con-
modified learning algorithm to suppress the trol strategy by interacting with the world and receiv-
effects of perceptual aliasing. The result is a ing feedback in the form of reinforcement. This adapt-
control architecture that learns not only how ability relieves the burden of providing complete do-
to solve a task but also where to focus its at- main knowledge a priori, since it is acquired with expe-
tention in order to collect necessaiy sensory rience. It also allows the system to adapt to changing

circumstances and learn new tasks.
Although RLM systems are promising, to date they

1 Introduction have only been applied to relatively simple tasks,
such as pole balancing [Barto et al., 1983; Sutton,Recently there has been a resurgence of interest in in- 1984], simplified navigation [Barto and Sutton, 1981;

telligent control architectures that are based on rein- Booker, 1982; Sutton, 1990; Watkins, 1989; Wilson,
forcement learning methods (RLM) [Barto et al., 1989; 1987a!, and easy manipulation games [Anderson, 1989;
Clocksin and Moore, 1988; Holland, 1986; Miller et al., Whitehead and Ballard, 1989a]. Before these systems
1990; Sutton, 1988; Watkins, 1989; Whitehead and can be scaled to larger, more complex control prob-
Ballard, 1989a; Wilson, 1987a]. These architectures lems a number of issues must be addressed. These
are appealing because they are both reactive and adap- include developing techniques for improving the learn-
tive. Unlike traditional plan based controllers, RLM ing rate, developing more sophisticated uses for inter-
systems do not make decisions by appealing to time nally held goals, and incorporating more realistic mod-
consuming search through a space of possible plans. els of perception and action. Early progress on the first
Instead, they maintain a policy function that maps two of these issues looks promising (for faster learn-
situations directly into actions. Decision making re- ing see [Sutton, 1990; Whitehead and Ballard, 1989a;
duces to computing the instantaneous value of the pol- Whitehead and Ballard, 1989b]; for models using in-
icy function and can be performed in constant time - ternal goals see [Watkins, 1989; Whitehead, 1989;
e.6. t pulity LUICtio, can be I"---e .... Q using a Wilson, 167bj.) Ihis paper deals with the third i4
table, CMAC, or neural net (all of which can be eval- sue of integrating realistic sensory-motor systems into
uated in constant time). RLM architectures.

*This work was supported in part by NSF research The vast majority of work in Al has not dealt re-
grant no. DCR-8602958, in part by NSF research grant alistically with perception, and research in reinforce-
no. DCR-8602958, and in part by NSF research grant no. ment learning is no exception. A common simplifying
IRI-8903582. assumption is that a decoupled perceptual system au-
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tomatically supplies a central control system with a learns both the overt physiral action needed to solve
database of logically consistent inputs that describes a problem, and where to focus its attention in order
in detail each object in the domain - that is a set of to disambiguate the current situation with respect to
propositions that describe the relationships between, the task. These ideas are illustrated in a system that
and the features of all the objects in the domain. Un- learns a simple block manipulation task.
fortunately, even for simple toy domains this leads to
large, complex internal representations and unrealistic 2 Foundations
assumptions about the capabilities of the perceptual
system. For example, in a classical blocks world do- 2.1 Embedded Learning Systems
main containing n blocks, the size of the state space Before getting into the details of indexical represen-
using a traditional representation is O(n!). For n = 19 tations, reinforcement learning, and perceptual ambi-
that is over two trillion (2,147,483,647) states. Most of guity, it is useful to formalize concepts such as "the
the information that distinguishes states in the inter- gurt, it iueul t f eoncets such atnalrepesetaton s irelvat t imedite askfac - world", "the agent", "the sensory-motor system" and
nal representation is irrelevant to immediate task faced "the decision system". For this purpose we begin
by the agent and only interferes with decision making by adopting a formal model for describing embedded
(and learning) by clogging the system with irrelevant learning systems. The model is shown in Figure 1,
details. Further, these overly descriptive representa- and extends a model proposed by Kaelbling [Kaelbling,
tions put undue pressure on the perceptual system to 1989] by representing the relationship between exter-
maintain their fidelity. nal world states and the agents internal representation.

Agre and Chapman have recognized this problem The world is modeled as a deterministic automa-
and suggested indexical representations, a much more ton whose state changes depend on the actions of an
feasible approach based on active sensory-motor sys- agent. The world is formally described by the triple
tems [Agre, 1988; Agre and Chapman, 1987; Chap- (SE, AE, Y), where SE is the set of possible world
man, 1989]. A central premise underlying indexical states, AE is the set of possible physical actions ex-
representations is that a system needn't name and de- ecutable by the agent, and W is the state transition
scribe every object in the domain, but instead should function mapping SE x AE into SE. Our model of the
only register information about objects that are rele- agent is slightly more complex consisting of three com-
vant to the task at hand. Further, those objects should ponents: a sensory-motor subsystem, a reward center,
be indexed according to the function they play in the and a decision subsystem.
current behavior. Two important implications of this The sensory-motor subsystem implements three
approach are: 1) it leads to compact and limited scope functions: 1) a perceptual function P', 2) an internal
input representations since at any moment the sensory configuration function -, and 3) a motor function M.
system registers only the features of a few key objects; Its main purpose is to relativize the external trans-
and 2) it leads to systems that actively control their ductory signals SE and AE. On the sensory side the
perceptual apparatus - i.e. actively manipulate the system transduces the world state into the agent's in-
binding between objects in the world and internal rep- ternal representation. Since perception is active, this
resentational structures. Thus, in the case of a blocks mapping is dynamic and depends on the configuration
world problem, the system would represent blocks ir- of the sensory-motor apparatus. Formally, the rela-
mediately relevant to the task, and would be oblivious tionship between external world states and the agent's
to the rest. As a result, the size of the internal rep- internal representation is modeled by the perceptual
resentation reflects the complexity of the task being function 7P which maps world states Sw and sensory-
solved and not the number of objects in the domain motor configurations C onto internal representations
(which could be arbitrary!). S (i.e. P : SE x C -+ SI). On the motor side, the

We have been experimenting with systems that in- agent has a set of internal motor commands A, that af-
corporate both indexical representations (for feasible fect the model in two ways. they can either change the
perception) and R.LMs (for adaptive control). In par- state of the external world (by being translated into
ticular, we show that integrating indexical represen- external actions, AE), or they can change the config-
tations (and active perception, in general) and RLM uration of the sensory-motor subsystem. As with per-
into a single control architecture is non-trivial because ception, the configuration of the sensory-motor sub-
the use of indexical representations results in internal system modulates the effects of internal commands.

• di. a i a U. US . . . ' rT i.cc to bU ul ltj A l U . . A U-.lAU_ I. '.. AL - .-- J---- -I -AU

of the external world. We term this phenomenon per- -7 which map internal commands and sensory-motor
ceptual aliasing and show that it leads to undesired configurations into actions in the external world and
local maxima in the deci3ion system's evaluation func- new sensory-motor configurations respectively. That
tion. These local maxima severely interfere with the is, M: Al x C --* AE and 1 : A, X C -* C.
decision system's ability to learn an adequate control The second subsystem in our model is the reward
policy. To overcome these difficulties a new RLM de- cenf -r. It implements a reward function R, which
cision system is introduced that embeds a perceptual maps external world states SE into real valued rewards
cycle within the overall decision cycle and uses a mod- R. Rewards indicate that the world in a desirable state
ified learning algorithm to eliminate the undesired lo- and are used by the decision subsystem to improve per-
cal maxima. The result is a reactive architecture that formance.
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case, executing Warp-Ml-to-Red causes the sensory-
motor system to search the world for a red object and
bind it to MI. If a red object cannot be found, the
action fails and MI's binding remains unchanged. If

SE multiple red objects exist, the sensory-motor system
chooses the first one it comes to. Markers play an im-

AE portant role in motor control since overt actions are
r - ----- -- -------------- predominately specified with respect to markers. InTe sensory-motor this case, a marker's binding acts to establish the ref-

erence frame in which the action is performed. For

example, the overt action Place-at-Mi might cause a
I center r--- robot to place an object it is holding at the location

currently associated with marker MI. We distinguish
two types of markers, overt markers and perceptual
markers. A marker is overt if it has an action associ-
ated with it that affects the state of the external world.
Otherwise it is a perceptual marker. Overt markers

R S! are used for establishing reference frames for action in
the world, while perceptual markers are used for col-

Al lecting additional information about the current state.
Actions associated with overt markers are called overt

I actions and actions associated with perceptual mark-
The decision system I ers are called perceptual actions.

The agent A key feature of markers is the constraint that there
are only a limited number of them, say less than ten

Figure 1: A formal model for embedded learning sys- (the system described below has two markers). The
tems with active sensory-motor subsystems. small number of markers and the limited number of

features associated with each marker keeps both the
internal representation and the number of possible ac-

The final component of the agent is the decision sub- tions much smaller than is possiole with conventional
system. This subsystem is like a homunculus that sits representations. If an object in the world is not bound
inside the agent's head and controls its actions. On to a marker, then it is invisible to the system (except
the sensory side, the decision subsystem does not have for the effects it registers in peripheral inputs). 1

access to the state of the external world, but only the In an indexical representation the system's sensory
agent's internal representation. Similarly on the motor inputs fall into three general categories, peripheral as-
side, the decision subsystem generates internal action pects, local aspects, relational aspects. Peripheral as-
commands that mte iuterpreted by the sensory-motor pects register general, spatially non-specific informa-
system. Formally, the decision subsystem implements tion about the world, such as the presence or absence
a bel.avior function B mapping sequences of internal of certain colors, shapes, and motions. Both local
states and rewards, (SI xR)* into internal actions, Al. aspects and relational aspects register properties of
The objective of the subsystem is to implement a con- marked objects. Local aspects register intrinsic, lo-
trol policy that maximizes its return, which is defined cal features of a marked object, such as its shape,
as a discounted sum of the reward received over time. color, and texture. Relational aspects register rela-

ctional properties between marked objects, such as their
return = E 7nrg~n (1) relative shape, relative color, and relative position.

n=0 As an example, Figure 2 lists the specifications for
is the rewvard received at time t, and - is a the indexical sensory-motor system used by a program

where r tween a t 1. (to be described later) that learns to solve a simple
block manipulation task. The system has two mark-

2.2 Indexical Representations ers, the action frame and the attention frame. The
T.e central ' "-nxka, rdx pril enta action frame is used for both perception and action,Th etal... vwhle.he.ttenionfrae isuse ony..o.pecep.on
tions is the marker, around which nearly all action and wh marker h as use nl tot ith
perception revolves. Markers are similar to variables, Each marker has a set of local aspects associated with
implemented by the sensory-motor system; they get it; these are the color and shape of the marked ob-
dynamically bound to objects in the world and remain ject, the height of the stack the marked object be-

bound to those objects until being bound to other ob- 'Agre and Chapman do not distinguish markers as overt
jects. Changing a marker's binding is accomplished by or perceptual in their systems. The two classes were in-
executing explicit actions specifically targeted for that troduced because the learning algorithm described below
marker. For example, a system might have a marker depends on distinguishing between actions that change the
M1 and an associated action Warp-M-to-Red, which world and actions that simply change the perception of the
is used to index and bind red objects to M. In this world.
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to be perceptual actions, they are overt actions in the
strictest sense since they affect the robots ability to
perform other overt actions.

Internal Action Co,,,,n.fd , The attention frame is a perceptual marker and has
A..,Fo,,eCnrMA, a repertoire of perceptual actions that are used exclu-

reonmcne srup-objcct::,.acdonrani,. sively for gathering additional sensory information. As
,[,t lacc-oist,,.,,.monfn. will be seen in Section 4, the attention frame plays an
kbjcct-i-hXW warp acton.franmc.Io ,td.,,,rptsd,,m. ,,,.en, important role in allowing the agent to disambiguate

acton rr,anccoo. (00. red.01 - gren. 10. bm) wA sp..ionfran-to blu,. world states.
warp-actimo.anc.to stack top.
war.p .1-,,a.Pc.,. . All told the sensory-motor system has a 20 bit input

},, am.fa rnck.bc,.(00.. . ) vector: (4 bits of peripheral aspects, 14 bits of local
Local &WoI-.i.m Aneu Amc o Fu cmm n . aspects, 2 bits of relational aspects); and 14 actions (8

}, . a.oo . pe.r -0tr.. gec' tO 'h)" overt, 6 perceptual).
riamc-shape wwp-a .frame.ro.b-uc,}rh.apcan-f.etooi.ko.o.. 2.3 Reinforcement Learning

} une~ta c-W & kk (00 0. 01 -.I_) wari-ae.frame-to-stack-bouxn.

n-ftsm-tak.bow warp-aunframc -to-b The task faced by the decision subsystem is a classicm,.f-amc-.mad

Rlatioal n.,i w ,p decision problem: given a description of the current
2 n.bw -"l.a state, a set of possible actions, and previous experi-

ence; choose the best next action. There are a number
of approaches to this problem, but in this paper we
are interested in decision systems that are based on
reinforcement learning methods (RLM). In our exper-
iments we have focussed on a representative reinforce-Figure 2: The specification for an indexical sensory- menit learning method known as Q-learuing [Watkins,

motor system containing two markers. The system has menthowever our result regarding the interactions
a 20 bit input vector, 8 overt actions, and 6 perceptual 1989],we our resut rerdep tion s
actions. The values registered in the input vector and between RLMs and active perception apply to virtu-

the effects of internal action commands depend on the ally all RLMs[Barto et a., 1989].
binding between markers in the sensory-motor system A decision system based on Q-learning maintains
and objects in the external world, two inter-dependent functions: an action-value func-

tion Q, and a policy function 7r. The action-value func-
tion, Q represents the system's estimate of the relative

longs to, whether or not the marked object is sitting merit of making a given decision. That is, Q(x, a) is
ongshe toblend whether or not the marked object sthe return the system expects to receive given thaton the table, and whether or not the marked object it executes actior, a in state x and follows its regular

is held by the robot. The system has two relational policycutes thereafter. Thetpolicydfunctionits isgthe
aspects; one for recording vertical alignment between policy (7r) thereafter. The policy function, 7r is the
the two markers and one for recording horizontal align- system's current estimate of the optimal decision pol-

the wo arkrs ad oe fr reordng oriznta algn- icy. This function maps internal states (x E Si) into
ment. Peripheral aspects include inputs for detecting action commands (a x A) and is defined in terms of
the presence of red, green, and blue objects in the the action-value function as follows:
scene, and for detecting whether the hand is currently
gripping an object. 7r(x) = a such that Q(x,a) = max(Q(x,b)) (2)

The internal motor commands for the system are bEAi
shown in Figure 2 on the right. The overt actions
are made with respect to the action frame. The That is, for a given state x, the policy function simply
two primary overt actions are for grasping and plac- selects the action a, that (according to Q) maximizes
ing objects. For grasping, grasp-object-at-action-frame the expected return.
causes the system to pick up the object marked by the Initially, the action-value function may be erro-
action frame. The action works assuming the hand is neous. However a procedure for incrementally improv-
empty and the marked object has a clear top.2 Sim- ing Q can be obtained by recognizing that an accurate
ilarly for placing, place-object-at-action-frame causes action-value function satisfies the following relation.
the system to place an object its holding at the loca-
tion of the action frame. This action also works assum- Qkxt, a) = L[tA+) -+- 7U kA t+) ()
ing the hand is holding an object and the target object where E0 denotes the expectation, Xt+ is the random
has a clear top. Other overt actions include actions for vare denotn the statimn , R ) is themoving the action frame. Although these may appear variable denoting the state at time t + 1, R(x) is thereward the system receives upon entering state z, and

2 Although this isn't strictly necessary since, unlike tra- U() is called the evaluation function and is defined
ditional planning systems (e.g. STRIPS [Fikes and Nilsson, as
1971]), the agent doesn't rely on any sort of internal model U(x) = maXbeA, (Q(X, b)) (4)
to predict the effects of actions but simply watches what
happens in the world. Based on these equations, the following rule can be
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4a)

fletilon cycle for I.steo O.,Earnln: wod MM I. W.k we 7-

I) Gcncrate a random number p. between 0.0 and 1.0.

2) if (p < 0.9 )
then action 4- A(W), where ? is the policy function and z is the current sute

3) Execute action, let x.. be the resulting state, and r the reward received / J. /

4) Compute the l-step error- "*,..b,,, /
error +- r + fl(x..,) - Q(z.action)

5) Update the action value of the selected decision: iL ,o o o
Q(z, action) t- Q(x. action) + a error r m ,:uo ioiogio, oioi0o

6) Update the decision policy (for state ):
5(x) .a such that Q(xa) - mabs. AkQ(xb)l

7) Update the evaluation function (for state X): 4b)
i(s) 4- Q(x,5(x))

8) Update the current state: x 4- x,.
9) Goto I 

Wfi su'

Figure 3: The steps in the decision cycle of a decision
system based on 1-step Q-Iearning. Mk..t',k

used for updating Q:3  1i,,ooooo,,o I ,,oIo,oo,,1o,oo I

Qt+i(xt, a) = Qt(xta)+o,(rt+i+TUt (xt+i)-Qt(xt, a))
(5) Figure 4: Generally the mapping between external

where Qt is the action-value function at time t, rt+l world states and the agent's internal representation
is the reward receives at time t + 1, and ce is a con- is many to many. a) shows how two different external
stant that affects the learning rate. This updating rule states can generate the same internal representations
is known as the 1-step Q-learning rule, and the term and b) shows how one external state may have more
rt + 7Ut(xt+I) is called the corrected 1-step truncated than one internal representation.
return. Watkins has shown that under the appropri-
ate conditions, a decision system using the 1-step Q-
learning rule is guaranteed eventually to learn the op- able interactions that prevent the decision system from
timal decision policy [Watkins, 19891. learning an optimal control strategy. These interac-

Figure 3 outlines the control procedure for one tions arise because the mapping between world states
simple decision subsystem implementing 1-step Q- and internal states is many to many. That, is, a state
learning. The first step in the procedure is to select s, E SE in the world, depending on the configuration
the next action. 90% of the time the system selects the of the sensory system, may map to several internal
action specified by its control policy 7r(x); the remain- states; and conversely, a single internal state, s, E S1,
ing 10% of the time it chooses an action at random. can represent several world states. We call this over-
The action is then executed and the subsequent state lapping between world and internal state spaces per-
and reward are noted. Once the effects of the action ceptual aliasing and say an internal state is percep-
are known, the error in the action-value function for tually ambiguous if it can represent multiple world
the current decision can be computed and used to up- states. Figure 4 illustrates perceptual aliasing in a sim-
date Q. Finally, 7r(x) and U(z) are updated to reflect ple block world domain in which we adopt the sensory-
changes in Q. The reason the decision system doesn't motor system defined in Figure 2. Figure 4a shows two
always select the action specified by its policy is that different world states (top) that generate the same in-
the action-value of a decision is only updated when ternal representation simply because the markers are
that decision is executed. Occasionally selecting a ran- focussed on the part the states that are similar. In the
dom action insures that each decision will be evaluated figure the (+) represents the action-frame marker and
periodically. In our experiments we implemeited a the (*) represents the attention-frame marker. Sim-
similar but slightly more complex learning procedure ilarly, Figure 4b shows that a single world state has
that uses a weighted sum of n-step error terms and is multiple internal representations, each corresponding
based on Sutton's '11) methods. (See [Sutton, 088, to a different placement ot the attention-frame marker.
Watkins, 1989] for details.)

Perceptual aliasing has a devastating impact on the
3 Perceptual Aliasing decision system's ability to learn an adequate con-

The straightforward integration of indexical represen- trol policy because it causes the system to confound

tations and RLM decision systems lead to undesir- world states that it must distinguish in order to solve
the task. The easiest way to illustrate the problem3See [Barto ct al., 1989] or [Watkins, 1989] for a detailed is to consider tasks in which the decision system re-

derivation. ceives a fixed reward upon achieving a particular goal
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state g E SE, and otherwise receives no reward. In
this case, it can be shown that the state evaluations".
U(s), and the action-values, Q(s:a), of the steps in s .5

the optimal policy monotonically increase as the sys- MO Wa .25 41,,.l LX,0M us .$=
tern approaches the goal state. Essentially, the op- Q(S6.x, v(S&.2 W. .U , QS.4.V Q.)iO

timal policy corresponds to a gradient ascent of the OS6..,-61 Q( SLO).O4 QI..J.S-O ( t l ( )*

evaluation function. The upper graph in Figure 5
illustrates this result schematically for the optimal Mapping from world state space

sequence S1,S 2 ,S 3 ,S 4 ,s 5 ,g, for getting from sl to g. tointemalstaespaceis11exccpt
Each node in the graph represents a world state and for S Ss, mch botmt S

each arc represents a possible decision. Solid arcs rep-
resent optimal decisions and dotted arcs represent non-
optimal decisions. Shown below each state is its cor-
responding evaluation, U(s), and below each decision L(S .a 2S8

is its corresponding action-value, Q(s, a). - Q(,) = &J - 2U8

If the decision system has direct access to the world Q, M I,). -o

states, experience has shown that reinforcement learn- IS, - 2U8

ing methods can successfully learn an adequate if not ( , k)-2150

optimal decision policy4 . Unfortunately, the decision I.: Q(S . i)= 26S

system does not have access to the state of the ex- 

,

ternal world, but necessarily accesses the world via
a relativized representation generated by the sensory sl _. G1
system. This fact has been widely ignored in previ- 1. -
ous work on reinforcement learning. Existing systems LXs,-2150 LKs5=336

ignore the issue of perception completely or assume a Q(t. 4)1720 QsL . 2419

one to one mapping between the external state and
the internal representation. Such simplifications are
natural in toy domains but become painfully inade- Figure 5: An example of the effect of perceptual alias-
quate when scaling to larger problems. If the mapping ing on the evaluation function. The top graph shows
between the external world and the internal prepresen- a state transition diagram for a simple problem. In
tation allows for perceptual aliasing, then the optimal this case, the system receives reward only upon enter-
policy may become unstable with respect to the learn- ing state G and the evaluation function monotonically
ing algorithm. That is, because of perceptual aliasing, increases as the distance from the goal decreases. The
the learning algorithm will actually prevent the system bottom graph shows the internal state space for the
from settling on the optimal policy, problem when the sensory system confounds states S2

The lower graph in Figure 5b shows how this in- and s5. In this case, the evaluation function is no
stability arises. Consider the mapping between the longer monotonic and the optimal decision policy is
world states and the internal states for the chunk of unstable.
the state spaces shown. The mapping is one to one
for all states except external states S2 and s5, which
map to internal state s' If we fix the decision polic increase as the system approaches the goal. Insteadso that the system 90% a local maximum in the evaluation function arises at

afollows the optimal policy We call this maximum an aberrational maimum
the time and chooses a random action 10% of the time s'"
and allow the system to estimate its evaluation func- since it doesn't reflect the true utility of the underlyingdeso rol em i f wexi rla x our rholona the ei sion

tion, U and action-value function, Q, by running the decision problem. If we relax our hold on the decision

systempolicy and allow the decision system to adapt, we find

since the state evaluation and action-value functions the optimal policy is unstable! Not only can't the sys-
o they take on val- tem find the optimal policy it actually moves away

rereen xpctdreurs fr ~thy ae naa from it. In general, the system wvill oscillate among
ues somewhere between the corresponding values for
S2 and s5 . That is, U(s 2 ) < U(s' ) < U(s5) and policies, never finding a stable one.
Q(S 2 , ai) Q(s', a,) _ Q(ss, a,), where ar is the op-
timal actions associated with s . Second, the state 4 eai'"g wih i"ercepuai ." asi g
evaluations and action values do not monotonically The main result in this paper is a decision system

based on reinforcement learning that can cope with
'For 1-step Q-learning, Watkins has shown that appro- perceptual ambiguity. The new algorithm leads to

priately designed decision systems can be guaranteed to a control architecture that not only learns the cor-
converge on the optimal policy. Proofs for other, more
general algorithms do not currently exist but many ex- rect overt actions needed to solve a problem, but also
perimental systems have been built that learn optimal (or learns to focus its attention on the objects in the world
near optimal) policies [Anderson, 1989, Barto et al., 1983, that are relevant to the task. The design is based on
Clocksin and Moore, 1988, Watkins, 1989, Whitehead, three observations. First, in active perception a world
1989]. state can be represented by multiple internal states,
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one of which is usually unambiguous. That is, in any Q uyuara a
1) Fxc, te Perceptual cycle . Sencrttin S, a t

given state, if the system looks around enough it will ofuternsnt,o fror tecurrentwsate.

eventually attend to those objects that are relevant to 2) hsttate the utilityofthc cuent wldstte,

the task and the internal state associated with that 3, ...s 1s. Ps m
3)}Etcuz Update-Ovecrt.-Q.Fsti~matcs badon

sensory configuration is unambiguous. Our algorithm U, - .i ra lion, I. hem r, is the reward rei cd

depends on the existence of one such unambiguous in- st i,. state s (we blo)
ternal state for each world state. Second, perceptually 4) Dt nextactio wil fool rh w be ,no.
ambiguous states disrupt the decision system's ability ftamn.

If fol;-w0!=P-9hc-y then o. opt s .T

to learn by promising erroneously large expected re- t eso.p-F5)5clect next ovcjt action:

turns. If we can detect perceptually ambiguous states Jrt-,.a
and actively lower their return estimates, we can mini- a lin 4- 1 cS, ,uch that U(I) .m i.s. U(,)

mize their negative affects. Third, if the world is deter- t1 e 4- ocAO such that Q(lio.a) IWAaI.,, (Q(lios.b)I

ministic, then perceptually ambiguous states will pe- io ,,,+R(Ao) :::chooscon vdr I

riodically overestimate their true evaluations, whereas 6) 180M 4-ac to obtaata "wo ld st ,ts and l.

the incidence of overestimation in unambiguous states

diminishes with time. Therefore, perceptually ambigu-
ous states can be detected by monitoring the sign of
the estimation error in the updating rule, Equation 5. 1) inttt thee .Q lue:

The new algorithm is outlined in Figure 6. The sys- r,. (",+ rU,)- ti, 1. ,, )2) It(g, , < 0) then.

tem recognizes two classes of action; overt actions and thelIonisssted ofbitng ambiguous so suppress it.

perceptual actions. Overt actions change the state of (io,1. o-4, 1) +- ao

the external world whereas perceptual actions change othewe up.date it using the standard I.-ste Q-karng rule:

the m apping between world and the internal states . ,th,&t* " . to , "oi,+aero

The main decision cycle is the overt cycle which con- f(,.o -eac,0-Q~-a .,, 4. do+,- :: d<a

cerns itself with choosing overt actions in an attempt
to maximize return. Embedded within the overt cycle
is a perceptual cycle. After each overt action, the sys- EiuiCyl1) hathir S,: S, 4- (s4  ,whee , as the c x atn interal stat.

tem executes a series of perceptual actions (the percep- 2) no a ,ns#:S (in urpbrstlom a , 4)

tual cycle) in an attempt to assess the true state of the 0 dcide wror ot toflowpocy

external world. The objective of the perceptual cycle folopyfthtbnii') seect~ next pe ptal .aion
is to find an internal state that unambiguously repre- Ifrollowingpoicythenp-at *- a such that Q(s,. a) = ak&.l- 0,, b))

sents the current world state. Upon completion, the odaie ,.e Qa- ) - R(A( )

perceptual cycle returns a list of the internal states en- iii execute p-a to obtaina mwainal state Iiv) update Q es timate for the p-act"

countered during the perceptual cycle, Si. Each state xu p-,t,) - ,es,,. rpc) + a (U(Y. c ,,F.,,

corresponds to a different view (representation) of the v) a Yto S,: S, +- S, U ()
va)i update s,,: ,4-

current external world. The utility of the world state 3) Rt- S,
at time t, Ut, is estimated as the maximum utility
of the individual internal states, mazxes,(U(s)). As Figure 6: An outline of the steps executed by the new

will be described below, our algorithm for adjusting decision system designed specifically to overcome the

the utility estimates of internal states severely lowers difficulties caused by perceptual aliasing.

the utilities of perceptually ambiguous states. Conse-
quently, utility estimates for world states tend to be rhe standard Q-learning algorithm defines the
based on actual utilities of unambiguous states and not action-value of a decision as the return the system
biased by aberrational maxima associated with percep- ac to ecei in at system
tually ambiguous states. Once Ut has been estimated, expects to receive given that system makes that de-
the Q estimates for the previous overt action are up- cision and follows its policy thereafter, as character-

dated. The overt cycle then continues by selecting an ized by Equation 3. However, for perceptually am-

overt action to execute. Some high fraction of the time biguous states this definition leads to artificially high

(90%) the system chooses the action consistent with action-values (aberrational maxima). We have devel-

its policy; the rest of the time (10%) it chooses an ac- Oped a modified learning algorithm that is based on

tion at random. When following policy, the action is Q-learning but incorporates a competitive component.

c h o s e n b y s e a r c h i n g a m o n g a c t i v e i n t e r n a l s t a t e s , S , T h . ..c o p n n . . . . .o .......t h ...t .n ..... ..

for the decision with the largest action-value. Once perceptually ambiguous states while allowing action-

an overt action is chosen, it is executed and the overt values for unambiguous states to take on their nominal

cycle begins anew. values. The result is that utility estimates for world
states are more accurate since they are based on pre-

"As a side effect, overt actions may also change the per- dictions from unambiguous internal states and not on

ceptual configuration, but perceptual actions are not al- perceptually ambiguous states.

lowed to affect the world state. In the indexical sensory- Our modified learning algorithm is based on iden-
motor system described in Figure 2, the action-frame has tifying one internal state, among St, that takes the
only overt actions, and the attention-frame has only per- lion's share of the responsibility (credit or blame) for
ceptual actions. the outcome of the current decision. We identify this
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state as the lion. If the system is following its pol-
icy then tile lion is defined as: lion = si such that
Q(s,a) = max1ES,,aGAo(Q(s,a)). When the sys-
tem chooses a random action, arandom, the lion is .
defined as: lion = sj such that Q(sz,arandorn) = [7 ._ n-1 Fl- .
maxJEs,(Q(s, arando,n)). The idea underlying the use
of a lion is that the lion state should be an internal
state that unambiguously represents the current world 0 00
state, and once such a state is found it is used to di-
rect all actions associated with the world state it rep- . l_ l
resents.

Perceptually ambiguous lions are detected and sup- [' FIR F R - ] , Q- .el f _..Q
pressed as follows. If the action-value associated with (D177777. (Q Q""" .01
the lion, Q(st, at), is greater than the estimated return
obtained after one step, rt + 7 U(st+i), then the lion
is suspected of being ambiguous and the action-value Figure 7: A sequence of world states in a typical solu-
associated with it ;- suppressed (e.g reset to 0.0). Ac- tion path for the block manipulation task. Depending
tively reducing the action-values of lions that are sus- upon the placement of the attention frame, states 1,
pected of being ambiguous gives other (possibly un- 3, 4, 5, and 6 may be represented ambiguously.
ambiguous) internal states an opportunity to become
lions. If the lion does not over-estimate the return it is
updated using the standard 1-step Q-learning rule. To lowing policy, the action selected is the perceptual ac-
prevent ambiguous states from climbing back into con- tion ap such that Q(s, ap) = maxbEA,(Q(s, b)) where
tention, the estimates for non-lion states are updated s is the system's current internal state. That is, the
at a much lower learning rate and only in proportion policy calls for perceptual actions that lead to internal
to the error in the lion's estimate. The observation states with maximal expected returns.
that allows this algorithm to work is that ambigu- The rules for updating action-values for perceptual
ous states will eventually (one time or another) over- actions are those for standard 1-step Q-learning and
estimate action-values, consequently they will eventu-ally be suppressed. On the other hand, it can be shown are shown in Figure 6 within the Perceptual Cy-
tay an sunambigosed On t be ie . ill not ve r cle procedure. These updating rules lead to action-that an unambiguous lion is stable (i.e. will not over values that estimate the average utility of the statesestimate its action-value) if every state between the that result from executing a perceptual action. Since
lion's state and the goal also has an unambiguous lion. unambiguous states tend to have higher utilities than
Thus, ambiguous states are unstable with respect to li- ambiguous states (which are suppressed), the effect is
onhood, while unambiguous states eventually become
stable. The steps for updating action-values are shown to choose perceptual actions that lead to unambiguous
in Figure 6 under the Update-Overt-Q-Estimates internal states.

heading.
The steps in the perceptual cycle are sketched in 5 An Example

Figure 6 under the Perceptual Cycle heading. The To test our ideas we have implemented a system that
objective of the perceptual cycle is to accumulate a learns a very simple block manipulation task. The task
set of internal representations of the external world, goes as follows The agent is presented with a pile of
one of which is unambiguous. This is achieved by blocks on a conveyor belt. The agent can manipuilate
executing a series of perceptual actions. In our cur- b yopckin n d lt. b he agentrent implementation, each perceptual cycle executes the pile by picking and placing blocks. When the agent
a fixed number (n = 4) of perceptual actions. This arranges the blocks in certain goal configurations, it
has proven adequate for our experiments, however it receives a fixed reward of 5000 units. Otherwise it re-is asyto magnevarabl legthpecepualcycesin ceives no reward. When the agent solves the puzzle
is easy to imagine variable length perceptual cycles, in the pile immediately disappears and a new pile comeswhich the cycle terminates as soon as an unambiguous down the belt. If the agent fails to solve the puzzle
internal state is found or increases when ambiguous after 75 steps, the pile falls off the end of the conveyor
states are encountered. 6 The algorithm for selecting a.a . il . ,.. f.t A can ha..
actions w ith in the perceptual cycle is sim ilar to the and - .... . ...... ... .... ....... .. A .... can have
algorithm for choosing overt actions in the overt cycle. any number of blocks in it and can be arranged in ar-The vast majority of the time, (90%), the system fol- bitrary stacks. A block can be any one of three colors:
Theoast moiydasmalfration of the time, (90%),m f red, green, or blue. The robot's sensory-motor system
lows its policy and a small fraction of the time, (10%), is the indexical system described in Figure 2. Also, we
a perceptual action is selected at random. When fol- make the standard assumptions that a block can only

6Actually, it may be possible to eliminate the distinc- be picked up if its top is clear and that a block can
tion between the overt cycle and the perceptual cycle and only be placed at locations with clear tops.
integrate them into a single cycle, in which the action (ei- The particular task w'e studied rewards the agent
ther overt or perceptual) with the highest utility is chosen. whenever it picks up a green block. That is, goal
We are currently experimenting with such an algorithm, configurations consists of of those states in which the
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robot is holding a green block. We chose to study 60

this task because it is very simple but adequate to
demonstrate the difficulties cause by perceptual ambi-
guity. These problems can be seen in Figure 7 which 5o
shows the sequence of world states the agent traverses
in solving one instance of a problem whose initial state
consists a red block on a green block and a blue block 40
on the table. Depending on the placement of the at-
tention frame, world states 1,3,4,5, and 6 may have
ambiguous internal representations. If the attention Avg tcn to 'o
frame is fixed on the green block, then the states are olnon
unambiguously represented. However, if the atten-
tion frame is fixed on tile blue block then the internal
representation of the states is ambiguous. For exam- 20

ple, in state 6, if the attention frame is fixed on the
blue block then this state cannot be distinguished from
other world states that are identical except with addi-
tional blocks above the green block. The system over- _ nml
comes ambiguities by learning to direct its attention
frame to the green block, which provides sufficient ex- 0
tra information (the height of the green stack) needed 0
to disambiguate the situation. 0 ,me 200 o 00 '10

Experiments were performed to obtain quantitative
data on the new decision system's performance. Each Fi
experiment consisted of presenting the robot with a gure 8: A plot of the average number of steps re-
sequence of 500 piles of 4 randomly configured blocks, quired to solve the block manipulation task as a func-
with each pile containing one green block. The robot's tion of the trails seen by the agent.
performance is illustrated in Figure 8. The figure
shows the number of steps required to solve the prob- ior. The new algorithm was demonstrated in a system
lem (averaged over 20 runs of 500 piles) as a function that leans alsim blc manstatin a s
of the number of trials seen. Initially the number of that learns a simple block manipulation task that is
steps required is high, near the maximum of 75, since beyond the scope of previous reinforcement learning
the robot thrashes around randomly searching for re- systems. Although our systems are still very primi-
inforcement. However, as the robot begins to solve a tive, we find the results encouraging and are hopeful
few problems its experience begins to accumulate and that continued effort will yield systems capable of more
it develops a general strategy for obtaining reward. By sophisticated behavior.
the end of the experiment, the time required to solve 6.0.1 Acknowledgments
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Abstract rules to improve their search performance in planning
domains. Recent research in explanation-based learning

Many mahine learning systems learn from (e.g., Minton, 1988; Mooney, 1988) has demonstrated
their problem solving experience in single- how one problem-solving example can provide relevant,
algeth oans. Thisopperdiean cost effective knowledge within a broad domain. In a
algorithm to learn complex, relevant, cost domain with more than one agent, however, credit and
effective plans for a broad class of blame assignment is more difficult, the next choice point
competitive, multi-agent domains. Such a for each agent is not absolutely predictable, and the
plan, called a fork, is extracted from the absolute merit of goal states and paths to them is difficult
seplnato of utua silaiure repens ao to assess. There has been little work on learning useful
set of mutually overlapping simple plans to plans for broad domains with more than one agent.
achieve a goal. Each plan is non-linear, Minton (1984) described an algorithm that learned
provides alternatives for contingencies, is recognition rules for plans in a two-agent domain. These
applicable both offensively and defensively, rules, however, were limited to chess and slowed the
and has a clear upper bound for its execution system "dramatically."
time. This paper describes the representation This paper describes an algorithm to learn a class of
and implementation of forks in HOYLE, a extremely powerful plans in a domain where two or more
system to learn to play any two-person, perfect adversarial agents perform some sequence of
information game well. Together with a weak unretractable, possibly interfering actions in a race to
theory for its general domain, HOYLE has achieve some goal. The algorithm has been implemented
used forks to learn to play a broad variety of within HOYLE, a machine learning program for two-
games perfectly without extensive forward person, perfect information games (Epstein, 1989a). The
search in the game free. In more challenging plans are called forks; they are game-indcpendent,
games, however, the selection of a relevant partially ordered, and applicable both offensively and
plan and its binding to the current game state is defensively. Each plan provides alternatives for
unacceptably costly. This paper details the contingencies and has a known upper bound on its
significantly improved performance directly execution time. Together with a weak theory for its
attributable to learning about appropriate general domain, HOYLE has previously used such
forks, and the heuristics that guard against preselected forks to learn to play a broad variety of
unacceptable degradation of performance as games perfectly without extensive forward search in the
new knowledge is acquired. game tree. In more challenging games, however, the

selection of a relevant plan and its binding to the current
1. Introduction game state is unacceptably costly. The algorithm

discussed here enables HOYLE to learn a relevant planFrom their problem solving experiences, many machine asaexlntoofaigelsngxprncndo
learningas an explanation of a single losing experience, and to
thaecarni proamserct aereformla e inform-agt improve its performance significantly. Heuristics guard
that can improve their performance in single-agent against unacceptable degradation of performance as new
domains. Mvany of iese programs (e.g., Fikes, Hart, & knowledge is acquiredl, and support the correct offensive

Nilsson, 1972; Korf, 1985; Laird, Rosenbloom, & and defensive application of these plans.

Newell, 1986) have learned macro-operators for

planning. Others (e.g., Langley, 1985; Minton, 1988;
Mitchell, Utgoff, & Banerji, 1983) have learned heuristic 2. An Overview of HOYLE

__________________________HOYLE is a system that learns to play a broad class of
*This work was supported in part by NSF DCR-8514395 two-person, perfect information games extremely well.
and PSC-CUNY 668287 and 666397.
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A two-person, perfect information game is one in which measured in average number of moves.
all information about the game is disclosed and equally HOYLE is a limitedly rational program that learns from
available to its two participants, e.g., there are no closed its experience. Compared to traditional one-game
hands and no uncertain outcomes as with di..e. Any such programs (e.g., Anantharaman, Campbell, & Hsu, 1988;
game can be represented as a finite. ,:irected graph (the Berliner, 1980; Berliner & Ebeling, 1989; Lee &
game graph) in which a node (s'ate) both identifies the Mahajan, 1988; Rosenbloom, 1982; Samuel, 1967;
participant whose turn it is (A.e mover) and describes a Schaeffer, 1988), HOYLE does relatively little forward
possible arrangement of ,ne material (the board and search into the game tree, has a limited memory, and has
playing pieces). For the -,ames considered here, there are r.a heuristics for symmetry. Instead, HOYLE makes
exactly two participants: Player (the one who moves decisions based on a variety of advice. HOYLE's thesis
first) and Opponent. Player and Opponent are the roles is that, in learning to play any new game, a person
in a two-person game. During a contest (a path in a actually has relevant prior knowledge about it, a weak
game graph that represents one complete experience of theory for the general domain of two-person, perfect
the game), Player tries to arrive at a terminal node information games. This weak theory encapsulates the
categorized as a win and Opponent tries to arrive at a perrjn's experience from contests at other games, and
terminal node categorized as a loss. enables her to learn to play any such game well.

Since from any state there are usually many legal HOYLE's weak theory includes a set of valid, but
moves, the challenge in play is for the mover to select the deliberately narrow, viewpoints (HOYLE's Advisors) that
best move, i.(,., (ene that will maximize the muver's are modified by HOYLE's experience, i.e., learn. When
opportunity to arrive at a desired result, while it is HOYLE's turn to move, each Advisor generates one
minimizing the non-mover's chances to arrive at her own or more comments about the current state. To select a
desired result. True expertise at a game is perfectly move, HOYLE weighs the comments carefully against
backed up knowledge from its entire game graph. Most each other (Epstein, 1989b) according to the game, the
interesting games have extremely large game graphs; for contest, and the nature of the participants. Among
them, true expertise through exhaustive search of the HOYLE's Advisors is Pitchfork, a procedure that exploits
game graph is computationally intractable. Instead, certain very powerful plans, called forks. The way this
computer game playing programs usually approximate Advisor learns the particular forks effective in a given
true expertise by heuristic search in the game graph. game is the subject of this paper.
From a given node, such a program estimates the unseen
finishes of deeper intermediate nodes and backs up this 3. An Example of a Fork in Execution
approximate knowledge through the game graph to the
given node to select the best possible legal move. Assume a domain where a finite set of actions is
Human experts can foil such programs by executing available, two or more agents alternately take a single
plans whose threat lies at a deeper level than the action, and no action may be taken by more than one
programs search. agent. A simple plan in such a domain is an unordered

HOYLE accepts as input a representation of some set o,^ unretractable actions that achieve a goal.
game: its material, interface, and rules. The interface Informally, a fork is two or more overlapping simple
provides the graphics for the game and interactive plans belonging to the same agent, directed toward
communication with another participant through the different goals, and having one or more common actions.
keyboard. The rules describe the legal moves, when a (Although the implementation described here is for
contest at the game terminates, and how to determine the games and two agents, the algorithm is limited only by
outcome of that contest. From this input HOYLE is able the definitions of simple plan and fork.) Figure 1 shows
to play any such game correctly, i.e., according to the an example of a fork used in tic-tac-toe where Player's
rules; HOYLE's task is to learn to play it perfectly. most recent move (action), in position 3, threatens a win
Without perfect knowledge, the perfermance of a game-
playing program must be evaluated empirically, by X
play ing conlest. OYE. is evr.; hted naginzt tWo _21 X

I ,' L 
I 

i , .',) 

id

criteria: how well it learns to play in a tournament (a0
sequence of contests where the participants alternate
roles) against a human exper: and how quickly it 0
achieves that skill. Measures of skill include ability to
win, ability to draw, and the duration of contests played, Figure 1: A Fork
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2346789 2l 23467892 34 78 X1 32 3 4 6 7 8 9

Rows Columns Rows Columns Minor
1 3 1 3 2 3 2 3 Diagonal

Strategic Map for Player X Strategic Map for Opponent 0

Figure 2: A Game State and Its Strategic Maps

in both the first row and the third column (the goals). set of bottom vertices, and E a set of undirected edges
Opponent is defenseless before this onslaught. from vertices in T to vertices in B. In Figure 2, for

Banerji (1980) devised a graph representation for the example, positions 2, 3, 4, 6, 7, 8, and 9 are available to
mover's situation in a game focused upon certain patterns both participants; rows 1 and 3 and columns 1 and 3 are
called "kernels." An early implementation of Banerji's simple plans for Player; and rows 2 and 3, columns 2
ideas (Koffman, 1968; King, 1970) used a few simple and 3, and the minor (from upper right to lower left)
kernels to suggest moves in several games, like tic-tac- diagonal are simple plans for Opponent. Figure 2 shows
toe. HOYLE has continued this research: it extends the strategic maps for Player and Opponent for the given
Banerji's original terminology, defines and explains the board position.
significance of a fork's depth, explores the generation and Certain connected subgraphs of a strategic map, induced
application of forks, and integrates forks with other by a subset of its bottom vertices, represent the
techniques to support both offensive (goal-forwarding) overlapping of more than one of the agent's simple plans.
and defensive (goal-inhibiting) play (Epstein, 1990). These subgraphs are denoted here as F-dn, where F

stands for "fork," d is its depth, to be defined shortly, and
4. Definition and Representation of Forks n provides a distinct label. For example, in a subgraph of

the form F-31 in Figure 3(a), either action represented
In a task with only unretractable actions (actions from by a degree-two vertex at the top furthers both the simple
states that do not lie on a cycle in the search space), a plans represented by the bottom vertices adjacent to it.
strategic map for any state can be constructed for each Such an action, on the left for example, transforms F-31
agent. A strategic map for a state and agent is a labeled, into Figure 3(b), two connected graphs, of the forms F-i
undirected bipartite graph in which one set of nodes (the on the left and F-21 on the right. (Immediately before
top vertices) is labeled with the actions available to that her most recent move into position 3 in Figure 1, Player's
agent from that state, the second set (the bottom vertices) strategic map was isoinorpnic to F-21, where the top
is labeled with the agent's simple plans to achieve her vertices represented 2, 3 and 9 and the bottom vertices
goal and an edge joins any action available to an agent represented Row 1 and Column 3.) Subsequently taking
with each simple plan it forwards. Thus the strategic the action represented by tie second degree-two position
map for an agent at a state represents all the goal- transforms Figure 3(b) into Figure 3(c), three copies of F-
forwarding options open to her. A strategic map may be 1. Thus there ate two actions represented in F-31 that,
dcnoted as <TB,E>, where T is a set of top vertices, B a taken in any order, forward among them three simple

F-31 F-1 F-21 F-1 F-1 F-1

I' ,,AT T T T T/

Fg (b) () (d)

Figure 3: Applications of tile Fork 1:-31
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plans. 5. The Application of Forks in Two-agent
Formally, a fork is defined to be either F-i = Domains

<t,{b,{(t,b))> with distinguished vertex (key) t, or an
undirected bipartite graph containing at least one Because each agent in every state has a strategic map,
distinguished top vertex whose removal, along with its forks are zpplicable as both offensive and defensive
edges, disconnects the graph into two or more connected plans. In many search spaces, plans that guarantee the
components, each of which is also a fork. The set of all achievement of a goal state with d actions can be
forks is completely and correctly defined recursively as: delayed, or even destroyed, by defensive interference
* F-1 is a fork. from another agent. The bast defense against any
* The following construction produces a fork: Copy any opposing fork is to take the action in one of its keys

n forks. (They are the parents of the new fork under yourself, permanently eliminating many of the other
construction.) Add a new top vertex v. (This is the join agent's simple plans. For example, if one agent has a
of the new fork under construction.) Add an edge from v strategic map containing F-31 from Figure 3(a), the other
to at least one bottom vertex in each parent. agent can destroy the fork by taking the action in either
- Nothing else is a fork. of the degree-two keys (say, the right one), immediately
Observe that removal of the join and its associated reducing that strategic map to Figure 3(d). In what

edges transforms the graph into n connected graphs, its remains of the first agent's strategic map, the only
parents, each of which is itself a fork. F-21, for example, remaining simple plan is readily prevented on the other
is the result of joining two copies of F-1. The removal of agent's next turn. For an extended example of how this
a key and its associated edges is called an execution of technique results in highly skilled play see (Epstein,
the fork. 1990).

The fork F-i has depth 1, and for d > 1, afork of depth d Strategic maps must be thoughtfully applied in the play
is a fork such that removal of any one of its distinguished of two-person, perfect information games. If the mover
vertices produces at least one connected component that has more than one fork in her strategic map, the best
is itself a fork of depth d-1, and d is maximal. By this offensive move (action) is always a key in the shallowest
definition, for example, F-21 is a fork of depth two and fork, that is, pursuit of her shortest certain plan to a win.
F-31 is a fork of depth three. When some subset of the (If F-1 is detected, this reduces to the common sense
bottom vertices of an agent's strategic map induces a theory "If you see a winning move, take it.") If one
copy of a fork, the depth of that fork may be interpreted participant's strategic map contains a fork F of depth d, a
as an upper bound on the number of actions until the win in d turns is guaranteed, even when met by optimal
completion of one of those goals by the agent. For defense, but only when the second participant forwards
example, if F-31 is such an induced subgraph, the agent no offensive plans of her own and it is the first
is certain to achieve one of her goals after three actions. participant's turn. If the second pursues a shallower fork
(Reaching a goal state sooner is possible, of course, but of her own, the first will be forced repeatedly to defend
against optimal defense, success will require three against it, delaying or perhaps even losing the ability to
actions.) The keys and depth of a fork are non-trivial pursue F if the set of moves is small. If the second
computations, however (Epstein, 1990). It is not the participant is the mover and plays a key in F, the first will
case, for example, that every fork built by combining two have to search elsewhere for a fork.
smaller forks takes longer to execute than its The application of forks to two-person, perfect
components. How quickly a fork can achieve its information games requires extensive computation, both
objective, quantified here as its depth, must be computed before and during play. For a machine to exploit forks to
as the minimum of all fork depths arising in the map their full advantage, it would have to identify correctly
when the first agent takes any top vertex and then the every fork, its depth, and its keys in both strategic maps.
other agent takes another. One way to recognize forks is to maintain a library of

In summary, a fork of depth d represents a game- them, and search for subsets of bottom vertices in each
independent set of mutually overlapping simple plans for strategic map that induce a subgraph isomorphic to an
a single agent to achieve a goal alter at most d actions. c,,m, ,, t of thee rc.w ..,, -,,- - - . r Iin ,o,io;,... .

The existence of at least one key in every fork imposes a constructive definition of a fork to build such a library is
partial ordering on the plan, and provides alternative non-trivial, however. The definition generates infinitely
plans: the parent forks that appear as vertices are many forks at any given depth, can generate isomorphs
removed. The power of a fork lies in the ability of one of the same fork, and provides only an upper bound on
action to forward more than one plan. the depth of the new fork. HOYLE's initial foray into
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two-parent fork construction through depth four approximately equally between offensive search of its
demonstrated the anticipated a combinatoric explosion, own strategic map and defensive search of the other
From the single fork F-I at depth one, HOYLE built one participant's strategic map. Search heuristics seek the
fork at depth two, 5 distiict forks at depth three, and 520 shallowest forks in both maps, one depth value at a time.
distinct forks at depth four. Ideally, for any given contest Each fork is screened before search to confirm that the
state, HOYLE should construct its two strategic maps number of its top vertices does not exceed the current
and then search for forks in them. Search for induced number of legal moves in the state and that no bottom
isomorphic subgraphs is notoriously expensive, however, vertex is of degree larger than the number of positions
well beyond the resource allocation of a limitedly required for a win. Finally, Advisors other than Pitchfork
rational system like HOYLE. Instead, a set of heuristics have access to the strategic maps it constructs; they
was developed for HOYLE to capitalize on a limited recommend moves based on properties of the strategic
library of two-parent forks, both offensively and maps and subgraphs of then. Further details and a
defensively. complete algorithm appear in (Epstein, 1990).
HOYLE's heuristics exploit the stiategic map in a For the simplest games in HOYLE's testbed, this

variety of ways. HOYLE searches only for two-parent approach, in combination with the other Advisors and the
forks and only in connected components of a strategic control structure, was able to learn to play with true
map. The program divides its allocated resources expertise. For more difficult games, particularly those

X X (2 1) (3,4) Partial History

00
(a) -k- I

XX X (3,2)
X X0 (2,3)

Column 1 Row 3 X (3,3)
( (2,2)

X X (2,1) (3,1) (3,4) (2,2) X (3,1)
41 0 Resign

() X X

Column 1 Row 3 D

X X (2,1) (3,1) (3,4) (2,2) (3,3) (2,3)

x i Column 1 Row 3 D d

X J X (2,1) (3,1) (3,4) (2,2) (3,3) (2,3) (3,2)

(d)ZE I ,
Column 1 Row 3 D d

Figure 4: Learning a Fork
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with larger boards, exhaustive search for induced isomorphic to a copy of F-1 and a copy of F-21.
isomorphic subgraphs is far too slow. Similarly, the graph in Figure 4(c), isomorphic to a copy

of F-31 and a copy of F-i, is before Player's move in
6. An Algorithm that Learns Forks (3,3) and HOYLE's (2,3) block of the threat on the minor

When it i3 HOYLE's turn to move, its Advisor Panic diagonal. Finally, the graph in Figure 4(d) is the result ofWhenit s HYLEs tun t moe, ts Avisr Pnic withdrawing Player's move in (3,2) and whatever move
looks to see if the non-mover has a move that would win wOYLE had made immediately before it. (That move

the game (called a threat). If Panic finds any threats, it introduced no new edges to the graph.) At this point,

looks for moves that would make all of them impossible intructon eges to the graph At is pois

on the non-mover's next turn. In the event that Panic reconstruction stops because the graph in Figure 4(d) is

detects a threat it cannot block, it correctly tells HOYLE connected, i.e., HOYLE has learned a fork of depth 4.

to resign, because it is overwhelmed. This resignation is Without its labels, the fork in Figure 4(d) is both a
recorded in the history, the trace of the contest. In a generalization of HOYLE's experience in a contest and a

posiionl gme onelik ti-ta-to whre errtor is specialization of its recursive concept definition for
positional gamen(one elike tic-tac-toe where territory is forks. Empirically, this plan has been found quite useful
occupied and can anot be released), a resignation by Panic both offensively and defensively in other Qubic contests.
is tantamount to an admission that the program has been Because it is game-independent, it could be relevant to

forked. HOYLE takes a history of such an experience, other games as well.

and backs up two states at a time to explain its defeat.

This procedure uses the constructive definition of fork in
Section 4 to explain how the loss was due to the 7. Measuring Learning in a Tournament
execution of a fork and precisely which fork it was. The Learning in a tournament can be measured by changes in
learned fork, together with the heuristics HOYLE has for periormance. When a game is well-understood
applying forks, is fully operational. mathematically, the cumulative number of wins and

Consider, for example, the partial history of a Qubic draws for true expertise can be plotted as a function of
contest HOYLE lost as shown in Figure 4. Qubic is a the number of contests played (the goal curve). In a
three-dimensional version of tic-tac-toe played on four HOYLE tournament, the cumulative number of wins and
parallel four-by-four grids, where a win is four in any draws for the program is calculated as a function of the
straight line. Board positions in the plane shown are number of contests played (the performance curve).
referenced here by matrix coefficients; the other planes, While the rate of change in the distance between a
where the other four O's lie, are omitted. The major performance curve and the goal curve is decreasing, the
diagonal, from the upper left to the lower right, is program is learning to play better. Once its performance
denoted as D, and the minor diagonal as d. In Figure 4(a) curve consistently parallels the goal curve, HOYLE may
it is HOYLE's turn to move as Opponent (O's), but the be said to have learned to play with true expertise. If a
strategic map for Player (X's) indicates that there are program loses repeatedly, but is able to prolong its
threats at (2,1) and (3,4); taking Panic's advice, HOYLE contests as time passes, it is learning; a program that
resigns. Now HOYLE constructs an explanation of its wins or draws repeatedly and is able to achieve that result
loss, beginning with Player's final strategic map of two more quickly as time passes is learning too.
simple plans. The graph in Figure 4(a) is isomorphic to Qubic is a challenging game. There are 76 possible
two copies of F-1. Two moves backward at a time, winning configurations to guard against, and well over a
BOYLE modifies this graph until the history is exhausted billion possible states. There is an average of 32 possible
(in which case there was no fork) or the graph is legal moves from any state. It has been shown
connected. To move from Figure 4(a) to 4(b), for mathematically (Paul, 1978) that every contest between
example, HOYLE retracts Player's last move, (3,1), and two participants with perfect knowledge should end in a
HOYLE's response, (2,2), to Player's earlier threat on the tie. Forks of at least depth five are constructable in
minor diagonal. When HOYLE backs up, it adds to the Qubic, well beyond the average hunian's notice, and
graph as top vertices any moves that will add at least one outside Pitchfork's standard library as well.
edge Ill cI to , new ipiP. L' ,d,,U , One .... t HOYLL u,,d pitycd s.tvca tum,,tis uf 20 Quuic
preexisting simple plans. Thus the graph in Figure 4(b) contests eath against an expert human, with a resource
is a copy of that in 4(a), with the addition of the vertices limit of three minutes per Advisor. In one tournament
(3,1) and (2,2), the edge to the new simple plan D, and (#1) HOYLE played at random, making legal moves
the edges to the preexisting simple plans for the first without any of its learning facilities, while the human
column and the third row. The graph in Figure 4(b) is pursued any simple plan. HOYLE lost every contest



196 Epstein

very quickly, averaging 7.6 moves out of a possible 64, a one state had two different isomorphs of the fork from
lower bound on performance, In another tournament Figure 4. HOYLE was able to block these, execute
(#2), the human expert repeatedly played the depth four successfully a shallower fork of its own, and go on to win
fork of Figure 4 against the full original implementation the contest. HOYLE never lost a contest in #3 after the
of HOYLE with a library of forks only through depth first one, and it regularly caught the human expert off
three. During #2, Pitchfork struggled to identify forks guard, winning six times.
within its time constraints and regularly signaled that it HOYLE was also tested on a 3-by-3-by-3 version of tic-
was not allocated sufficient resources. By the point in the tac-toe, a somewhat simpler game that Player should
contest that Pitchfork, with its limited resources, detected always win. The original program learned to play
an offensive fork, it was too late to defend against it, and perfectly after several contests. The fork-learning version
HOYLE conceded, still losing every contest. The learned to play with true expertise just as quickly, but it
average contest in #2 was 19.4 moves, however; also learned the depth-four fork produced by the opening
HOYLE offered much stronger competition than mere move in the post mortem for the first contest. (This fork
random play. The handicaps of limited rationality (both is different from the one learned in Qubic.) In the
as a time limit and as a fork depth limit) and lack of remainder of the tournament, as Opponent HOYLE
knowledge of symmetry were too great for this version of resigned after the correct opening; as Player HOYLE
HOYLE to make any visible progress at learning Qubic. declared victory before it made a single move, but still
Against a set of strong game players who were not Qubic went on to play perfectly and win each contest.
experts, however, this version of HOYLE always won.

At this point HOYLE was revised as follows. Pitchfork 8. Results and Future Work
was modified to learn forks, as described here, and
instructed to consider first any recently-learned forks Previously, a few sets of mutually overlapping simple
applicable to the current game. Pitchfork was allocated plans with very limited applicability were identified as
five minutes of computation time. (Each Advisor is naive offensive strategies in two-agent domains.
otherwise allocated one minute and typically uses only a HOYLE's game-independent, graph representation for
few seconds.) Pitchfork was told to recommend any forks includes these plans and provides a plan generator.
good moves found, even those based on partial search of Each fork implicitly contains both conjunctive and
the strategic maps. disjunctive descriptions. Proper application of the seven

During initial forays at Qubic, this modified program smallest forks has been shown empirically to produce
learned several different forks of depth greater than three, high-quality solutions and to focus attention on strategic
At least one of these was more elaborate than the pattern possibilities not otherwise likely to be found in some
the human expert had in mind. The extended time large search spaces.
allocation slowed some of the early and non-forced 1'or reiativeiy easy gtuiiie, simpie heuristics to construct,
moves, but still permitted real time play; no contest ran recall, and search for these seven forks in a contest will
more than an hour. support learning to play perfectly. For more difficult
The revised version of HOYLE, without this initial games, however, high match cost and utility (Minton,

exp,,rience, played a tournament of 10 contests (#3). In 1988) become issues. Empirical work with HOYLE thus
the first contest of #3, HOYLE was defeated by the far indicates that, perhaps by the topology of their boards
successful fork from Figure 4. After the contest, and the nature of their rules, most games intrinsically
however, Pitchfork anal)zed the history and learned the have a limited number of applicable forks. Each larger
fork, placing it first on Pitchfork's search list. In fork relevant to a particular game is readily identified
subsequent contests, each time the human expert from an explanation of the trace of a defeat at that game.
attempted that fork, HOYLE identified and blocked it Searching first for these learned forks in subsequent
successfully. Play was at an extremely high level contests of the same game suffices to simulate expert
throughout #3; contests now averaged 39.8 moves and play.
competition was intense. In the fourth contest, for The learned plans are generalizations potentially
example, both participants had the fork from Figure 4 in applicable to iny game, with a well-defined metric
their strategic maps (HOYLE's was a version using (depth) that supports their error-free application both
central spaces rather than the corners it had learned the offensively and defensively without forward search into
fork on). Neither participant was able to execute the fork the game graph, and an implicit game-independent
because of interference from the other, and the contest execution plan that provides for contingencies. Because
was a draw. In the seventh contest, the human expert in heuristics are used in the implementation, performance
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may be imperfect. In its current game testbed, however, Fikes, R. E. and Nilsson, N. J. 1972. STRIPS: A New
HOYLE's ability to learn plans from observing its defeat Approach to the Application of Theorem Proving to
at the hands of an expert rapidly enables it to learn to Problem Solving. Artificial Intelligence 2: 189-208.
win. Finally, although the abstractions representing forks King, P. F. 1970. A Computer Program for Playing
were designed for a particular class of games, they are Positional Games. M. S. diss., Case Western Reserve
clearly extendible to any multi-agent competitive University.
planning domain. Koffman, E. B. 1968. Learning through Pattern

Future research includes the extension of this work to Recognition Applied to a Class of Games. IEEE Trans.
contests where the winner deliberately deflects attention Sys. Sci Cybernetics, SSC-4.
from a fork being executed, to games where moves are Korf, R. E. 1985. Macro-Operators: A Weak Method
retractable, and to games where the goal is disabling for Learning. Artificial Intelligence 26 (1): 35-77.
playing pieces rather than achieving a specific Laird, J., Rosenbloom, P. and Newell, A. 1986.
configuration. Chunking in SOAR: An Anatomy of a General Learning
These results, while promising, raise an interesting Mechanism. Machine Learning 1 (1): 11-46.

issue: at the current time, HOYLE is not an aggressive Langley, P. 1985. Learning to Search: From Weak
player, merely an opportunistic one. On defense, Methods to Domain-Specific Heuristics. Cognitive
HOYLE detects and blocks the forks it knows, within its Science 9 (217-260.
heuristic constraints. On offense, however, HOYLE does Lee, K. F. and Mahajan, S. 1988. A Pattern
not actively plan to construct a state in which it will have Classification Approach to Evaluation Function
a fork; it only executes forks that happen to lie in a state. Learning. Artificial Intelligence 36 (1): 1-26.
This opportunistic behavior is not aggressive play, or Minton, S. 1984. Constraint-Based Generalization -
even aggressive planning. Current research includes Learning Game-Playing Plans from Single Examples. In
near forks, aggressive plans that give rise to executable Proceedings of the Fourth National Conference on
forks. Until HOYLE takes the construction of a fork, Artificial Intelligence, 251-254. Los Altos: William
rather than its execution, as a goal, the program will Kaufmann.
continue to play excellent defense but only serendipitous Minton, S. 1988. Learning Search Control Knowledge
offense. - An Explanation-Based Approach. Boston: Kluwer

Academic.
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Abstract We have been investigating the usefulness of genetic
algorithms and other competition-based heuristics

Given an adequate simulation model of the (Grefenstette, 1988) to learn high performance reac-
task environment and payoff function that tive rules in the absence of a strong domain theory.
measures the quality of partially successful The approach has been implemented in a system
plans, competition-based heuristics such as called SAMUEL (Grefenstette, 1989). One of the
genetic algorithms can develop high perfor- important differences between SAMUEL and many
mance reactive rules for interesting sequen- other genetic learning systems is that SAMUEL learns
tial decision tasks. We have previously rules expressed in a high level rule language. The use
described an implemented system, called of a symbolic rule language is intended to facilitate
SAMUEL, for learning reactive plans and the incorporation of more powerftul learning methods
have shown that the system can success- into the system where appropriate. In this paper, we
fully learn rules for a laboratory scale tacti- investigate the use of explanation-based learning
cal problem. In this paper, we describe a methods to explain the success of the empirically
method for deriving explanations to justify learned plans found by the genetic learning system,
the success of such empirically derived rule and to suggest possible improvements.
sets. The method consists of inferring SAMUEL consists of three major components:
plausible subgoals and then explaining how a problem specific module, a performance module,
the reactive rules trigger a sequence of and a learning module. The problem specific module
actions (i.e., a strategy) to satisfy the consists of the task environment simulation, or world
subgoals. model, and its interfaces. The performance module

consists of a competition-based production system
1 Introduction that performs matching, conflict resolution and credit

This report is part of an on-going study con- assignment. The learning module uses a genetic
cerning learning reactive plans for sequential decision algorithm to develop high performance reactive
tasks given a simulation of the task environment. In plans, each plan expressed as a set of condition-action
particular, we have been investigating techniques that rules. Each plan is evaluated by testing its perfor-
allow a leaming system to actively explore alternative mance in controlling the world model through the
behaviors in simulation, and to construct high perfor- performance module. Genetic operators, such as
mance rules from this experience using competition- crossover and mutation, produce plausible new plans
based methods. Our current research focuses on from high performance precursors.
learning reactive rules for a variety of tactical Experiments have shown that SAMUEL leams
scenarios. Learning tactical rules is especially highly effective reactive plans for laboratory scale
difficult if the environment is only partially modeled, tactical problems (Grefenstette, 1989). However,
contains other independent agents, or permits only even though the individual rules of a plan can be
,u,,,,d sensing of" irmportart state v.,,idbol-, Sut.11 A inte~rpted, "-ul stra-egy uatcg" he plan in dery
features reduce the utility of traditional projective not apparent. We are currently expanding our focus
problem solving (Mitchell, 1983; Minton et. al, 1989) to include the derivation of explanations of SAMUEL'S
and favor the use of reactive control rules that reactive rules. These explanations are expected to
respond to current information and suggest useful clarify the system's performance to system users as
actions (Agre and Chapman, 1987; Schoppers, 1987). well as to generate new reactive rules for SAMUEL.
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In this paper, we first discuss a simulated whereas a heading of 180 means the missile is aimed
environment to which SAMUEL has been successfully directly away from the plane.
applied. The remainder of the paper is devoted to 6) speed: the missile's current speed measured rela-
describing our research on the topic of generating tive to the ground. Assumes values from 0 to 1000 in
explanations of reactive plans. increments of 50.

This work is part of an on-going study of In addition to the sensors, there is one control
genetic algorithms for learning tactical plans. The variable, namely, the plane's turning-rate. Turning-
current system is detailed in (Grefenstette, Ramsey & rate has nine possible values, between -180 and 180
Schultz, 1990). An analysis of the credit assignment degrees in 45 degree increments. The learning objec-
metiods in appears in (Grefenstette, 1988). A study tive is to develop a set of decision rules that map
of tme effects of sensor noise on appears in (Schultz, current sensor readings into actions that successfully
Parasey & Grefenstette, 1990). evade the missile whenever possible. The rule condi-

tion contains sensor ranges (which may be cyclic),
2 The Evasive Maneuvers Problem and the action specifies a setting for the control vari-

We have tested SAMUEL initially in the con- able. An example of an actual decision rule learning

text of a particular task called Evasive Maneuvers by SAMUEL is the following:

(EM), inspired in part by (Erickson and Zytkow, RULE 16:
1988). In the EM simulation, there are two objects of IF (and (last-turn [-135, 1351) (time [2, 12])
interest, a plane and a missile, which maneuver in a (range [0, 700]) (bearing [2,6])
two-dimensional world. The object is to control the (heading [0, 30]) (speed [100, 950]))
turning rate of the plane to avoid being hit by the THEN (turn 90)
approaching missile. The missile tracks the motion STRENGTH 949
of the plane and steers toward the plane's anticipated
position. The initial speed of the missile is greater The EM process is divided into episodes that
than that of the plane, but the missile loses speed as it begin with the missile approaching the plane from a
maneuvers. If the missile speed drops below some randomly chosen direction and that end when either
threshold, it loses maneuverability and drops out of the, plane is hit or the missile velocity falls below a
the sky. It is assumed that the plane is more given threshold. The critic module provides numeric
maneuverable than the missile, that is, the plane has a feedback at the end of each episode that measures the.
smaller turning radius, extent to which the missile has been successfully

evaded. In the case of unsuccessful evasion, partial
Tauheeuexist scti l s stat provdenfcredit is given reflecting the plane's survival time

(see (Grefenstette et. al, 1990)). Each decision rule is

last-turn: the current turning rate of the plane. assigned a numeric strength that serves as a predic-
i) lasr c ue tnin vae r an e, tion of the rule's utility. The system uses incrementalThis sensor can assume nine values, ranging from credit assignment methods (Grefenstette, 1988) to

-180 degrees to 180 degrees in 45 degree increments. updathesulesengths asefeebac from t
2) tme:a cock hatindcate tie snce etetio of update the rule strengths based on feedback from the

2) time: a clock that indicates time since detection of critic received at the end of the episode. Experiments
the missile. Assumes integer values between 0 and have shown that SAMUEL can learn high-performance

3) range: the missile's current distance from the rule sets (plans) for this task (Grefenstette, 1989).

plane. Assumes values from 0 to 1500 in increments As can be seen from the above example, while
of 100. the rules are individually understandable, the underly-
4) bearing: the direction from the plane to the mis- ing strategy behind the rules is not usually clear from
sile. Assumes integer values from 1 to 12. The bear- inspection. On the other hand, a person who watches
ing is expressed in "clock terminology", in which 12 a display of the EM task under the control of the
o'cl-ck denoes dead ahead Wf thI piano, -n 6 learned nleq can usually describe the strategy being
o'clock denotes directly behind the plane. followed in conceptual terms, for example:
5) heading: the missile's direction relative to the Get the missile directly behind the plane, let it
plane. Assumes values from 0 to 350 in increments get fairly close, then make a hard left turn.
of 10 degrees. A heading of 0 indicates that the mis- Once such a description has been obtained,
sile is aimed directly at the plane's current position,



200 Gordon and Grefenstette

qualitative reasoning can be applied to explain and
justify the strategy. It is expected that explanation- Iturn time range brng hdng speed action
based methods will help to explicate the higher-level
strategies being learned, making the results of the 0 0 100 7 0 700 0
empirically learning more easily accepted by human 0 1 600 7 0 650 135
operators and, ultimately, expediting the learning pro- 135 2 0 9 350 .550 0
cess itself. The remainder of the paper offers initial 0 3 300 3 290 400 45
steps in this direction. 45 4 200 6 0 300 -135

-135 5 100 4 20 250 90
3 Explaining Empirically Derived Rules 90 6 100 7 0 200 0

Our approach to applying explanation-based 0 7 300 6 0 200 45
techniques to reactive plans can be divided into four 45 8 400 7 0 150 45
phases: 45 9 500 8 0 150 45

45 10 500 8 0 100 -90
(1) inferring plausible subgoals; -90 11 600 5 0 100 -45
(2) confirming subgoal satisfaction; -45 12 700 4 0 100 45
(3) creating explanations for reactive plans; and Fig. 1. Example execution trace.
(4) deriving new rules.

The following sections elaborate our approach to
each of the first three phases. The fourth phase is (INCREASING range(m))
outlined under our plans for future research. where RANGE1 and RANGE2 are user-definable

3.1 Inferring Plausible Subgoals parameters and m represents the missile. The trace is
examined to find the first time at which a PSD rule

Prior to deriving explanations that SAMUEL'S precondition, such as "range(m)> RANGEl", holds.
actions are intended to satisfy particular subgoals, the The algorithm for finding plausible subgoals
system first attempts to derive plausible subgoals, is the following:
such as "increase range to missile" or "increase mis-
sile deceleration" from a trace of the behavior of the PSD ALGORITHM: Find the set of all time intervals
system under the control of the learned rules. A trace in the execution trace of an episode for which the
covering the actions occurring over a single episode sensor values satisfy the PSD rule condition during
is examined. Traces consist of snapshots of sensor that interval. This set, called the trigger set, consists
readings followed by the decision rule that has fired.Eachsnashotis ssoiate wih atime or~ ~of situations that would plausibly trigger the imple-Each snapshot is associated with a time, or state. An m nai n o taey t aif h ug a
example of a trace is shown in Figure 1, where menion the subgoal
"Iturn", "brag", and "hdng" are abbreviations for specified in the PSD rule.

last turn, bearing, and heading. The action is the turn
taken by the plane at this time. In order to simplify In the example trace above, if RANGE1 were
the trace shown here, the decision rules do not set to 900, then there is one time interval (of length
appear. one unit) that s tisfies the condition for PSD1. This

interval is [0,0J I, therefore, the trigger set is sim-A domain theory has been developed for py [,]1 SIi aifeissbol
automating subgoal derivation. This part of the ply ( 0,0 . S)G PSDI is satisfied, its subgoal,

domain theory consists of plausible subgoal deriva- namely, " NC. SING deceleraon(m))", is pro-

tion (PSD) rules such as the following: posed as a candidate subgoal.

Once a plausible subgoal is found, the next
PC' 1N I: TF ran~..) k~Ti '..s'm .. ..Mn~whehe the suVbo a L^

THEN PLAUSIBLE-SUBGOAL satisfied. Satisfaction is determined by applying the
(INCREASING deceleration(m)) confirmation procedure described in the next section

for time intervals in the trigger set until either the set
PSD 2: IF range(m) < RANGE2 of intervals is exhausted or the subgoal has been

THEN PLAUSIBLE-SUBGOAL confirmed.
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3.2 Confirming Subgoal Satisfaction We are currently using QP Theory to define
Subgoal satisfaction is determined by once processes relevant to EM. A process is defined in

again scanning the execution trace. Scanning begins (Forbus, 1984) as something that acts through time to
at the time in the trace following a time interval from change the parameters of objects in a situation.
the trigger set. Subgoal confirmation requires an Example processes are fluid and heat flow, boiling,
additional domain theory. In this case, SAMUEL'S and motion. We define an EM process below. The
decision rule language is extended to capture further individuals are the objects on which the process acts.
information from the trace. For example, the system The quantity conditions are inequalities regarding the
extracts from the trace information about the change quantities of individuals that can be predicted solely
in sensor values over time. The speed or range of the within dynamics. Preconditions are conditions that
missile, for irstance, may increase from one state to must hold during the process but which need not be
the next. By scanhing the trace over multiple states, predictable using dynamics. Relations are statements
the system derives accti;tzt.Qn and range increase that are true during the process. A prccess is activc
information for confirming subgoal satisfbic.i -n whenever its r-econoiuons and quantity conditions

hold. The Q+/Q- relations define qualitative propor-
The confirmatioa of subgoal satisfaction tionalities. (Q+ X, Y) means that parameter X is

begins when a time interval is chosen from the trigger directly proportional to parameter Y. (Q- X, Y) means
set. In the current implementation, the user defines a that X and Y are inversely proportional.
window over which the subgoal satisfaction check is
executed. The window begins at a user-defined time process missile-evasion (p, m)
that is after the trigger set time interval. Continuing
with the example above, suppose the system must Individuals:
confirm that the increasing missile deceleration goal p, a plane
has been achieved over the time window that extends m, a missile
from time 1 to time 3. Then the change in missile
speed over this interval is checked to be certain that Quantity Conditions:
missile deceleration is increasing. The deceleration is speed(p) > 0
increasing from 100 to 150 over this time interval. speed(m) > 0
Therefore, subgoal satisfaction has been confirmed.

Once subgoals have been derived and Preconditions:
confirmed, explanations may be generated to justify range(m) > 0
the observed behavior. The next section describes the
process of explanation generation. Relations:

(Q+ deceleration(m), turning-rate(m))
3.3 Creating Explanations (Q+ turning-rate(m), tuming-rate(p))

After deriving plausible subgoals and (Q- speed(p), tuming-rate(p))
confirming that they are satisfied, explanations may Q tuming-rate(m), range(m))
be formed which prove that sequences of SAMUEL'S
decision rules satisfy the subgoals. Explaining failure The above process description is incomplete
to satisfy subgoals is presented as future work. and is not entirely accurate. Since we do not intend to

Creating justifications for successful subgoal engineer a complete and perfect domain theory, our
satisfaction requires the development of a domain system will eventually possess a capability to diag-
theory that captures important results of particular nose errors in its domain theory.
actions. We are adapting Forbus's Qualitative Process Once a partial domain theory exists, it is pos-
Theory (Forbus, 1984) for the interpretation of the sible to create plausible explanations of the events
empirically derived rules similarly to the way this that occurred during an EM episode. Explanations
theory is adapted in (Gervasio, 1989). Qualitative are derived by creating proofs using the process reia-
Process Theory (QP Theory) expresses common tions similarly to (Gervasio, 1989). The proof begins
sense notions about qualitative relationships between with an observable but noncontrollable subgoal and
objects. terminates when a change in a controllable parameter

has been found that is believed to have caused
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subgoal satisfaction. The body of the proof consists explanation generation, we have been observing that
of QP Theory relational rules, such as those presented some explanations/subgoals are considered plausible
above. For example, the following proof explains more frequently than others. We plan to use this
how the increasing turning-rate of the plane eventu- information about the frequency to order the PSD
ally causes the missile deceleration to increase, rules in a manner that reflects the plausibility of

explanations, e.g., more plausible subgoals are tried
(EXPLANATION first.

(INCREASING deceleration(m)) The second direction for future research con-
((Q+ deceleration(m) turning-rate(m)) sists of generating new decision rules from the expla-
(Q+ tuming-rate(m) tumning-rate(p)) nations. If a subgoal is satisfied, and an explanation
(INCREASING turning-rate(p)))) is generated for subgoal satisfaction, then the system

can generalize the explanation (perhaps using the
The above proof has terminated with a state- explanation-based learning methods of (Mitchell,

ment that the plane turning rate is increasing. (The Keller & Kedar-Cabelli, 1986)) and then use the gen-
plane turning rate is currently the only controllable eralized explanation to generate new decision rules.
parameter.) The increasing turning rate is Given a successful explanation, SAMUEL'S perfor-
hypothesized as having initiated a strategy to achieve mance can benefit by the creation of new decision
subgoal satisfaction. The system next verifies (by rules that are expected to achieve the same results as
examining the execution trace) that this behavior has, the rules from which the explanation is formed. The
in fact, occurred. For the above example, this would process of generating decision rules from generalized
consist of a check to be certain that the plane turning explanations is one of rule specialization. We are
rate is increasing during the time period that begins currently considering using ideas from MARVIN
during the trigger set time interval and ends at some (Sammut and Banerji, 1986) for designing the rule
user-specified time following this interval. In the specialization process. Once new decision rules
example trace above, the condition that the turning have been created, they can be fed back into
rate must be increasing would be satisfied if the SAMUEL'S performance module to augment the exist-
plane's actions were examined from time 0 to time 1. ing rule sets. These modified rule sets may then be

The selection of times for checking both empirically evaluated using the EM simulator.

subgoal satisfaction and triggering behaviors is The third direction planned for our research is
currently done by the user. These are important the automation of certain portions of the system that
parameters, yet they are difficult to choose. We next are currently provided by the user. For example, sys-
describe our plans for future work. These plans tem parameters, such as the user-input window size
include automating the choice of these parameters, as for subgoal confirmation, might be empirically deter-
well as other parts of the system. mined. Furthermore, the domain theory might also

be derived empirically. For instance, the Q+/- rela-
4 Future Work tionships in the domain theory for explanations could

be extracted from the execution traces.
There are a few important directions that we

plan to pursue. The first direction consists of ordering Although we have been able to generate
explanations according to their degree of plausibility, explanations for successful subgoal satisfaction, a
The second direction consists of using the explana- ripe area for future research is the addition of the abil-
tions to generate new decision rules for SAMUEL. ity to handle failures. If the system derives an expla-
Third, we plan to automate the generation of system nation that the reactive rules are intended to achieve a
parameters and rules. The fourth future direction particular subgoal, but the trace does not verify that
consists of diagnosing failures. Finally, we would the subgoal has been satisfied, then there exist four
like to increase the complexity of the EM problem. possible cases:

C n y. .(1) The chosen explanation is incorrect, but the
determine the differences in the degree of plausibility domain theory is not faulty
of various explanations. The manner in which this isbeino n v iousb eertn explanations. flemane rom mcthi- i (2) The plausible subgoal that is inferred is not actu-
being done is by generating explanations from multi- ally the subgoal that the system is trying to achieve
ple episode traces. From our experiences with (3) The reactive rules are intended to achieve a
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subgoal, but the system has encountered some unex- Grefenstette, J. (1989). A system for learning control
pected interference strategies with genetic algorithms. Proceedings
(4) The domain theory is incorrect or incomplete of the Third International Conference on Genetic

Algorithms. Fairfax, VA: Morgan Kaufmann.
Although the generation of alternative explanations Grefenstette, J., Ramsey, " nd Schultz, A. (1990).
would be a relatively simple a solution for the first Learning sequential n rules using simula-
case, the other cases would require more sophisti- don models and competition. To appear in
cated error diagnosis. Machine Learning Journal. Kluwer Academic

A final direction for future research is to Publishers, Hingham, MA.
increase the complexity of the EM problem. For Minton, S., Carbonell, J., Knoblock, C., Kuokka, D.,
example, the only controllable parameter currently Etzioni, 0., and Gil, Y. /1989). Explanation-
implemented is the plane turning rate. More controll- based learning: A problem-solving perspective.
able parameters might be added. Furthermore, the Carnegie-Mellon University Technical Report
problem difficulty would be greatly increased if the Number CMU-CS-89-103.
number of missiles were increased. Ultimately, we
would like SAMUEL to be able to handle realistic Mitchell, T. (1983). Learning by experimentation:
problems. Acquiring and refining problem-solving heuris-

tics. In R. Michalski, J. Carbonell, and T.

5 Summary Mitchell (Eds.), Machine Learning: An Artificial
Intelligence Approach (Vol. 1). Tioga Publish-

Progress in generating and using explanations ing Co., Palo Alto, CA.
of reactive plans for SAMUEL is expected to provide Mitchell, T., Keller, R. and Kedar-Cabelli, S. (1986).
an important step toward reducing the burden placed Explanation-based generalization: A unifying
on the system's empirical learning mechanisms. The view. Machine Learning, 1(1). Kluwer
eventual goal of our research is to use these explana- Academic Publishers, Hingham, MA.
tions to create high performance reactive plans.

Sammut, C. and Banerji, R. (1986). Learning con-
cepts by asking questions. In R. Michalski, J.
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Abstract and plan within it. The greater the stability the more
One of the basic assumptions of work in machine certain our predictions, the more powerful our plans.

learning is that the environments in which our learn- As both individuals and as societies, we respond to
ing systems are situated are stable enough to make this by trying to increase the stability of our world.
learning useful. While this assumption is warranted We segment our schedules of work, play and relaxation
in most domains, much of what we tend to think of so that each day will tend to look very much like the
as a natural regularity in the world has often been ar- last. We organize our homes and workspaces so that
tificially imposed in order to make both learning and objects will be in predictable places. We even organize
planning more tractable. This imposition is usually our habits so that particular conjuncts of goals will
the product of a long-term manipulation of the phys- tend to arise together. In all aspects of our lives, we
ical structure, goals, and operators of these domains make moves to stabilize our different worlds.
in the direction of maximal utility. Often, however,
it is the product of an agent imposing stability on a Of course, ali this is done for a reason. Schedules
domain in an effort to increase the utility of his own that remain constant over time improve predictability
planning and learning. This paper examines the idea and provide fixed points that reduce the complexity
of ,ihat it would mean for an agent to strategically of projection. Few of us need to reason hard about
impose order on a domain in an effort to increase the where we will be from 9 to 5 because we have stabi-
effectiveness of its own learning. In particular, it out- lized our schedules with respect to those hours. Fixed
lines an initial taxonomy of classes of stability and locations for objects reduce the need for inference and
presents the strategies for increasing overall stability enable the execution of plans tuned to particular en-
that are associated with each class. Finally, it outlines vironments. If your drinking glasses are all kept in
the ')asic learning and planning trade-offs that have to one cupboard, you can get a drink of water without
be made when stability is optimized. ever considering the real precondition to the plan that

they are in there now. Likewise, the clustering of goals

1 Stability, change, and into standard conjuncts enables the automatic use of
plans that are optimized for those conjuncts. A morn-

enforcement ing routine is exactly that, a routine that is designed

The world is in flux. Every moment brings a new set to fit a conjunct of goals that can all be satisfied with

of states into being and removes an old set from exis- a well tuned plan. In general, we force stability on the

tence. Every action, every plan we know, introduces world, and then enforce it, in an effort to improve our

change in the form of the goals we are trying to achieve ability to function in it.

and the side-effects of the actions that we are using to In this paper, we outline this concept of enforce-
achieve them. ment and discuss the different forms that it takes. We

The world is also stable. Facts persist over time. examine the idea of what it would mean for an agent to
Objects tend to stay where they are placed, actions strategically impose order on a domain in an effort to
tend to have the same results, and the basic physics of increase the effectiveness of its own learning. In par-
our environment seems to remain fixed and unchang- ticular, we outline a basic taxonomy of classes of sta-
ing. Even our goals tend to stay constant over time. bility and presents the strategies for increasing overall

The possibility of change allows us to act at all. stability that are associated with each class. We ex-
The stability of the world, however, allows us to act amine its relationship to learning and argue that both
intelligently. It is our trust in the stability of the world learning and enforcement are strategies for building up
that allows us to predict the future based on the past a correspondence between an agent's mental model of
and build plans based on experience, the world and the actual physical reality. We also dis-

There is a direct relationship between the. overall cuss the learning and planning trade-offs that have to
stability of an environment and our ability to predict be made when stability is optimized.
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2 Planning, learning and approach to the goal of building this functional corre-
enforcement spondence between an agent's internal state and the

external world. The difference between enforcement
Over the past five years, research in planning has and previous approaches to learning from planning lies
taken a dramatic change in course. Planning re- i, its use of techniques to shape and stabilize an envi-
searchers have begun to acknowledge that the world ronment in an effort to optimize the overall utility of
is far too complex and uncertain to allow a planner to plans that already exist or that have just recently been
exhaustively plan for a set of goals prior to execution produced. The goal associated with these techniques
(Chapman, 1985). More and more, the study of plan- is the same as that ,ssociated with learning in the con-
ning is being cast as the broader study of planning, text of planning-the development of a set of effective
action, learning, and understanding (Agre and Chap- plans that can be applied to satisfy the agent's goals.
man, 1987, Alterman, 1985, and Hammond, 1989). The path toward this goal, however, is one of shaping

The particular cast of this relationship that we the world to fit the agent's plans rather than shaping
have been studying is a view of planning as embedded the agent to fit the world. The idea of enforcement,
within a memory-based understanding system (Mar- then, rises out of the observation that the result of a
tin, 1990) connected to the environment (Hammond long-term interaction between agent and environment
and Converse, 1990). The power of this approach includes an adaptation of the environment as well as
lies in the fact that it allows us to view the planner's an adaptation of the agent.
environment as well as its plan selections, decisions,
conflict resolutions, and action mediation through the 3 Opportunism and
single eye of situation assessment and response. We enforcement: An example
see this integration of planning, understanding, and
action as a model of agency, in that we are attempt- Our notion of enforcement rises out of our approach
ing to capture an architecture for an agent embedded to planning as only part the study of agency-most
in an environment rather than simply a planner ab- specifically-out of our examination of opportunistic
stracted away from an external world. memory, in the TRUCKER and RUNNER projects

This integration of planning with understanding, in (Hammond 1989). In this work, we looked at the is-
particu!ar understanding through the use of episodic sues involved with indexing blocked goals in memory
memory, also provides us with a powerful tool with and reawakening them under conditions which world
which to deal with the problem of learning from both favor their satisfaction. The idea was to combine
planning and execution. One aspect of this view of planning-time reasoning with execution-time under-
agency is that it treats planning as a long-term prob- standing in an effort to obtain efficient recognition of
lem that continues over time. Rather than seeing the and capitalization of execution-time opportunism.
problems of planning and action in terms of single in- One of the examples that we examined involves an
stances of goals and their related plans, we see plan- agent going to the grocery store to pick up a quart of
ning as also involving the ongoing process of finding orange juice and recalling that he needs milk as well.
the set of plans and plan modifications that are most We argue that there are two aspects to how an agent
useful within the planner's domain. For example, the should repond to this sort of problem. First, he should
overall cost of constructing a plan can be thought of attempt to incorporate the plans for the recalled goal
as amortized over its repeated reuse, but only if we into the current execution agenda. Second, he should
think of planning as the creation of structures that reason about the likelihood of the recalled goal re-
actually will be saved and reused (Marks, Hammond, curring in conjunction with the goal th was already
and Converse 1989). being acted upon and save the plan for the conjunct

Part of this process involves the standard issues of of the two goals if they were likely to be conjoined in
learning. This includes learning particular plans, the the future. In a sense, these two steps correspond to
features that predict their usefulness, and the con- fixing the plan and then fixing the planner.
ditions under which they should be avoided. Here, One element of this process that interests us is the
the overall goal is to develop an internal model of the notion that the more likely it is that that goals will
plans and inferences that are functional in the actual show up in conjunction with each other, the more use-
world by adapting the internal world to match the ex- ful the plan will be. In this example, the utility of
ternal reality. Much of our work to date (Hammond, saving and attempting to reuse the plan to buy both
Converse, and Marks, 1988 and Hammond, 1989) has the orange juice and the milk is maximized when the
been aimed at this sort of learning in the context of two goals are guaranteed to show up in conjunction
planning and execution. In particular, we have been whenever either of the two recurs. This suggests the
concerned with learning optimized plans for the recur- idea that one of the steps that an agent could take in
ring conjuncts of goals in a domain as well as those improving the utility of his plans would be to force the
that avoid the typical problems that will tend to arise recurrence of the conjuncts of goals over which these
out of a problem space. plans are optimized. In terms of the orange juice and

The idea of enforcement is a somewhat different milk example, this means making sure that the cycles
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of use of each resource are synchronized. This can be are designed to do so as well. The difference here is
done by either changing the actual use of the resources that learning attempts to satisfy this goal by chang-
to bring them into synchronization or by changing the ing the learner and enforcement attempts to do so by
amounts purchased such that they would be used up changing the world.
at the same time. In either case, the idea is to alter From either point of view, the notion of enforce-
circumstances in the world such that the long term ment is straightforward. For any plan that is learned,
utility of a plan that already exists is optimized. This its utility can be maximized if the conditions in the
is done by stabilizing the world with regard to the rela- world that favor its use can be guaranteed. If the
tive use of the two resources. This type of enforcement world is unstable with respect to those conditions, one
is aimed at controlling what we call RESOURCE CYCLE step that an agent can take to optimize the utility of
SYNCHRONIZATION in that its goal is to stabilize the the plan is to enforce that stability by changing some
use cycles of multiple resources with respect to one aspect of the world so as to make those conditions pre-
another. vail in all circumstances under which the plan could

Adjusting the amount of orange juice purchased so be run.
makes cycle of use match the cycle of use of the milk.
This increases the utility of the plan to buy the two 4 Stability and enforcement
together in three ways: optimization of planning, op-
timization of indexing, and optimization of execution. While RESOURCE CYCLE SYNCHRONIZATION was one

" In terms of planning optimization, the agent now of the first instances of stability we encountered, it is

has available a plan for a conjunct of goals that by no means the only kind. In our preliminary ex-
he knows will recur so he never needs to recreate amination, we have uncovered six other basic types

it. of stability and related enforcement strategies. Each
type of stability, when enforced, increases the utility

This means never having to reconstruct the GET- of existing plans and planning processes with respect
OI ANGE-JUIOE-AND-MILK plan again, to the cost of use, the cost of indexing, the cost of

* And in terms of indexing optimization, the plan projection and/or the likely applicability of the plans
can be indexed by each of the elements of the that have been stored.
conjunct-rather than by the conjunct itself- The question is, is it possible to explicate this tax-
thus reducing the complexity of the search for onomy of stability in a way that would allow a system
the plan in the presence of the individual goals. to actually recognize and enforce the different types?
This means that the plan will be automatically The sections that follow, outline this taxonomy with
suggested when either the HAVE-M!LK goal or the respect to this question by breaking each type down
HAVE-ORANGE-JUICE goal arises even when the in terms of the following issues:
other element of the goal conjunct does not. & What types of stability are useful in and

" In terms of execution optimization, the agent can of themselves?
decide to commit to and begin execution of the 9 Over what goals do they allow optiniza-
new plan when either of the two goals arises. tion?
It can do this because it is able to predict that
the other goal is also present, even if it is not 9 What strategies can be formed to enforce
explicitly so. them?

This means that the agent can begin to run the * How can opportunities to apply these en-
GET-ORANGE-JUICE-AND-MILK plan when he no- forcement strategies be recognized?
tices that he is out of either milk or orange juice
without being forced to verify that the other goal 4.1 Stability of location
is active. In some sense, the agent does not have The most common type of stability that arises in ev-
to check the refrigerator to see if he is out of eryday activity is that of location of commonly used
milk. objects. Our drinking glasses end up in the same place

One way of viewing enforcement is as an extension every time we do dishes. Our socks are always to-
of planning itself. As in planning, the conditions that gether in a single drawer. Everything has a place and
are enforced are fixed in the worid using the same we enforce everything ending up in itb place.
sorts of actions that result in the satisfaction of goals. In the RUNNER project, we have already begun
The difference is that the actions associated with en- to see the utility of this sort of stability in terms of
forcement result in changes to the actual structure of optimizing the reuse of specific plans. RUNNER is
a domain. functioning in a breakfast world in which it has to

Likewise, enforcement can be seen as an active make a pot of coffee in the morning. Stabilizing the
cousin of learning. Just as learning techniques in plan- location of obj- -ts such as the coffee pot, the beans,
ning are designed to build up an effective set of plans and the grinder would allow it to simply reuse existing
and operators for a domain, enforcement techniques plans with minimal modification. It also reduces the
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need for search for the objects in both the knowledge- between enforcement and planning flexibility. While
base and physical sense of the word. Of course, the an enforced schedule allows for optimization of search
way to enforce this sort of stability is to alter plans and execution for recurring goals, it often reduces the
that make use of these objects so that they end up flexibility required to incorporate new goals into the
placing them back where they "belong". preset agenda. As with any heuristic that reduces the

Enforcing STABILITY OF LOCATION, then, serves to combinatorics of a search space, there will be times
optimize a wide range of processing goals. First of when an optimal plan is not considered.
all, the fact that an often used object or tool is in It is important to realize that the schedule enforced
a set location reduces the need for any inference or is optimized over the goals that actually do tend to
projection concerning the effects of standard plans on recur. Thus, an agent who is enforcing this sort of
the objects or the current locations of objects. Second, stability is able to deal with regularly occurring events
it allows plans that rely on the objects locations to be with far greater ease than when it is forced to deal
run without explicit checks (e.g., no need to explicitly with goals and plans outside of its normal agenda.
determine that the glasses are in the cupboard before This sort of trade-off in which commonly occurring
opening it). Third, it removes the need at execution- problems are easier to solve than less common ones
time for a literal search for the object. seems to be an essential by-product of stabilizing an

As we mentioned earlier, The enforcement of this environment.
sort of stability requires altering plans that make use Recognition of opportunities to enforce STABILITY
of these objects so that they end up placing them back OF SCHEDULE is a fairly difficult problem. There are
where they "belong". two basic features that are important. First, an agent

The final question in terms of STABILITY OF LOCA- must recognize that a goal is going to recur and that
TION, then, is the issue of when to attempt enforce- a single plan is designed to satisfy it. Second, he must
ment. As in many instances of standard learning, fail- recognize that a particular placement in time is op-
ure is a good indicator. Here, the problem will take timal for running the plan. While the first of these
the form of an execution-time failure to actually find is fairly simple, the second feature requires either an
an object that is both known to exist and is a object extensive projection over different times for running
essential to a plan being run. Of course, if many plans the plan or an opportunistic realization that .-c pl--
make use of dt object and cah preers Hin a di.ff.r has n run at a particularly good time at one point.
ent location, then it will not be useful to attempt to
enforce its location. 4.3 Stability of satisfaction

Another type of stability that an agent can enforce
4.2 Stability of schedule is that of the goals that he tends to satisfy in con-
Another common form of stability involves the con- junction with each other. For example, people living
struction of standard schedules that persist over time. in apartment buildings tend to check their mail on
Eating dinner at the same time every day or having the way into their apartments. Likewise, many peo-
preset meetings that remain stable over time are two pIe will stop at a grocery store on the way home from
examples of this sort of stability. The main advantage work. In general, people develop habits that cluster
of this sort of stability is that it allows for very ef- goals together into compact plans, even if the goals are
fective projection in that it provides fixed points that themselves unrelated. The reason that the plans are
do not have to be reasoned about. In effect, the fixed together is more a product of the conditions associated
nature of certain parts of an overall schedule reduces with running the plans than the goals themselves.
that size of the problem space that has to be searched. An important feature of this sort of stability is that

A second advantage it that fixed schedules actually the goals are recurring and that the plan associated
allo% greater optimization of the plans that are run with the conjunct is optimized with respect to them.
within the confines of the stable parts of the sched- Further, the goals themselves must be on loose cycles
ule. Features of a plan that are linked to time can be and robust with regard to over-satisfaction.
removed from consideration if the plan is itself fixed The advantage of this sort of STABILITY OF SATIS-
in time. For example, by going into work each day at FACTION is that an optimal plan can be used that is
8.30, an agent might be able to make use of the traffic already tuned for the interactions between individual
report that is on the radio at the half-hour. Because plan steps. Second, it can be run habitually, with-
the schedule is stable, however, lie doesn't have to ac- out regard to the actual presence of the goals them-
tually reason about this as an explicit condition of the selves. As in the case of STABILITY OF LOCATION in
plan. which a plan can be run without explicit checks on

Finally, if the schedule is stabilized with regard to the locations of objects, STABILITY OF SATISFACTION
a pre-existing norm, (e.g., always have lunch at noon) allows for the execution of plans aimed at satisfying
coordination between agents is also facilitated, particular goals, even when the goals are not explicitly

The enforcement strategy associated with STABIL- checked.
ITY OF SCHEDULE is simple: don't break the schedule. The way to enforce this sort of stability is to as-
Here, of course, we see the first instance of a trade-off sociate the plan with a single cue--either a goal or
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a feature in the world-and begin execution of that course, the policy decision to always have money on
plan whenever the cue arises. In this way, the habit- hand is itself a form of enforcement.
ual activity can be started even when all of the goals The interesting issue here is that there are partic-
that it satisfies are not present. ular states in the world that act as preconditions to

The circumstances that suggest habits that will en- a wide variety of plans. By enforcing these states, we
force STABILITY OF SATISFACTION are simple. When can establish a POLICY that will allow us to run these
an opportunity to satisfy a suspended goal (Ham- plans without explicit regard to the state itself. Here
mond, 1989) is encountered, the collection of goals again, the advantage is that plans can be run without
currently being satisfied bc%.ome candidates for con- explicit reference to many of the conditions that must
junction into a habit. The individual cycles of the obtain for them to be successful. An agent can actu-
goals then determine whether or not they are joined ally assume conditions hold, because he has a POLICY
into a single plan. that makes them hold.

Enforcement of POLICY requires the generation of
4.4 Stability of plan use specific goals to satisfy the policy state whenever it is
We often find ourselves using familiar plans to satisfy violated. In terms of policies such as always having

goals even in the face of wide ranging possibilities, money on hand, this means that the lack of cash on

For example, when I travel for conferences, I tend to hand will force the generation of a goal to have cash,

schedule my flight in to a place as late as I can and even when no specific plan that will use that cash is
plan to leave as late as I can on the last day. This opti- present.
mizes my time at home and at the conference. It also The conditions that suggest the enforcement of
allows me to plan without knowing anything about policies include noting that many plans make use of
the details of the conference schedule. As a result, I the state associated with the policy. This can be rec-
have a standard plan that I can ru, in a wide range of ognized through the a process of failure driven learn-
situations without actually planning for them in any ing. In effect, the failure to have cash on hand sug-
detail. It works, because it already deals with the ma- gests that it is a good policy to enforce. There are
jor problems (missing classes at home and important other conditions that must hold as well however. The
talks at the conference) as part of its structure. POLICY state must be relatively inexpensive to main-

Th major advantage here in enforcing the STABIL- tain and the state should be a useful precondition for
ITY OF PLAN USE is that the plan that is used is tuned a wide range of plans.
to avoid the typical interactions that tend to come up.
This means, of course, that the plans used in this way 4.6 Stability of cues
must either be the result of deep proje( )n over the One effective technique for improving plan perfor-
possible problems that can come up in a domain or mance is to improve the proper activation of a plan
be constructed incrementally. A further advantage is rather than improve the plan itself. For example, plac-
that little search through the space of possible plans ing an important paper that needs to be reviewed on
for a set of goals needs to be done in that one plan is his desk before going home, improves the likelihood
always selected. that an agent will see and read it the next day. Mark-

The enforcement here is simply a product of choos- ing calendars and leaving notes serves the same sort
ing to stay with a single plan in the face of a large of purpose.
space of possibilities. In a sense, this is the idea of One important area of enforcement is related to
having a standard operating procedure for a set of this use of visible cue in the environment to activate
goals. goals that have been suspended in memory. The idea

This sort of stabilization is the most emergent of gasta aebe upne nmmr.Teiedriving this type of enforcement is that an agent can
the different types of stability and enforcement that decide on a particular cue that will be established and
we have looked at. This is because these sorts of plans maintained so as to force the recall of commonly recur-
are the product of incremental debugging over time. ring goals. One example of this kind of enforcement
The drive towards selection of plans that have worked of STABILITY OF CUES is leaving a briefcase by the
in the past is simply part of the overall case-based door every night in order to remember to bring it into
approach. Of course, by starting each new experience work. The cue itself remains constant over time. This
with a set of goals with a plan that is debugged with means -hat the agent never has to make an effort to
respect a set of already experienced problems and then recall the goal at execution-time and, because the cue
debugging it with respect to new problems, an agent is is stabilized, it also never has to reason about what
actually constructing the plan that will be optimized cue to use when the goal is initially suspended.
for the entire set of interactions that he will encounter. The advantage of this sort of enforcement is that

4.5 Policy an agent can depend on the external world to provide
a stable cue to remind it of goals that still have to

Everyone always carries money. This is because we be achieved. This sort of stability is suggested when
always need it for a wide variety of specific plans. Of an agent is faced with repeated failures to recall a
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goal and the plan associated with the goal is tied to Any new MAKE-COFFEE plan is simply the acti-
particular objects or tools in the world. vation of the sequence of actions associated with

the existing MAKE-COFFEE plan in memory. It
5 A Model of Agency is recalled by RUNNER when the HAVE-COFFEE

goal is active and the system recognizes that it

Of course, this work on enforcement is only part of an is at home.
overall effort in the study of agency the modeling of a o Actions are permitted by plans and are asso-
system that is able to understand, plan and perform ciated with the descriptions of the world states
action in the world. We use the term agency rather appropriate to their performance. Once a set of
than planning because we are attempting to model a features has an action associated with it, that
the broader class of tasks including the spawning of set of features (in conjunct rather than as in-
goals, selection of plans, and execution of actions. Our dividual elements) is now predicted and can be
process model of agency is based on Martin's DMAP recognized.
understander as well as its antecedent, Schank's Dy- Filling the coffee pot is permitted when the
namic Memo7 (1982). DMAP uses a memory orga- MAKE-COFFEE plan is active; it is associated
nization defined by part/whole and abstraction rela- with the features of the pot being in view and
tionships. Activations from environmentally supplied empty. This means not only that the features
features are passed up through abstraction links and are now predicted but also that their recoguition
predictions are passed down through the parts of par- will trigger the action.
tially active concepts. Subject to some constraints, * Actions are specialized by features in the envi-
when a concept has only some of its parts active, it ronment and by internal states of the system.
sends predictions down its other parts. When acti- As with Firby's RAPs (Firby, 1989), particular
vations meet existing predictions, the node on which states of the world determine particular methods
they meet becomes active. Finally, when all of the for each general action.
parts of a concept are activated, the concept itself is For example, the specifics of a GRASP would be
activated, determined by information taken from the world

To accommodate action, we have added the notion about the size, shape and location of the object
of PERMISSIONS. PERMISSIONS are handed down the being grasped.
parts of plans to their actions. The only actions that
can be executed are those that are PERMITTED by * Action level conflicts are recognized and medi-
the activation of existing plans. Following McDer- ated using the same mechanism that recognizes
mctt (McDermott, 1978), we have also added POLI- information about the current state of the world.
CIES. POLICIES are satcmcnts of nPuoing goals of the For example, when two actions are active (such
agent. Sometimes these take the form of maintenance as filling the pot and filling the filter), a me-
goals, such as "Glasses should be in the cupboard." or diation action selects one of them. During the
"Always have money on hand." The only goals that initial phases of learning a plan, this can in turn
are actively pursued are those generated out of the be translated into a specialized recognition rule
interaction between POLICIES and environmental fea- which, in the face of a conflict, will always de-
tures. We would argue that this is, in fact, the only termine the ordering of the specific actions.
way in which goals can be generated. o Finally, suspended goals are associated with the

Most of the processing takes the form of recogniz- descriptions of the states of the world that are
ing circumstances in the external world as well as the amenable to their satisfaction.
policies, goals and plans of the agent. The recognition For example, the goal HAVE-ORANGE-JUICE, if
is then translated into action through the mediation blocked, can be placed in memory, associated
of PERMISSIONS that are passed to physical as well as with the conjunct of features that will allow its
mental actions. satisfaction, such as being at a store, having

Goals, plans, and actions interact as follows: money and so forth. Once put into memory, this
conjunct of features becomes one of the set that*Features in the environment interact with POLl-canoberogidbytegn.

CIES to spawn goals. can now be recognized by the agent.
r e e Eventually, RUNNER should also be able to recog-

For example, in RUNNER, the specific goal to nize opportunities to interleave plans and to modify
HAVE COFFEE is generated when the system rec- plans in response to different types of failures.
ognizes that it is morning. The goal itself rises
out of the recognition of this state of affairs in 6 A Framework for the Study
combination with the fact that there is a policy
in place to have coffee at certain times of the day. of Agency

" Goals and environmental features combine to ac- We do not see this model as a solution to the prob-
tivate plans already in memory. lems of planning and action. Instead, we see this as a
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framework in which to discuss exactly what an agent the environment-including the agent-must be sta-
needs to know in a changing world. Advantages of ble with respect to other aspects as well. In particular,
this framework include: it must be stable with regard to the physical structure

1. A unified representation of goals, plans, actions of the environment, the goals that tend to recur and
and conflict resolution strategies. the times at which events tend to take place.

While many environments have this sort of stabil-
2. Ability to learn through specialization of general ity, it is often the product of the intervention of agents

techniques. attempting to stablize it so as to increase the utility

3. A fully declarative representation that allows for of their own plans. In this paper, we have introduced
meta-reasoning about the planner's own knowl- the idea of how an agent could take a strategic ap-
edge base. proach to tailoring an environment to its plans and

4. A simple marker-passing scheme for recognition the goals it typically must achieve. The goal of this

that is domain - and task - neutral. enforcement parallels the goal of learning-the devel-
opment of a set of effective plans that can be applied

5. Provision for the flexible execution of plans in to satisfy the agent's goals. The path toward this goal,
the face of a changing environment, however, is one of shaping the world to fit the agent's

The basic metaphors of action as permission and plans rather than shaping the agent to fit the world.
recognition, and planning as the construction of de-
scriptions that an agent must recognize prior to ac- 8 Acknowledgements
tion, these fit our intuitions about agency. Under
this metaphor, we can view research into agency as This work was supported in part by the Defense Ad-
the exploration of the situations in the world that are vanced Research Projects Agency, monitored by the
valuable for an agent to recognize and respond to. In Air Force Office of Scientific Research under contract
particular, we have examined and continue to explore F49620-88-C-0058, and the Office of Naval Research
content theories of: under contract N0014-85-K-010.

" The conflicts between actions that rise out of 9 References
resource and time restrictions as well as direct
state conflicts and the strategies for resolving Phil Agre and David Chapman. Pengi: An imple-
them. mentation of a theory of activity. In Proceedings of

* The types of physical failures that block execu- the Sixth Annual Conference on Artificial Intelli pnce,
tion and their repairs. pages 2638-72. AAAI, 1987.

* The types of knowledge-state prbei.ts that R. Alterman. Adaptive planning: refitting old plans
blckplnnng i r s . to new situations. In Proceedings of the Seventhblock planning and their repairs. Annual Conference of the Cognitive Science Society,

" The circumstances that actually give rise to goals 1985.
in the presence of existing policies. D. Chapman. Planning for conjunctive goals. Memo

" The possible ways in which existing plans can AI-802, Al Lab, MIT, 1985.
be merged into single sequences and the circum- K. Hammond. Case-Based Planning: Viewing Plan-
stances under which they can be applied, ning as a Memory Task, volume 1 of Perspectives in

Artificial Intelligence. Academic Press, 1989.
" The types of reasoning errors that an agent can K. Hammond. Opportunistic memory. In Proceed-

make and their repairs. ings of the Eleventh International Joint Conference
" The trade-offs that an agent has to make in deal- on Artificial Intelligence. IJCAI, 1989.

ing with its own limits. K. Hammond, T. Converse, and M. Marks. Learning

" The different ways in which a goal can be blocked from opportunities: Storing and reusing execution.
and the resulting locations in memory where it time optimizations. In Proceedings of the Seventh An-

should be placed. nual Conference on Artificial Intelligence, pages 536-
40. AAAI , 1988.

Our goal i. . content theory of agency. The archi- M. Marks, K. Hammond, and T. Converse. Plan-
tecture we suggest is simply the vessel for that con- ning in an open world: A pluralistic approach. In
tent. Our notion of enforcement is simply one aspect Proceedings of the Eleventh Annual Conference of the
of the overall content model that comprises our theory Cognitive Science Society, 1989.
of agency. C. Martin. Direct Memory Access Parsing. PhD the-

sis, Yale University Department of Computer Science,
7 The point 1989.

R. Schank. Dynamic memory: A theory of learningIn order to plan at all in an environment, it must in computers and people. Cambridge University Press,
at least be stable with respect to its basic physics. 1982

In order to reuse plans in any interesting way at all,



Simulation-Assisted Learning by Competition 211

Simulation-Assisted Learning by Competition:
Effects of Noise Differences

Between Training Model and Target Environment

Connie Loggia Ramsey Alan C. Schultz John J. Grefenstette
Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory
Washington, DC 20375-5000

schultz@aic.nrl.navy.mil

Abstract examples nor a reliable domain theory. In these cases,
The problem of learning decision rules for one method for manually developing a set of decision
sequential tasks is addressed, focusing on the rules is to test a hypothetical set of rules against aproblem of learning tactical plans from a simulation model of the task environment, and toincrementally modify the decision rules on the basis ofsimple flight simulator where a plane must the simulated experience. This paper presents some
avoid a missile. The learning method relies initial efforts toward using machine learning to automate
on the notion of competition and employs the process of learning sequential tasks with a simulation
genetic algorithms to search the space of model.
decision policies. Experiments are presented
that address issues arising from differences Sequential decision tasks may be charactized by the
between the simulation model on which following general scenario: A decision making agent
learning occurs and the target environment interacts with a discrete-time dynamical system in an
on which the decision rules are ultimately iterative fashion. At the beginning of each time step, the
tested. Specifically, either the model or the agent observes a representation of the current state and
target environment may contain noise. These selects one of a finite set of actions, based on the agent's
experiments examine the effect of learning decision rules. As a result, the dynamical system enter a
tactical plans without noise and then testing new state and returns a (perhaps null) payoff. This cycle
the plans in a noisy environment, and the repeats indefinitely. The objective is to find a set of
effect of learning plans in a noisy simulator decision rules that maximizes the expected total payoffI

and then testing the plans in a noise-free Several sequential decision tasks have been investigated
environment. Empirical results show that, in the machine learning literature, including pole
while best result are obtained when the balancing (Selfridge, Sutton & Barto, 1985), gas pipeline
training model closely matches the target control (Goldberg, 1983), and the animat problem
environment, using a training environment (Wilson, 1987). For many interesting problems,
that is more noisy than the target including the one considered here, payoff is delayed in
environment is better than using using a the sense that non-null payoff occurs only at the end of
training environment that has less noise than an episode that may span several decision steps. In fact,
the target environment, the paradigm is quite broad since it includes any problem

solving task by defining the payoff to be positive for any
1 Introduction goal state and null for non-goal states (Barto, Sutton &

Watkins, 1989).
In response to the knowledge acquisition bottleneck The experiments described here reflect two important

associated with the desirn of expert systems, research in methodological assumptions:
machine_ learning attempts to automate the knowledge
acquisition process and to broaden the base of accessible 1. Our learning system is designed to continue learning
sources of knowledge. The choice of an appropriate indefinitely.
learning technique depends on the nature of the 2. Since learning may require experimenting with
pertormance task and the form of available knowlecge. decision rules that might occasionally produce
If the performance task is classification, and a large unacceptable results if applied to the real world, we
number of training examples are available, then assume that hypothetical rules will be evaluated in a
inductive learning techniques (Michalski, 1983) can be simulation model.
used to learn classification rules. If there exists an
extensive domain theory and a source of expert behavior,
then explanation-based methods may be applied 'If payoff is eccumulated over an infinite period, the total payoff is
(Mitchell et. al, 1985). For many interesting sequential usually defined to be a (finite) tine-weighted sum (Barto et. al,

decision tasks, there exists neither a database of 1980).
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In this methodology, a set of rules is periodically possible.
extracted from the learning system to represent the The EM problem is divided into episodes that begin
learning system's current plan. This plan is tested in the when the threatening missile is detected and that end
target environment, and the resulting performance is when either the plane is hit or the missile is exhausted.3
plotted in a learning curve. Making a clear distinction It is assumed that the only feedback provided is a
between the simulation model used for training and the numeric payoff, supplied at the end of each episode, that
target environment used for testing suggests a number of reflects the quality of the episode with respect to the goal
experiments that measure the effects of differences of evading the missile. Maximum payoff is given for
between the training model and the target environment, successfully eveding the missile, and a smaller payoff,
Simulation models have played an important role in based on how long the plane survived, is given for
earlier machine learning efforts (Goldberg, 1983; unsuccessful episodes.
booker, 1982, 1988; Wilson, 1985; Buchanan et al., The EM problem is clearly a laboratory-scale model
1988); however, these works do not address the issue of of realistic tactical problems. Nevertheless, it includes
validation of the simulation model with respect to a real several feattes that make it a challenging machine
target system. The experiment described here represents learning problem:
a step in this direction. Specifically, differences between
the training model (the simulator) and the target * a weak domain knowledge (e.g., no predictive model
environment with respect to noise are examined, of missile);
2 The Evasive Maneuvers Problem * incomplete -tate information provided by discrete

(possibly, noisy) sensors;
The experiments described here concern a particular * a large state space; and, of course,

sequential decision task called the Evasive Maneuvers
(EM) problem, inspired in part by Erickson and Zytkow * delayed payoff.
(1988). The tactical objective is to maneuver a plane to The following sections present one approach to
avoid being hit by an approaching missile. The missile addressing these challenges.
tracks the motion of the plane and steers toward the
plane's anticipatd position. The initial speed of the 3 SAMUEL on EM
missile is greater than that of the plane, but the missile 4
loses speed as it maneuvers. If the missile speed drops SAMUEL is a system designed to explore
below some threshold, it loses maneuverability and drops competition-based learning for sequential decision tasks
out of the sky. It is assumed that the plane is more (Grefenstette, 1989). SAMUEL consists of three major
maneuverable than the missile. There are six sensors that components: a problem specific module, a performance
provide information about the current tactical state: module, and a learning module. The problem specific

module consists of the task environment simulation, or
1. last-turn, the current turning rate of the plane; world model (in this case, the EM model), and its
2. time, a clock that indicates time since detection of the interfaces. The performance module is called CPS

missile; (Competitive Production System), a production system
that interacts with the world model by reading sensors,

3. range, the missile's current distance from the plane; setting control variables, and obtaining payoff from a
4. bearing, the direction from the plane to the missile; critic. In addition to matching, CPS implements conflict
5. heading, the missile's direction relative to the plane; resolution as a competition among rules based on rule

and strength and performs credit assignment based on payoff
(Grefenstette, 1988). The learning module uses a genetic

6. speed, the missile's current speed measured relative algorithm to develop tactical plans, expressed as a set of
to the ground. condition-action rules. Each plan is evaluated on a

Although other sensors could be used, these sensors number of tasks in the world model. As a result of these
represent a minimal, realistic set that might be available evaluations, genetic operators, such as crossover and
from the pilots point of view. mutation, produce plausible new plans from high

performance parents. More detailed descriptions of
Finally, there is a discrete set of actions available to SAMUEL appear in (Grefenstette, 1989; Grefenstette,

control the plane. In this study, we consider only actions Ramsey & Schultz, 1990).
Mat specify iscrte t.. rn..ng ..... for th- plne&. T he

learning objective is to develop a tactical plan, i.e., a set
of decision rules that map current sensor readings intoactions that successfully evade the missile whenever 2 For the experiments described here, the missile began each

episode at a fixed distance from the plane, traveling toward the
plane at a fixed speed. The direction from which the missile

2 The current statement of the problem assumes a two-dimensional approached was selected at random.

world. Future experiments will adopt a three.dimensional model SAMuEL stands for Strategy Acquisition Method Using Empirical
and will address problems with multiple control variables, such as Learning. The name also honors Art Samuel, one of the pioneers in
controlling both the direction and the speed of the plane. machine learning.
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The design of SAMUEL owes much to Smith's LS-1 which we want to learn decision rules. Let M denote a
system (Smith, 1980), and draws on some ideas from simulation model of E that can be used for learning. The
classifier systems (Holland, 1986). In a departure from assumption is that learning continues indefinitely in the
these earlier genetic learning systems, SAMUEL learns background using system M, while the plan being used
plans consisting of rules expressed in a high level rule on E is periodically updated with the current
language. hypothetical plan of the learning system. The genetic

The rule language allows four types of sensors: algorithm in SAMUEL evaluates the fitness of each plan
in its population by measuring its performance on a

1. linear, where the condition specifies an upper and number of episodes (currently, 10 episodes per plan) in
lower bound for the linear ordered values; the training model M. A plan's fitness determines its

2. cyclic, which are like linear, except that the values reproductive probability for the next generation. At
wrap around from the upper bound to the lower periodic intervals (currently, 10 generations), a single
bound; plan is extracted from the current population to represent

the learning system's current hypothetical plan. The
3. structures, where the sensor specifies a list of values, extraction is accomplished by re-evaluating the top 20%

and the condition matches if the sensor's current of the current population on 100 randomly chosen
value occurs in a subtree labeled by one of the values episodes on the simulation model M. The plan with the
in the list; and best performance in this phase is designated the current

4. pattern, where the sensor specifies a pattern over the hypothesis of the learning system. This plan is tested in
alphabet (0, 1, #}, as in classifier systems. the environment E for 100 randomly chosen problem

episodes. The plots show the sequence of results ofIn the EM domain, only linear and cyclic type sensors testing on E, using the current plans periodically
are used. An example of a rule for EM follows: extracted from the learning system. Distinguishing these

two systems permits the study of how well the learned
if (and last-turn 0 45) (time 4 14) (range 500 1400) plans behave if E varies significantly from M, as is likely

(heading 330 90) (speed 50 850)) in practice.
then (and (turn 90)) Because SAMUEL employs probabilistic learning
strength 750 methods, all graphs represent the mean performance over

20 independent runs of the system, each run using a
Each condition (if part) specifies a range over the named different seed for the random number generator. When
sensor, and each action (then part) specifies the value for two learning curves are plotted on the same graph, a
the na-med control variable. The strength is an estimate vertical line between the curves indicates that there is a
of the rule's utiity and is used for conflict resolution statistically significant difference between the means
(Grefenstette, 1988). represented by the respective plots (with significance

The use of a high level language for rules offers level a = 0.05) at that point on the curves. This device
several advantages over low level binary pattern allows the reader to see significant differences between
languages typically adopted in genetic learning systems two approaches at various points during the learning
(Smith, 1980; Goldberg, 1983). First, it makes it easier process. We feel that this is a better way to compare
to incorporate existing knowledge, whether acquired learning curves for continuously learning systems than,
from experts or by symbolic learning programs. Second, say, running the two systems for a fixed amount of time
it is easier to transfer the knowledge learned to human and comparing the performance of the final plans.
operators. Third, it makes it possible to combine
empirical methods such as genetic algorithms with 4.2 Sensitivity to Sensor Noise
analytic learning methods that explain the success of the Noise is an important topic in machine learning
empirically derived rules (Gordon & Grefenstette, 1990). research, since real environments can not be expected to
4 Evaluation of the Method behave as nicely as laboratory ones. While there are

many aspects of a real environment that are likely to be
This section presents an empirical study of the noisy, we can identify three major sources of noise in the

performance of SAMUEL on the EM problem with respect kinds of sequential decision tasks for which SAMUEL is
to the differences between the simulation model in which designed: sensor noise, effector noise, and payoff noise.
the kn-,led.e is la.d and the trget environment in Sensor noise refers to errors in senss, dai2 caused by
which the learned knowledge will be. used. imperfect sensing devices. For example, if the radar

indicates that the range to an object is 1000 meters when
4.1 Experimental Design in fact the range is 875 meters, the perfonia.-cd system

has received noisy data. Effector noise refers to errors
The learning curves shown in this section reflect our arising when effectors fail to perform the action indicated

assumptions about the methodology of simulation- by the current control settings. For example, in the EM
assisted learning. Ir particular, we make a distinction world, an effector command might be (turn 45), meaning
between the world model used for leaming and the target that the effectors should initiate a 45 degree left turn. If
environment. Let E denote the target environment for the plane turns at a different rate, the effector has
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introduced some noise. An additional source of noise
can arise during the learning phase, if the critic gives 100-
noisy feedback. For example, a noisy critic might issue a
high payoff value for an episode in which the plane is hit. 80-

While all of these types of noise are interesting, we
restrict our attention to the noise caused by sensors. To Win 60-
test the effects of sensor noise on SAMUEL, two Rate
environments were defined. In one environment, the of
sensors are noise-free. In the second environment, noise Plan 40-
is added to each of the four external sensors that indicate
the missile's range, bearing, heading, and speed. Noise
consists of a random draw from a normal distribution 20 -- - Tested with noise-free sensors
with mean 0.0 and standard deviation equal to 10% of
the legal range for the corresponding sensor. The 0
resulting value is then discretized according to the 0 5 0 7 1 I 
defined granularity of the sensor. For example, suppose 0 25 50 75 100 125 150 175 200
the missile's true heading is 66 degrees. The noise Generations
consists of a random draw from a normal distribution
with standard deviation 36 (10% of 360 degrees), Figure2: Learing withNoisySensors
resulting in a value of, say, 22. The noisy result, 88, is
then discretized to the nearest 10 degree boundary (as
specified by the granularity of the heading sensor), and Figure 1 shows that plans learned with noise-free
the final sensor reading is 90. As this example shows, the sensors perform significanty worse throughout the
amount of noise in this environment is rather substantial. learning period when the testing environment containsnoise (solid curve) than when the testing environment is

Given the noisy environment and the noise-free noise-free (dashed curve). For example, after 200
environment, there are four possible experimental generations, the current tactical plan evades the missile
conditions, depending on which environment is used for about 98% of the time when the sensors are noise-free,
the simulation model (M) and which is used for the target but only about 70% of the time when the sensors are
environment (E). For each experimental condition, the noisy. On the other hand, Figure 2 shows that the plans
genetic algorithm was executed for 200 generations, and learned under noisy conditions perform fairly well in
the results are shown in Figures 1 and 2. both target environments. After 200 generations, the

current tactical plan evades the missile about 88% of the
100- time when the sensors are noisy, and about 92% when

the sensors are noise-free. Clearly, more robust rules are
being learn!d, at a cost of slower improvement.

80 - By comparing the two dashed curves (or the two solid
curves) in Figures 1 and 2, it may be concluded that, for

Win 60- a fixed target environment, SAMUEL learns best when the
Rate training environment matches the target environment.
of However, this ideal case will not generally be realized in

Plan 40- practice, especially if the target is a real-world system
Tested with noisy sensors and the training model is a simulation. Our results show

20- --- Tested with noise-free sensors that using a training environment that is less regular (in
this case, more noisy) than the target environment is
better than having a training model with spurious

0 - 1 1 1 1 1 1 regularities (e.g., noise-free sensors) that do not occur in
0 25 50 75 100 125 150 175 200 the target environment.

Generations 5 Summary and Further Research

Figure ! T ,nrn;n, ... 4,h , o.t,, .. One important lesson of the empirical study is that

SAMUEL is an opportunistic learner, and will tailor the
In Figure 1, training was performed in the model with plans that it learns to the regularities it finds in the

noise-free sensors, and the resulting plans were tested in training model. It follows that the closer the training
the environment with noise-free sensors (dashed curve) model matches the conditions expected in the targetcurra environment -- in terms of sensor noise -- te better the
and noisy sensors (solid curve). In Figure 2, training was learned plans will be. In the absence of a pet fect match
performed in the model with noisy sensors, and again between training model and target enviroment, it is
noisy sensors (solid curve)a better to have too little regularity in the, training model

than too much.
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This study illustrates just one of many investigations Gordon, D. G & J. J. Grefenstette (1990).
one might pursue in assessing the effects of differences Explanations of empirically derived reactive plans.
between the model and the target environment. In Proceedings of the Seventh International Conference of
another study, we have examined the effect of differences Machine Learning, Austin, Texas.
in the initial conditions (i.e., the missile's initial range,
speed, and heading) between the training model and the Grefenstette, J. J. (1988). Credit assignment in rule
target environment. Preliminary results support the discovery system based on genetic algorithms. Machine
general conclusion reported here -- that it is far less risky Learning, 3(213), (pp. 225-245).
to have a training model with overly general initial Grefenstette, J. J. (1989). Incremental learning of
conditions than to have one with overly restricted initial control strategies with genetic algorithms Proceedings of
conditions (Grefenstette et. al, 1990). the Sixth International Workshop on Machine Learning.

Current efforts are also aimed at augmenting the task Ithaca, NY: Morgan Kaufmann. (pp. 340-344).
environment to test SAMUEL'S ability to learn tactical
plans for more realistic scenarios. Multiple incoming Grefenstette, J. J., Connie Loggia Ramsey, and Alan
threats will be considered, as well as multiple control C. Schultz (1990). Learning sequential decision rules
variables (e.g., accelerations, directions, weapons, etc.). using simulation models and competition. To appear in

As simulation technology improves, it will become Machine Learning.
possible to provide learning systems with h'gh fidelity Holland J. H. (1986). Escaping brittleness: The
simulations of tasks whose complexity or uncertainty possibilities of general-purpose learning algorithms
precludes the use of traditional knowledge engineering applied to parallel rule-based systems. In R.S.
methods. No matter what the degree of sophistication of Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),
the simu!ator, it will be important to assess the effects on Machine learning: An artificial intelligence approach,
any learning method of the differences between the (Vol. ltos, A: Mrga n apacn,
simulation model and the target environment. These (Vol. 2). Los Altos, CA: Morgan Kaufmann.
initial studies with a simple tactical problem have shown Michalski, R. S. (1983). A theory and methodology
that it is possible for learning systems based on genetic for inductive learning. Artificial Intelligence, 20(2), (pp.
algorithms to effectively search a space of knowledge 111-161).
structures and discover sets of rules that provide high
performance in a variety of target environments. Further Mitchell, T. M., S. Mahadevan and L. Steinberg
developments along these lines can be expected to (1985). LEAP: A learning apprentice for VLSI design.
reduce the manual knowledge acquisition effort required Proc. Ninth 1JCA, (pp. 573-580). Los Angeles: Morgan
to build systems with expert performance on complex Kaufmann.
sequential decision tasks. Selfridge, 0., R. S. Sutton and A. G. Barto (1985).
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Abstract the dependence on a world model. In this paper I

This paper extends previous work with Dyna, briefly introduce Dyna, a class of simple architectures

a class of architectures for intelligent systems integra,.ing and permitting tradeoffs among these three

based on approximating dynamic program- approaches.

ming methods. Dyna architectures integrate Dyna architectures use machine learning algo-
trial-and-error (reinforcement) learning and rithms to approximate the conventional optimal con-
execution-time planning into a single process trol technique known as dynamic programming (DP)
operating alternately on the world and on a (Bellman, 1957; Ross, 1983). DP itself is not a learn-
learned model of the world. In this paper, I ing method, but rather a computational method for
present and show results for two Dyna archi- determining optimal behavior given a complete model
tectures. The Dyna-PI architecture is based of the task to be solved. It is very similar to state-
on dynamic programming's policy iteration ofate task t bersd.tIt is e ilreto ta
method and can be related to existing Al space search, but differs in that it is more incremental
ideas such as evaluation functions and uni- and never considers actual action sequences explicitly,
versal plans (reactive systems). Using a nay- only single actions at a time. This makes DP more
igation task, results are shown for a simple amenable to incremental planning at execution time,
Dyna-PI system that simultaneously learns and also makes it more suitable for stochastic or in-
by trial and error, learns a world model, and completely modeled environments, as it need not con-
plans optimal routes using the evolving world sider the extremely large number of sequences possi-
model. The Dyna-Q architecture is based ble in an uncertain environment. Learned world mod-
on Watkins's Q-learning, a new kind of rein- be in an uncertain mod-
forcement learning. Dyna-Q uses a less famil- els are likely to be stochastic and uncertain, making
Jar set of data structures than does Dyna-PI, DP approaches particularly promising for learning sys-
but is arguably simpler to implement and use. tems. Dyna architectures are those that learn a world
We show that Dyna-Q architectures are easy model online while using approximations to DP to
to adapt for use in changing environments, learn and plan optimal behavior.

Intuitively, Dyna is based on the old idea that

1 Introduction to Dyna planning is like trial-and-error learning from hypothet-
ical experience (Craik, 1943; Dennett, 1978). The

How should a robot decide what to do? The traditional theory of Dyna is based on the theory of DP (e.g.,
answer in Al has been that it should deduce its best Ross, 1983) and on DP's relationship to reinforcement
action in light of its current goals and world model, learning (Watkins, 1989, Barto, Sutton & Watkins,
i.e., that it should plan. However, it is now widely 1989, 1990), to temporal-difference learning (Sutton,
recognized that planning's usefulness is limited by its 1988), and to Al methods for planning and search
computational complexity and by its dependence on (Korf, 1990). Werbos (1987) has previously argued for
an accurate world model. An alternative approach is the general idea of building Al systems that approx-
to do the ,lanng;,,.t m. ac n.. a.. .,;IC result . t J dynamic programm... ning, and A,, ..4chcad lInO8
into a set of rapid reactions, or situation-action rules, dud others (Sutton & Barto, 1981, Sutton & Pinette,
which are then used for real-time decision making. Yet 1985, Rumelhart et al., 1986) have presented results
a third approach is to learn a good set of reactions by for the specific idea of augmenting a reinforcement
trial and error; this has the advantage of eliminating learning system with a world model used for planning.
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2 Dyna-PI: Dyna by Approximating For a fixed policy, Dyna-PI is simply a reactive sys-
Policy Iteration tem. However, the policy is continually adjusted by an

integrated planning/learning process. The policy is, in
I call the first Dyna architecture Dyna-PI because it a sense, a plan, but one that is completely conditioned
is based on approximating a DP method known as pol- by current input. The planning process is incremental
tcy dteraton (Howard, 1960). The Dyna-PI architec- and can be interrupted and resumed at any time. It
ture consists of four components interacting as shown consists of a series of shallow seaches, each typically
in Figure 1. The policy is simply the function formed o one step ply, and yet ultimately produces the same
by the current set of reactions; it receives as input a result as an arbitrarily deep conventional search. I call
description of the current state of the world and pro- this relaxation planning. Dynamic programming is a

duces as output an action to be sent to the world, special case of this.

The world represents the task to be solved; prototypi- Relaxation planning is based on continually adjust-

cally it is the robot's external environment. The world ing the evaluation function in such a way that credit

receives actions from the policy and produces a next is propagated to the appropriate steps within action

state output and a reward output. The overall task is sequences. Generally speaking, the evaluation e(x) of
sdaeoutd as maximizrg tuthe long-e verae rard a state x should be equal to the best of the states y
defined as maximizing the long-term average reward that can be reached from it in one action, taking into
per time step (cf. Russell, 1989). The architecture also consideration the reward (or cost) r for that one tran-
includes an explicit world model. The world model is sition:
intended to mimic the one-step input-output behavior
of the real world. Finally, the Dyna-PI architecture in- e(X) "=" max E {r + e(y) I x, a}, (1)

cludes an evaluation function that rapidly maps states a cond
to values, much as the policy rapidly maps states to where E {. Ig denotes a conditional expected value

andons the equatio signion ise quoted, tod iniaehhtthsieatons. Thdelre ev ao funcationy sath e olarnd t condition that we would like to hold, not one that nec-
world model are each updated by separate learning essarily does hold. If we have a complete model of the
processes. world, then the right-hand side can be computed by

looking ahead one action. Thus we can generate any
number of training examples for the process that learns

EVALUATION the evaluation function: for any x, the right-hand side
FUNCTION Heuristic of (1) is the desired output. If the learning process

Reward converges such that (1) holds in all states, then the
(optimal policy is given by choosing the action in each

state x that achieves the maximum on the right-handside. There is an extensive theoretical basis from dy-
Pnamic programming for algorithms of this type for the

Reward special case in which the evaluation function is tabu-
(scatar) lar, with enumerable states and actions. For example,

st this theory guarantees convergence to a unique evalua-
tion function satisfying (1) and that the corresponding
policy is optimal (Ross, 1983).

Action The evaluation function and policy need not be ta-
bles, but can be more compact function approxima-

WORLD tors such as decision trees, k-d trees, connectionist net-
WORL works, or symbolic rules. Although the existing theory

does not apply to these machine learning algorithms
ORL M / directly, it does provide a theoretical foundation for

O/S WErCH exploring their use in this way. This kind of planning
also extends conventional state-space planning in that

Figure 1: Overview of the Dyna Architecture. With it is applicable to stochastic and uncertain worlds and
the world in place as shown we have reinforcement to non-boolean goals.
learning; with the world model switched in place of The above d;scussion gives the general idea of re-
the world we have planning. laxation planning, but not the exact form used in
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policy iteration and Dyna-PI, in which the policy is 1. Decide if this will be a real experience or a hypo-
adapted simultaneously with the evaluation function. thetical one.
The evaluations in this case are not supposed to re- 2. Pick a state x. If this is a real experience, use the
flect the value of states given optimal behavior, but current state.
ratl'er their value given current behavior (the current 3. Choose an action: a +- Policy(x)
policy). As the current policy gradually approaches 4. Do action a; obtain next state y and reward r from
optimality, the evaluation function also approaches the world or world model.
ptimal evaluation function. In addition, Dyna-PI is 5. If this is a real experience, update world model
Monte Carlo or stochastic approximation variant of from x, a, y and r.

policy iteration, in which the world model is only sam- 6. Update evaluation function so that e(x) is more
pied, not examined directly. Since the real world can like r+7e(y); this is temporal-difference learning.
al-ko be sampled, by actually taking actions and ob- 7. Update policy-strengthen or weaken the ten-
serving the result, the world can be used in place of dency to perform action a in state x according to
the world model in these methods. In this case, the the error in the evaluation function: r + 7e(y) -
result is not relaxation planning, but a trial-and-error e(x).
learning process much like reinforcement learning (see 8. Go to Step 1.
Bprto, Sutton & Watkins, 1989, 1990). In Dyna-PI, Figure 2. Inner Loop of the Dyna-PI Algorithm.
both of these are done at once. The same algorithm is These steps are repeatedly continually, sometimes with
applied both to real experience (resulting in learning) real experiences, sometimes with hypothetical ones.
and to hypothetical experience generated by the world
model (resulting in relaxation planning). The results
in boi,, cases are accumulated in the policy and the as the goal state, "G". The shaded states act as bar-
evaluiation function. riers and cannot be entered. All the other states are

There is insufficient room here to fully justify the distinct and completely distinguishable. From each

algorithm used in Dyna-PI, but it is quite simple and there are four possible actions: UP, DOWN, RIGHT,

is given in outline form in Figure 2. The algorithm is and LEFT, which change the state accordingly, except

based on a version of (1) modified to discount later as where such a movement would take the take the system

opposed to immediate reward: into a barrier or outside the maze, in which case the
location is not changed. Reward is zero for all tran-

e(x) "=" max E {r + 7e(y) I x, a}, (2) sitions except for those into the goal state, for which
OEActions it is +1. Upon entering the goal state, the system is

where y, 0 < -y < 1, is the discount rate. Whereas (1) instantly transported back to the start state to begin
is limited to tasks that end with a clear termination the next trial.1 None of this structure and dynamics
event, such as the finding of a goal state or the end of is known to the Dyna-PI system a priori.
a board game, (2) can be used for tasks that continue In this demonstration, the world was assumed to
indefinitely, with rewards and/or penalties arriving on be deterministic, that is, to be a finite-state automa-
each step. Algorithms based on (2) are meant to esti- ton, and the world model was implemented simply as
mate and maximize the expected value of a discounted next-state and reward tables that were filled in when-
sum of future reward: ever a new state-action pair was experienced (Step 5

E 00 rof Figure 2). The evaluation function was also imple-
E 1r~ xmented as a table and was updated (Step 6) according
k=0 to the simplest temporal-difference learning method:

where r, r2 , r3 ,.... is the sequence of future rewards. e(x) , e(x)+f(r+7e(y)-e(x)), where P is apositive
This is a standard optimization criterion in dynamic learning-rate parameter. The policy was implemented
programming and Markov decision processes. as a table with an entry w,,a for every pair of state x

and action a. Actions were selected (Step 3) stochasti-
3 A Navigation Task cally according to a Boltzmann distribution: P(alx) =

As an illustration of the Dyna-PI architecture, con- ew- / E ew." The policy was updated (Step 8) ac-

sider the task of navigating the maze shown in the cording to: wxa ' Wra + a (r + 7e(y) - e(x)). For

upper right of Figure 3. The maze is a 6 by 9 grid 1In fact, the goal state is never entered; the UP action
of possible locations or states, one of which is marked from the state below produces a reward of +1 and sends
as the starting state, "S", and one of which is marked the system directly to the start state.
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hypothetical experiences, states were oc...' (Step 2) periences, showing the benefit of relaxation planning
at random uniformly over all states previ lb:. .ncoun- using the learned world model. For k = 100, the op-
tered. The initial values of the evaluation function e(z) timal path was generally found and followed by the
and the policy table entries w.a were all zero; the ini- fourth trip from start to goal; this is very rapid learn-
tial policy was thus a random walk. The world model ing. The parameter values used were P = 0.1, 7 = 0.9,
was initially empty; if a state and action were selected and a = 1000 (k = 0) or a = 10 (k = 10 and k -- 100).
for a hypothetical experience that had never been ex- The a values were chosen roughly to give the best per-
perienced in reality, then the following steps (Steps formance for each k value.
4-7) were simply omitted. Figure 4 shows why a Dyna-PI system that includes

In this instance of the Dyna-PI architecture, real planning solves this problem so much faster than one
and hypothetical experiences were used alternately that does not. Shown are the policis found by the
(Step 1). For each experience with the real world, k hy- k = 0 and k = 100 Dyna-PI systems half-way through
pothetical experiences were generated with the model. the second trial. Without planning (k = 0), each trial
Figure 3 shows learning curves for k = 0, k = 10, adds only one additional step to the policy, and so
and k = 100, each an average over 100 runs. The only one step (the last) has be~n learned so far. With
k = 0 case involves no planning; this is a pure trial- planning, the first trial also learned only one step, but
and-error learning system entirely analogous to those here during the second trial an extensive policy has
used in some reinforcement learning systems (Barto, been developed that by the trial's end will reach almost
Sutton & Anderson, 1983; Sutton, 1984; Anderson, back to the start state. By the end of the third or
1987). Although the length of path taken from start fourth trial a complete optimal policy will have been
to goal falls dramatically for this case, it falls much found and perfect performance attained.
more rapidly for the cases including hypothetical ex-

WITHOUT PLANNING (k = 0)
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2pOnly) 
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i0o Pla/ing S r

100 st- 
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TRIALS Figure 4. Policies Found by Planning and Non-

Figure 3. Learning Curves for Dyna-PI Systems on Planning Dyna-PI Systems by the Middle of the Sec-
a Simple Navigation Task. A trial is one trip from ond Trial. The black square indicates the current lo-
the start state "S" to the goal state "G". The more cation of the Dyna-PI system. The arrows indicate
hypothetical experiences ("planning steps") using the action probabilities (excess over the smallest) for each
world model, the faster an optimal path was found. direction of movement.
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4 Problems of Changing Worlds 5 Dyna-Q: Dyna by Q-learning

Suppose that, after a Dyna-PI system has learned the The Dyna PI architecture is in essence the reinforce-
optimal path from start to goal, a new barrier is added ment learning architecture that my colleagues and
that blocks the optimal path. The Dyna-PI system I developed (Sutton, 1984; Barto, Sutton & Ander-
described above will run into the block and then try son, 1983) plus the idea of using a learned world
the formerly effective action many hundreds of times. model to generate hypothetical experience and to plan.
Eventually, the correct new path may be found, but Watkins (1989) subsequently developed the relation-
the process is very slow. It seems inappropriately slow ships between the reinforcement-learning architecture
in that the system's world model is updated immedi- and dynamic programming (see also Barto, Sutton
ately. Even though the world model knows that th2 & Watkins, 1989, 1990) and, moreover, proposed a
formerly good action is now poor, this is not reflected slightly different kind of reinforcement learning called
in the system's behavior for a long time. I call this the Q-learning. The Dyna-Q architecture is the combina-
blocking problem. tion of this new kind of learning with the Dyna idea of

Part of the problem is that the alternative actions using a learned world model to generate hypothetical
are never tried, even hypothetically, because the policy experience and achieve planning.
assigns them a probability of zero. The model knows Whereas the original reinforcement learning ar-
these actions are better, but this has no effect unless chitecture maintains two fundamental memory struc-
they are tried. One idea for solving this problem is tures, the evaluation function and the policy, Q-
to allow hypothetical actions to be selected according learning maintains only one. That one is a cross be-
to a more liberal policy than that used to select real tween an evaluation function and a policy. For each
actions. The simplest case of this is that in which hy- pair of state x and action a, Q-learning maintains an
pothetical actions are selected at random uniformly. estimate Qza of the value of taking a in x. The value
If this is done, a small adjustment must be made to of a state can then be defined as the value of the state's
the evaluation update (Step 6). Recall that the eval- best state-action pair:
uation function is supposed to represent the value of def
each state given the current policy. If hypothetical are e(X) = mxQ .
selected uniformly, then the bias toward the current
policy must be introduced explicitly. To do this, the In general, the Q-value for a state o and an action
evaluation update (Step 6), on hypothetical steps only, a should equal the expected value of the immediate
is altered to be weighted by the current action prob- reward r plus the discounted value of the next state y:
ability: e(z) +- e(x) +/O(r + 7e(y) - e(x))P(alz). In Q. "=" E {r + 7e(y) I x, a}. (3)
empirical studies we have indeed found this to be an
improvement on the original algorithm, substantially To achieve this goal, the updating steps (Steps 6 and
improving the robustness of its convergence onto cpti- 7 of Figure 2) are implemented by
mal behavior. However, this does not solve the block- Qa - Qxa + 9(r + 7e(y) - Qa). (4)
ing problem: the system still takes many hundreds of
actions into an added barrier before finally finding a This is the only update rule in Q-learning. We note
way around it. that it is very similar though not identical to Hol-

Now consider a second sort of change in the envi- land's (1986) bucket brigade and to Sutton's (1988)
ronment. Suppose, after the optimal path has been temporal-difference learning.
learned, a barrier is removed that permits a shorter So far, the Dyna-Q architecture is slightly simpler
path from start to goal. The simple Dyna-PI system than the Dyna-PI architecture. Two data structures
introduced above is unable to take advantage of such have been replaced with one (which is no larger than
a shortcut, it never wavers from the formerly optimal one of the original two), and one update rule and
path and thus never discovers that the former obsta- one parameter (a) have been eliminated. However,
k.1 T g 1 al t,5 .. ..... -c T. ... arni -ally rcquircs additional complx ty;
ing to improve the Dyna-PI system to handle blocks, determining the policy from the Q-values, as we dis-
we might also seek to improve it to handle shortcuts. cuss below. One advantage of Q-learning is that it
What is needed here is some way of continually testing requires no special adjustments if the action selection
the world model. In the next section we introduce a duriag hypothetical experience is different from the
slightly different architecture that handles both kinds current policy. Watkins (1989) has shown that the Q-
of changes with little increase in complexity. values will converge properly whatever policy is used,
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either hypothetically or in reality, as long as all state- but in the update equation for the Q-values. That is,
action pairs are repetitively tried. In the following ex- (4) is replaced by:3

periments, actions were selected at random uniformly Q Q + 3(r + c ii_' + 7e(y) - Q.). (5)
(Step 3) on hypothetical experiences.

The simplest way of determining the policy on real In addition, the system is permitted to hypothetically
experiences is to deterministically select the action experience actions is has never before tried, so that
that currently looks best-the action with the max- the exploration bonus for trying them can be propa-
imal Q-value. However, as we show below, this ap- gated back by relaxation planning. This can be done
proach alone suffers from inadequate exploration and by starting the system with a non-empty initial model.
can not solve the shortcut problem. In his work with In the experiments with Dyna-Q systems reported be-
Q-learning, Watkins implemented the policy proba- low, actions that had never been tried were assumed
balistically using a Boltzmann distribution: P(alx) = to produce zero reward and leave the state unchanged.
eaQ-° / , ec'Q-J. An annealing process was added in
which a tended to infinity so that even a small dif- 6 Changing-World Experiments
ference between Q-values would eventually lead to the
best action being selected with probability one. That Experiments were performed to test the ability of
approach, however, recreates the problem of loss of Dyna systems to solve blocking and shortcut problem.
variability in behavior such that shortcuts can not be hree Dyna systems were used: the Dyna-PI system
found. presented earlier in the paper, a Dyna-Q system in-

To deal directly with the shortcut problem, a new cluding the exploration bonus (5), called the Dyna-
memory structure was added that keeps track of the Q+ system,4 and a Dyna-Q system without the explo-
degree of uncertainty about each component of the ration bonus (4), called the Dyna-Q- system. All sys-
model. For each state x and action a, a record is kept ters used k = 10. For the Dyna-PI system, the other
of the number of time steps nxa that have elapsed since parameters were set as in the navigation experiment.
a was tried in x in a real experience. The square root F the Dna s = 0.,
~ii~ is used as a measure of the uncertainty about 7 = 0.9, and e = 0.001.

Qxa.2 To encourage exploration, each state-action pair The blocking experiment used the two mazes

is given an exploration bonus proportional to this un- shown in the upper portion of Figure 5. Initially a

certainty measure. For real experiences, the policy is short path from start to goal was available (first maze).
to select the action a that maximizes Q.,a + nCV,, After 1000 time steps, by which time the short path

where c is a small positive parameter. This method was usually well learned, that path was blocked and a

of encouraging variety is very similar to that used in longer path was opened (second maze). Performance
under the new condition was measured for 2000 time

Kaelbling's (in preparation) interval-estimation algo- ste Are esuntsov 5s are sow in ig-

rithm. steps. Average -esults over 50 runs are shown in Fig-
ure 5 for the hree Dyna systems. The graph shows athowever, this approach alone does not take advan- cmuaverodoften brofewdseeid

tag oftheplanin caabiityof ynaarciteturs. cumulative record of the number of rewards received
tage of the planning capability of Dyna architectures, by the system up to each moment in time. In the first
Suppose there is a state-action pair that has not been 1000 trials, all three Dyna systems found a short route
tested in a long time, but which is far from the cur- to the goal, though the Dyna-Q+ system did so signif-
rently preferred path, and thus extremely unlikely tobe tried even with the exploration bonus discussed icantly faster than the other two. After the short path
beotrieeve. n w Dynstemhn exploratin b s duss was blocked at 1000 steps, the graph for the Dyna-PI

tbve topn anation sequnem ty got a et the system remains almost fiat, indicating that it was un-
tern to plan an action sequence to go out and test the able to obtain further rewards. The Dyna-Q systems,
uncertain state-action pair If there is genuine uner- on the other hand, clearly solved the blocking problem,
tainty, then there is potential benefit in going out and reliably finding the alternate path after about 800 time
trying the action, and thus forming such a plan is sim-
py rational behavior and shonld he done. It turns out steps.

that there is a simple way to do this in Dyna-Q. The 3 Note that this differs from (4) only on hypothetical
exploration bonus of eNf/i'T is used not in the policy, experiences, as nxa = 0 on real experiences.4In these experiments, the Dyna-Q+ system selected

2The use of the square root is heuristic but not arbi- the action a in each state x that maximized QT +c\%/nza),
trary, as the standard deviation of all stationary, cumula- but we have since found that equally good performance can
tive random processes increaseb with the square root of the be obtained simply by picking the action with maximal
number of cumulating steps. Qxa.
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Figure 5. Average Performance of Dyna Systems on a Figure 6. Average Performance of Dyna Systems on a
Blocking Task. The left maze was used for the first Shortcut Task. The left maze was used for the first
1000 time steps, the right maze for the last 2000. 3000 time steps, the right maze for the last 3000.
Shown is the cumulative reward received by a Dyna Shown is the cumulative reward received by a Dyna
system at each time (e.g., a fiat period is a period system at each time (e.g., the slope corresponds to the
during which no reward was received), rate at which reward was received).

The shortcut experiment began with only a long One strength of the Dyna approach is that it ap-
path available (first maze of Figure 6). After 3000 plies to stochastic problems as well as deterministic
times steps all three Dyna systems had learned the ones. We have explored this direction in recent work,
long path, and then a shortcut was opened without but are not yet ready to present systematic results.
interferring w ith the long path (second m aze of Figure Th b ai id ai tol rn m d l w i h p e i s no
6). The lower part of Figure 6 shows the results. The Thbaiidastolrnam elwchpdcsnt

a deterministc next state and next reward, but ratherincrease in the slope of the curve for the Dyna-Q+ sys-
tem, while the others remain constant, indicates that a probability distribution over next states and next
it alone was able to find the shortcut. The Dyna-Q+ rewards. In the simple cases we have explored, this
system also learned the original long route faster than reduces to counting the number of timcs each possible
the Dyna-Q- system, which in turn learned it faster outcome has occurred. In hypothetical experiences,than the Dyna-PI system. However, the ability of the expected value on the right of(3) is then estimated
the Dyna-Q+ system to find shortcuts does not come using the sample statistics. A slightly different explo-

totally for free. Continually re-exploring the world ration bonus is also needed. Promising preliminary
means occasionally making suboptimal actions. If one results have so fat been obtained for simple problems
looks closely at Figure 6, one can see that the Dyna- involving random autonomous agents and stochastic
Q+~ system actually acheives a slightly lower rate of state transitions (e.g., action UP takes the system to

............. ..... €,....... ... .. , ... a .. .. the state above 80% of the time, and to a randomenvironment, Dyna-Q+ will eventually perform worse
than DynaQ-, whereas, in a changing environment, it nih r ge 20%fofmthe time).
will be far superior, as here. One possibility is to use hFrther rsut ae ee ed for th cpri-a meta-level learning process to adjust the exploration son of Dyna-PI and Dyna-Q architectures. but the re-
parameter c to match the degree of variability of the suIts presented here suggest that it is easier to adapt
environment. Dyna-Q architectures to changing environments.
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7 Limitations and Conclusions learning processes. I conclude that it is not necessary
to choose between planning systems, reactive systems

The simple illustrations presented here are clearly lim- and learning systems. These three can be integrated
ited in man:, ways. The state and action spaces are not only into one system, but into a single algorithm,
small and denumerable, permitting tables to be used where each appears as a different facet or different use
for all learning processes and making it feasible for the of that algorithm.
entire state space to be explicitly explored. For large
state spaces it is not practical to use tables or to visit
all states; instead one must represent a limited amount ,gcknowledgrentsit. Both The author gratefully acknowledges the extensive
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ABSTRACT world. Any model of real-world behavior will necessarily
have discrepancies with how the real world actually be-
haves. Figure 1 shows the common problem with such sys-Most current learning and planning systems have System's Modcl of thc World

been designed to function well in an environment y
which is a model of the real world. No model of
the world can be perfect, however. For a system to
actually be able to learn and plan with the real
world it must be able to detect problems encoun-
tered while acting on the world and to reconcile its
model with sensed data. We have constructed an t t
explanation-based learning system called "
GRASPER which has capabilities to monitor ex-
ecution of its plans and to tune its model of the
world through use of explicit approximations. The Real World 10
This paper first characterizes the different kinds of Grasp
approximations and introduces the use of approxi- omplete
mate rles for the purpose of learning uncertainty
tolerant plans. Uncertainty tolerant plans offer the
important advantage that they can function in spite Figure 1. Discrepancies Between a Model
of errors rather than imposing censors which re- and the Real World
strict the generality of a plan. The key issue with tems: an unrealized discrepancy between their model and
uncertainty tolerance approximations is the ability the real world.
to tune them when the system encounters failures. Explanation-based learning has shown promise in robot-
Our approximations for uncertainty tolerance in- ics. In Segre's ARMS system, knowledge about the control
volvetunablecontinuous quantities. A new gener- of a robotic manipulator in conjunction with geometric ob-
al algorithm is presented which, by creating quali- jectknowledge permitted learning assembly plans from ob-
tativerepresentations forthequantitative behavior servation [Segre87]. Explanation-based learning permits
of an explanation-based nile, can generate expla-
nations as to how to increase the probability of general plans to be learned from a single example De-
success of th- failing expectation through tuning Jong86, Mitchell86]. In robotics, a sequence of robot con-
various approximate quantities. A real-world ex- trol primitives is used as the example. Attempting to use
ample is given illustrating the tuning process for ARMS to control a real robotic manipulator often resulted
one of the more common failures occurring with in failures due to discrepancies with the real world. This
GRASPER operating in the robotics grasping do- highlighted the need for a mechanism which can adapt a
main. An empirical comparison of failres ratcb system's model of the world to the real- world environment.
for tning and non -tuning runs is provided in the We are currently developing a system called GRASPER
task of grasping all pieces to a children's puzzle. to illustrate the use of explanation-based learning in the real

world [Bennett89b]. It seeks to learn and execute real-

1. Introduction world plans tractably in the presence of uncertainty.
Learned plans are therefore error tolerant. Most existing

Most learning and planning systems to date have func- systems which engage in learning from failure impose re-
tioned in isolation from the real world. They work with a strictions oii plans when failures are encountered. Recent
simplified representation for the world, usually measuring examples include H2,nmond's CHEF [Hammond86] and
success by the ability to efficiently produce plans which Chien's work on plan refinement [Chien89]. This ensures
function well under the assumptions of that representation, that the plans won't fail in simular circumstancs again but
This work has producedmany invaluable techniques for use cin decrease their overall generality. Plan generality can be
inleamingandplanning. However, onecomponentmissing rclne,_ if plans arc learned which function in spite of er-
from most of these systems is a mechanism for reconciling rors. This is especially important in real-world environ-
their performance in the simplified world with the real ments where uncertainty-elated errors are so l)ervasive.
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GRASPER is being tested in a robotic grasping domain tolerance of one's knowledge. The unfortunate reality is
where it can act on the world through control of a robotic that everything a system senses from the outside world is in
manipulator and can acquire data with a visual system and some seuse approximate already. To put this in perspective,
position and force sensors associated with the manipulator. in the following two subsections, we discuss anddistinguish
We are testing system perfornance at grasping relatively between data approximations and rule approximations.
flatpieces from a puzzle for young children. Grasping com- 2.1. Data Approximations
plex shapes su,.h as these is a difficult ongoing robotics re-
search area andprovides an ideal testbed for our learning al- Data approximations involve representations for mea-gorthm. Te sstm eplos epliitapproximations in sures sensed from the real world. The raw sensor readings
gorithms. The system employs explicit aobtained by the system are external approximations. That
the domain theory. It is the tuning of these approximations is, they can only be tuned through interaction with the
with experience which is the key to the system. This paper world. If a range sensor returned the distance to an object,
focuses on how approximate rules are tuned over time to in- that distance would be externally approximate. However,
crease the uncertainty tolerance of learned plans. First, our one could e erng som te a osinthapprximtio terinoogyis itrouce. Th aproxma- one could imagine performing some further actions in the
approximation terminology is introduced. The approxima- world, such as using tactile sensors to feel first contact with
ton tuning algorithm is presented next. The algorithm is the object, so as to tune that initial approximation for dis-
then employed on a robotics grasping example. Lastly, we tactohebjt.ncnrstanienlapoxmin
present experimental results comparing tuning algorithm tance to the object. In contrast, an internal approximation
er or rates to non-tuning error rates in executing plans oin can be tuned by the system's own reasoning alone without
a real-world robotic manipulator. acting on the world. A common type of internal data ap-

proximation employed by our system is to redluce the corn-
2. Approximations plexity of visually sensed 2-D object contours. Such con-

An approximation has two important defining features: tours involve hundreds of points and make it difficult and
slow to devise grasping points. The internal data approxi-

Assumability mation currently employed reduces the contour to a n-gon
An approximation must make some statement about the with n much less than the number of sensed contour points.
world based not on logical proof but on conjecture. Data approximations, both external and internal, are cur-

Tunability rently pre-selected for the domain. The tuning of such ap-
The approximation must provide a method by which it proximations from their initial values is the key problem
can betuned as the system acquires new knowledgeand/ here. Our use of internal data approximations is for effi-
orits goalschange. The tuning method should allow ad- ciency not uncertainty tolerance.
justment of continuous parametcrs of the approximation 2.2. Rule Approximations
to decrease its error with respect to the true world situa-
tion. The tuning method may accept as input new Rule approximations areemployedwhenthe systemplans
knowledge (obtained from sensor readings) which facil- or understands how a goal can be achieved. They affect the
itate this adjustment. way the system interacts with the world. Consequently,

Assumability gives an approximation its efficiency and these approximations are useful for building uncertainty
tractability advantage. This provides ajustification that fur- tolerance into a plan. They are always internal approxima-
ther reasoning need not be done. Tunability indicates that tions, capable of being controlled by the system. Approxi-

mation techniques, such as those in use by Keller [Kel-our use of the term approximation requires that they be a ler87], Zweben [Zweben88], and others, which drop rle
function of continuously tunable parameters. By making p ren , ree ule approt ns tin a dis-
approximations explicit, rather than implicit as in many Al preconditions, are like our rule approximations but in a dis-

systems, failures resulting from the approximations can be crete, not a continuous, sense. Theirapproach to improving
traced back to inadequate approximations. In much of the efficiency of rules through approximations is complemen-
work on approximation, the focus is on how to make the ap- tary to ours as both efficiency and uncertainty tolerance areproximations initially. This is an important issue in using important aspects of a system's real-world performance.I
approximations to improve the efficiency of one's knowl- This paper focuses on rule approximations for thepurposeedge. Approximations differ from single binary assump- of improving the uncertainty tolerance of a plan. Here, thetions in that they embody a notion of state and are tuned ruleapproximationsinvolveachoiceforcontinuousparam-

tion inthatthe embdy noton f stte nd ae tned eters whose adaptability to the environment is desired. 11he
from their current state, not simply retracted if they iead to
a failure as with Chien's approach [Chuen89]. Since ap- intialapproximaterlesincludeadeclarationofthesecon-
proximations can be tuned continuously, they also differ tinuous approximate quantities as well as a set of predicates
from the discrete ntumber of possible adjustments available (antecedents to the approximate rules) which calculate the
in fixed abstraction hierarchies like that of Doyle I. For a model of operationality for real-world systems which
[Doyle86]. But in using approximations to deal with real- brings together efficiency, uncertainty tolerance and othcr factors see
world uncertainties, the goal is to improve the uncertainty [Bennctt9a].



228 Bennett

initial values. These approximate rles are pre-defined as the approximate model of the world, no error was foreseen,
part of the domain knowledge. otherwise the explanation would not have been possible.

We have identified three basic types of rule approxima- This suspect subpart of the original explanation is the start-
tions and employ them all in our current implementation: ing point for our general tuning algorithm.

controls The tuning algorithm has two major steps:

These rules directly choose the value for some real- 1) generate a qualitative explanation for how the proba-
world quantity. For example, in ihe robotic grasping do- bility of the failed expectation can be increased
main, chosen-opening-width is a control approxima- through tuning of rule-approximate quantities and
lion which chooses the amount by which the gripper
should open for achieving the grasp. 2) performthe actual tuning of theindicated ruleapproxi-

constraints mations.

A constraint rule is used for restricting a choice from Thekey in accomplishing the firststep is toexpress therela-
among a set of candidates. Each constraint rle func- tionships between generalized variables in the failing sub-
tions as part of a multi-constraint rating rule for evaluat- tree as qualitative relations. This will make possible quali-
ing a set of candidate choices. In the robotic grasping
domain, approximate constraintrules are used in choos- tative proofs which relate data-approximate quantities,
ing the best faces to use in achieving a grasp. Currently rule-approximate quantities, and qualitative probabilities
implemented constraint approximations include open- of success of the various predicates. The procedure is de-
ing-width-constraint and contact-angle-constraint picted graphically in Figure 2. First, the sub-tree of the
for constraining the choice of faces to those with a real- overall explanation which supports the failed expectations
izable opening width and a contact angle within the fric- is instantiated with the gener- primary
lion angle. alized binding list which goal

weights EGGS produced for the N_ planation in
Constraints which are part of one rating rule are com- original goal explana- g cralized form

bined using weights which are themselves tunable ap- tion. The predicates / \
proximations represented by approximate rules. Forex- at the root and / ,
ample, opening-width-constraint has an associated l o s
weight opening-width-constraint-weight used in eva- leaves of this sub-
luating it relative to contact-angle-constraint, tree are asserted

Next, we )resent an algorithm for recognizing which ap- in a new situation
proxinations, among the declared rle approximations, to as qualitative re-
tune on failure and how to tune them. lations. The quantity ar- \I ,

guments to these predi- sub-explanation
3. A General Tuning Algorithm cates (which are v supporting action whose

Given a goal, the system constructs an explanation for generalized variables) exectations were violated
• U 'i ill /)l assert root and leaves

how the goal may be achieved. This can be accomplished become quantities i / of failed sub-tree as
in either an understanding mode, given an applied operator our qualitative model t qualitative relations
sequence, or in a planning mode where the operator Se- of the sub-nroof. \
quence is derived. Rules involved in constructing the expla- Any data-approxi-
nation include approximate rles as outlined above. Most mate orrule-approxi- -
of the facts employed in constructing the explanation are mate quantities which (pred argl arg2 ar&3 ...)
data--approximate having been derived from sensed values took part in the origi- 4 quanitities
from the real world. In order for a monitored action to be nal explanation and quantity named same
achieved in the explanation, a set of expected sensor values whose quantity vari- variable as generalized

must be justified by a further subpart of the explanation. ables are members of variables

The ovcrall explanation is then generalized using EGGS the set of generalized Figure 2. Generating the
[Mooney86] ,nd packaged into a rule as with standard EBL quantity variables for Qualitative Model
s) stems. When the rule is extcuted i th reil world, thuse the sub-proofare asserted asdata-appoximate and tunable
scnsul s descibed in the monitored atious are obser ed. If quantities respectively in the current sitUation. Once these
the sensor readings observed Niolate the cLnstraints de- factd have been asserted which pertain to the specific proof
seribed in the monitored .ttions, plan execution has fadled.2  tree, ihe goal of increasing the probability of the root predi-
In thi, LasC, the subpart of the original explanatio u lui cate to the sub-proof can be proved using a set of domain-
justified the expected sensor readings is suspect. Clearly, in independent qualitative rules.
2. Approxzr~tiii turug in our system is driven bawd'J on cxpccaa- There are four classes of domain independent qualitative

-, f, A h idea has lon& b,:en advoatcd a a Lgxr fur learing, niles used by the system for generating the qualitative tun-
See [Schank521. itg explanation:
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general qualitative inference rules right has a higher probability of succeeding given the illus-
These are rules for inferring the effects of changes in trated probability distributions for its arguments. While
quantities. For instance, the qualitative proportionality probability distributions are difficult to define and work
predicate (Q+ ?a ?b) asserts that the magnitude of the with, there is a much simpler qualitative view of the proba-
quantity ?b directly influences the magnitude of the bility distribution: probability density decreases as one
quantity ?a. Therefore, one such inference rle states decreasing'r. decreasing
that to achieve the goal of increasing ?a one could find central__II\'
a quantity ?b for which (Q+ ?a ?b) holds and try to value N.
achieve the goal of increasing ?b. moves either higher or lower away from the central value.

qualitative predicate definitions The general definition for a data approximation embodies
These rules provide qualitative representations for the this principle. The measured quantity is taken to be the cen-
quantitative predicates employed in generating expla- tral value. Some distribution is present because of the un-
nations. For example, the predicate (dif ?ql ?q2 ?r) is certainty involved. Without knowing any details about the
used by the system for taking the difference between distribution, the definition for a data approximation states
two quantities (?ql and ?q2) and computing the result that the probability of encountering the actual value for the
(?r). One of several rules which form the qualitative measured quantity decreases as we get farther from the
predicate defi- (rule :form measured approximate value. One of the approximation
nition for the (+? q1
dif predicate is( ?r ?ql) definition rules regarding data approximate quantities is
shown on the :at shown below
right. It states (qrelation (dif?ql ?q2 ?r)) (nile :form
that the magnitude of the quantity ?ql directly in- (PQ- (< ?test ?loc) ?test)
fluences the magnitude of the result ?r in a difpredicate. :ants
These definitions and the general qualitative inference (data-approx-quantity ?loc2)
rules described above are similar to elements ofForbus' (IQ+ ?loc ?loc2))
Qualitative Process Theory [Forbus84]. This translates to: ifa less-than is beingperformed between

approximation definition rules ?test anda quantity ?loc which is indirectly or directlyqual-
Approximate quantities have properties which can be itatively proportional to a data approximate quantity, the
expressed in a qualitative manner. These will be dis- probability of the less-than succeeding is inverselypropor-
cussed in more detail below. tional to the magnitude of the ?test quantity.

qualitative probability rules Rules like this effectively translate goals to increase the
These rules relate the probabilities of success of predi- probability of success of a predicate into goals to increase
cates in a way similar to the general qualitative infer- or decrease quantities.
ence rules. Proportionalities can be declared between In general, an explanation for positively influencing the
the probabilities of success of certain pairs of predicates probability of a predicate proceeds so as to:
as well as between the probability of success of a predi- 1 ) relate the probability of the failing predicate to that of
cate and the magnitude of a quantity. Using these pro-
portionalities, goals of achieving increases or decreases a test predicate involving approximate quantities
in probabilities of success can be achieved. For exam- 2) use the definition of a data approximation to relate the
pie, the probability of success of the antecedent to a nile probability of success of a test predicate with the mag-
is declared to have a positive influence on the probabili- nitude of a tunable quantity
ty of success of the consequent of a nile. To guarantee that the probability of the failing predicate will

In order to see how the qualitative tuning explanation is increase, all the test predicates in the nile ,itecedents must
constnicted using these rules, it is important to understand be examined. At least one must show an increasing proba-
how qualitative probabilities of success are related to tun- bility of success and the others must be non-decreasing.
able quantities. Quantitative predicates employed by the The tuning explanation, once generated, indicates only
system have one of two basic intents. Either they are calcu- which quantities to tune and in which direction. The re-
lation predicates, whose purpose is to compute some value manmingtaskis to carry outthttuning of the ruleapproxima-
(e.g.the diffunc!ion discussed earlier), orthey aretestpred- lions. Figure 3 illustrates three possible states during the

-.-uii , A sls. - t., a jSU Av 4^ 4r,.1 . tsn os .s.. s. utaui ufd Uk dC--t-k- -i#-C;i.L.... .. L) - . L . I ik. db-

(e.g. the less-than function). There is no way to vary the ing or decreasing constraints all have general predicates as-
probability of success of a calculation predicate since they sociated v ith them Nv ichi allow a specifit iunmeric vaue for
always succeed. A test predicate's probability of success, theboundtobederivedintlieurrentcontext. Theordenng
is sensithe to the probability distribution of its argument of theconstraints isrequiredto be the same across multiple
quantities. In the diagram below, the less-than test on the lontexts iii ,Inch the rule al)proximatioin i used. Values to

(a a . tt. Pb)? the left of a lower bound or to die right of an tipper bound
Sstnbu are not supported by explanations in the approximate model
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of the world. Tuning takes place between these bounds control to correspond wvith the peak value of the quality
through the posting of increasing and decreasing con- function.
straints. When new constraints are posted to a nile approxi- Therefore, to carry out the tuning as prescribed by tie
mation a function called the qualityfunclion is re-calcu- qualitative tuning explanation, a new constraint is posted to
lated. The quality function provides an estimate of which the appropriate rule approximation for each suggested tun-
values and ranges of values best satisfy the current con- ing. If the value at which the failure was suggested was
straints of the rule approximation. It is scaled to between originally generated from one of the constraints or bounds
-1 and 1 where a negative value means the current set of of the approximation, the same general predicate expres-
constraintsis notmetandapositive value indicates theyare. sion is used for calculating it but the type of constraint is
The magnitude indicates a relative rating of how well or changed as necessary. When constraints need to be posted
how poorly the constraints are met. For example, for a rule between sets of existing constraints, a new general expres-
approximation with bounds but no increasing or decreasing sion is created using the general expressions for the two sur-
constraints, the function is flat between the bounds indicat- rounding constraints and using the ratio between their spe-
ing there is no preference in choosing values in that region. cific values in the context of the failure. Once the new

The different rule approximation types described earlier constraint has been added (or the old constraint changed)
use the quality function in different ways. A constraint ap- the quality function is re-computed and forcontrol approxi-
proximation uses the quality function to give a rating for mations, the corresponding approxinate rules replaced by
how well a value meets the constraints in the current con- a new set which reflects the new quality function.
text. A control approximation, on the other hand, uses the With constraint approximations, another decision also
quality function in generating a set of apl)roximate riles must be made before tuning. When the qualitative tuning
which control the choice for its controllable quantity. In explanation indicates that the tunable quantity related to a
generating the approximate nile set of a control approxima- constraint approximation is the target for tuning, it is poss -
tion, preference is given to values closer to the current value ble that the current constraint approximation had no say in
of the controllable quantity. For the unconstrained case of the choice that failed. This is because constraint approxi-
Figure 3 three rules are generated: one to prefer the lo%, er mations are combined using approxnate weights. If the
bound when the current %alue is less than the lo%, er bound, quality function of tiectirrentconstraintapproximation did
one to keel) the current setting if it lies between the bounds, give the selected value a negative rating, the associated
and one to use the upper bound if the current value is greater weight approximation should be tuned instead of the con-
than the upper bouind. When an expense is associated with straint itself. This serves to increase the relative importance
movement of a control, this minimizes the expenditure. In of a constraint wvhich is already tuned correctly. Since
all other cases, forcontrol approximations, the rile sets the weightsare scaied in the range 0 to 1, thisamounts to either

Unconstrained ___ tuning the indicated weight to be increased from the current
------------- - qualityfnction value or equivalently tuning all the weights for the other4...... constraints employed in the rating function to be decreased

" lrfrom their current values if the indicated weight is alreadyj ower upper: -._
- bound bound set to 1.

With Increasing Constraint 4. An Example Illustrating the Algorithm
.. -.I -* quality function Our testbed for learning and tuning apl)roximate explana-

~ ~.~" ."' " J'tion-based rules is the robotic grasping domain. The sys-
tem, GRASPER, is implemented in Lucid Common Lisp

-r- "unning on an IBM RT125. The system acquires visual ob-
With Opposing Constraints ject contour data using Ic[ n

1 / ..1.-qu-ltv imcion all MV I framne grabber

I ,," ,, j connected to an over-
head mounted CCD

_l________.___ camera (see Figure 4).
Constraint Tvnes The sy.oem (cntirniq a.i

• '* Failure, Decrease = Better UMI RTX scara-type ua

Failure, Increase = Better robotic manipulator
Bound equi)ped with variable

force control and joint
Figure 3. Three Possible States for Constraints on encoders for all joinis.

a Rule Approximate Quantity Figure 4. RTX Setup
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Initially, the system uses the camera to acquire contour in- pect due to the violated expectations. A sketch of the specif-
formation about objects in the workspace. These contours ic explanation is shown in Figure 8. This explanation for
are then approximated with n-gons (internal data approxi- (NO-GRIPPER-COLLISION-OBJECT GRIPPER 1
mations) which result in (n2-n)/2 possible unique grasping FINGER1 263 180 0 40 OBJECT148)
face pairs. In runs performed here, n was set to 5. The data (LEFT-FINGER-OF GRIPPERI FINGERI)
approximated object representations as well as the current (NON-INTERSECTING-GRIPPER-FINGER-OBJECT
information about the state of the robot manipulator are as- GRIPPERI FINGERI 263 180040 OBJECTt48)
serted in the initial situation. The target object is then se- Subprooffor translating finger to appropriate opening
lected and an explanation is generated for how to achieve a \width (6facts, 8 built-ins)
grasp of the target. Figure 5 (automatically drawn by the Subprooffor counter-rotating object center for
imaphe tat) show e se- aclipping against finger (8 built-ins)
implementation) shows the se- a pSubprooffor calculating extents and checking for
lected target objectwith the vi- contour overlap (7 built-ins)
sually sensed contour drawn (RIGHT-FINGER-OF GRIPPER 1 FINGER2)
with a heavy line. The light
pentagon is the data approxi- (NON-INTERSECTING-GRIPPER-FINGER-OBJECT
mation for the object The ar- GRIPPER1 FINGER2 263 180 0 40 OBJECT148)
rows indicate the positions of Subprooffor translating finger to appropriate opening
the leading edges of the fin- dp*a approxination width (6facts, 8 built-ins)gers for tile grasp position of contour SHARED Subprooffor counter-rotating object centergie rasp for clipping against finger (8 built-ins)
given by tihe produced expla- Figure 5. Grasp Target bSubprooffor calculating extents and checking for
nation. The explanation for achieving grasp-object in- overlap (7 built-ins)
volves a total of about 300 nodes with a maximum depth of Figure 8. Explanation Specific to Failure
10 levels. This explanation was produced using the approx- why no external force should have been sensed during the
imations in their initial state berre tuning. The approxi- downward move ,,? he gripper is the starting point for de-
mate rule employed in the explanation fordeciding the grip- veloping the iualitatve tuning explanation. The general-
per opening width to choose once the grasping faces had ized consequents and antecedents uf he no , pper-colli-
been selected is shown in Figure 6. This rule affected lc sion subproof are asserted as qualitative relations.
separation of the arrows shown in Figure 5. Afterthe expla- Approximate quantities employed in the subproof are iden-
nation was generated, and its associated operator sequence liffed and asserted as such. A proof is then constructed for
executed, the monitored ac:, )n shown in Figure 7 encoun- increasing the probability of success of the no-gripper-col-
tered a violation of the expected sensor readings. lision-object goal. Figure 9 shows the qualitative explana-
The original explanation for the no-gripper-collision--ob- tion for how opening the gripper (increasing the opening-
jectgoal indicated in the above monitoredaction is now sus- width tunable quantity) positively influences the

INTRA-RULE. Rl90- one of three rules which are initially defined by the opening %vidth rle approximation
FORM: (CIIOSEN-OPENING-WIDTiI ?GRIPPERX ?Y ?ANGLE ?O3JEcr ?RETURN)
ANTS: (GRIPPER-OPENING ?GRIPPER ?LOPI87) find minimum required

(GRIPPER-PERP-WIDTII ?GRIPPER ?SPAN) opening so fingers don't
(MIN-SPAN-FOR-OBJECT ?OBJECT ?X ?Y ?ANGLE ?SPAN ?LEFT ?RIGIIT) "-collide with object ill
(SUM ?LEFI' ?RIGIf ?RETURN)
(MAX-GRIiPPER-OPENING ?GRIPPER ?MAX-OPEN) approximate model
(<- ?RETURN ?MAX-OPEN).q-- can't do it even in approximate model if too wide for gripper

(<?LOP187 ?RETURN)
APPROX: CIIOSEN-OPENING-WIDTII pointer to parent rule approximation

Figure 6. One of the Initial Approximate Rules For Opening Width

(MONITOR (MOVE-ZED ?GRIPPERI 6601 DOWN 20 64 20 POSITION) *- move down
(AND (POSITION ZED ?ZPOS15923) - force position to be recorded

(FORCE ZED ?ZFOR 15924)
(< ?ZFOR15924 30)) - all sensed forces on this joint must be less than 30 units

(POSITION ZED ?LEVELI5925) *- terminate when position is 0 (at the table)
NIL ?I)OCi5926 justification for sensor
(NO-GRIPPER-COLLISION-OBJEcT ?GRIPPER 16601 ?X16235 -- expectatios
?Y 16236 ?ANGLEI6237 ?WIDTII 16238 ?OIIJEC I'16593))

variables bound by antecedents to grasp rle
Figure 7. The Failing Monitored Action
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test predicate associated with fingerl (PS-INCNGC) all quantities are named using variable
collision testnames from the general rule

(P+ NGC (<- AX2575 MINI572)) (PS-INC (<- MAX2575 MIN1572))

(ANTECEDENT-OF NGC (<- MAX2575 MIN 1572))
(PQ+ (<-. MAX2575 MIN1572) MIN1572) (INCREASE MIN1572)

(APPROX- UANTITY 0BX473) (IQ+ MAX2575 OBX473)

(QRELATON (POSTON OBJECT467 OBX473 OBY474)) (TUNABLE WIDTH466)
(IQ+ MIN1572 WIDTH466)

(DATA-APPROXIMATION (POSITION OBJECT467 OBX473 OBY474) OBX473)
r---- ---------------- --- ----------- - - - - - - --
I Where NGC represents the failing predicate: I

L-- (NO-GRIPPER-COLLISION-OBJECT GRIPPER461 X463 Y464 ANGLE465 WIDTH466 OBJECT467)

Figure 9. A Qualitative Tuning Explanation

probability that there will be no collision between the first explanation for the other finger, which moves oppositely
gripper finger and the object. Table I gives the semantics while opening. Together, the two siibproofs cover all tie

Table 1. Predicates Employed in the Tuning test predicates employed in the original explanation and
Explanation of Figure 9 thus guarantee that opening the gripper wider decreases the

(PS-INC ?pred) chance of this failure (with the target object) happening in
the probability of success of ?pred is influenced positively the fuiture.

(P+ ?pred I ?pred2) The qualitative tuning explanation indicates that the cho-
the probability of success of ?pred2 influences the sen-opening-width rule approximation should be tuned.
probability of success of ?predl positively nme n ing contrain sted ae mni-

(ANTECEDENT-OF ?predl ?pred2) Namely, that an increasing constraint be posted at the mini-
?pred2 is an antecedent of ?predl in the rule bein analyzed mum opening width, which was chosen in the failure. Fig-

(PQ+ ?pred ?quant) ure 10 illustrates the chosen-opening-width rule approxi-
the magnitude of the quantity ?quant influences the mation btfore (top) and after (bottom) tuning has occurred.
probability of success of ?pred positively After tuning, the rules associated with the rule approxima-

(INCREASE ?quant)
the magnitude of the quantity ?quant is influenced positively tion are redefined. Afterwards, the single new rile asso-

(APPROX-QUANTITY ?quant) ciated with this approximation reads:
?qant is an approximate quantity from a data approximation Chosen-Opening-Width (Initial)
(not controllable by the system) I r"- quality fuiction

(IQ+ ?ql ?q2)
the magnitude of quantity ?q2 indirectly influences the _______.__

magnitude of quantity ?ql positively v
(TUNABLE ?quant) J . idth of target object

the magnitude of quantity ?quant is a tunable quantity
from a rule approximation (controllable by the system) min(distance to nearest object,

for the predicates employed in the explanation. The top- max-opening-width)

most left-hand subtree establishes that the probability of the Chosen-Opening-Width (After Tuning)
<= test predicate can influence the probability of the no- -- - - quality function

gripper-collision goal because it is an antecedent of the- --
rule. The right-hand subtree establishes that the probability I'*
of the <= can be positively influenced through an increase -!- - posted constraint:

in the opening width. The IQ+ predicate is a built-in predi- prefe greater than min(distance to nearest object,

cale forestaibl ishine transitive relations between quantities. target object max-opcning-width)

It consults the body of qualitative proportionalities which Figure 10. The Chosen-Opening-Width Rule
hold in the current situation. There is a similar supporting Approximation Before and After Tuning
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INTRA-RULE: R30278 ping failures where, as the grippers were closed, the object
FORM: slipped out of grasp, sliding along the table surface. In the

(CHOSEN.-OPENING-WNIDT'H?GRIPPE-R?X ?Y?ANGLE ?OBJECTRETURN) system's initial approximate representation for the world,

ANTS: the choice of grasping faces is constrained only by the grip-
(GRIPPER-PERP-WIDTII ?GRIPPER ?SPAN) per being able to open wide enough to surround them and
(DISTANCE-TO-CLOSEST-OBJECT ?OBJECT ?X ?Y that an equilibrium grasp is realizable with the current grip-
?ANGLE ?SPAN ?RADIUS)

(GRIPPER-FINGER-PARALLEL-WIDTH ?GRIPPER per-object friction coefficient (initially 1 here). Since a
?PSPAN) friction coefficient of 1 is likely to be high for these materi-

(DIF ?RADIUS ?PSPAN ?NRADIUS) als, the choice of contact faces is likely to be under-con-
(MAX-GRIPPER-OPENING ?GRIPPER ?MAX-OPEN) strained initially, resulting in slipping failures. The choice
(MIN ?NRADIUS ?MAX-OPEN ?RETURN)
(MIN-SPAN-FOR-OBJECT ?OBJECT ?X ?Y ?ANGLE of opening width is the minium deviation from the current
?SPAN ?LEFT ?RIGIIT) opening width (initially 0 here) which satisfies the approxi-

(SUM ?LEFT ?RJGHT ?MIN) mate model of the grasp. Due to uncertainties in the world,
(<-?MIN ?RETJRN) this approximate opening width may often result in stub-

APPROX: CHOSEN-OPENING-WIDTII tis fappre oenaubing failures. There- .

fore, the error rate of
This rule prefers selection of the peak of the newly re-calcu- our initial approxi-
lated quality finction which corresponds to opening as wide mate plan was high re-
as the current situation permits. sulting in 9 finger

stubbing failures and
Experimental Results 1 lateral slipping fail-

The GRASPER system was given the task of achieving tire in 12 trials.
equilibrium grasps on the 12 smooth plastic pieces of a chil- In our second run,
dren's puzzle. Figure 12 shows the gripper and several of approximation tuning
the pieces employed in these exl)eriments. A random order- was turned on. An ini-
ing and set of orientations was selected for presentation of tial stubbing failure Figure 12. Gripper and Pieces
the pieces. Target pieces %N cre also placed in isolation from on trial 1 led to a tuning of the chosen-opening-N idth rule
other objects. That is, the %N orkspace never had pieces near approximation %, hich detemuines lioN% far to open for the se-
enough to the grasp target to impinge ol the dcLsion made lected grasping faces. Since the generated qualiative tun-
forgraspingthetarget. The firstnm ssasperformedwithap- ing explanation illustrated that opening % ider %sould de-
proximation tuning turned off. The results are Illustrated in crease the chance of this type of a failure, the s) stem tuned
Figure 11. Failures obsened during this run includedfinger the approximate nile to Lhoose tile largest opening width
stubbing failures where a gripper finger struck the top of the possible (constrained only b) the maximumi griplper open-
object \A hile mos ing doxN n to surround it and lateral slip- ing and possible collisions with iicarb) objctS). In the case

12 12
Ii II

iO1110 FS UP i 10

9~ine Down9

8 Finger stubbing failure 8
rFtuning occurs here7 r'7.--------

4 SS 4, ,/_ _

3 Lateral slipping failure 3 at this time, no knowledge
U pS.about veatical slipping
Up 2 filureshasbeen includcd

1 2 3 4 5 6 7 8 9 10 11 12 Down -- o i 2 3 4 5 6 7 8 9 10 11 12

Trials Without Tuning Vertical slipping failure Trials With Tuning

Figure 11. Comparison of Tuning to Non-tuning in Grasping
the Pieces of a Puzzle
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of isol.led grasp targets, opening to the maximum gripper mately the probability of success of a goal. The
width is preferred. In trials 2 and 3, finger stub failures experimental results indicate the method of approximation
didn't occur as they had previously because the opening tuning decreases the oNerall failure rates for real-world do-
width, ,as greater than the object width for that orientation, mains as compared A ith a static approach w hich must con-
Verticalslippingfailures, which the fcurrent implementation tinue to lcam and explain N ithin its fixed dcclared reprcsen-
does not currently have knowledge about, did occur. The tation of the world.
system had to be told that a vertical slipping failure had oc- Acknowledgements
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Abstract Many approaches are possible for learning from ex-
perience and outside guidance. In the simplest case,

Analytic learning techniques, such as expla- the human solves a problem and the learning system
nation-based learning (EBL), can be power- must "watch over the shoulder" of the human as the
ful methods for acquiring knowledge about a problem is solved. This is the scheme used in robotic
domain where there is a pre-existing theory programming systems where a human leads the sys-
of the domain. One application of EBL has tern through a fixed set of commands to achieve a goal.
been to learning apprentice systems where When the commands are stored, the system can per-
the solution to a problem generated by a hu- form only that one task and there is no conditionality
man is used as input to the learning process. in the learned plan. The robot will execute exactly the
The learning system analyzes the example learned set of actions, independent of the state of the
and is then able to solve similar problems environment.
without outside assistance. One limitation of To avoid these problems, "learning apprentices"
EBL is that the domain theory must be com- have been developed that create generalized plans, in-
plete and correct. In this paper we present dexed by the appropriate goal. These systems, such
a general technique for learning from outside as LEAP [Mitchell et al., 1985] are based on a learn-
guidance that can correct and extend a do- ing strategy called explanation-based learning (EBL)
main theory. In contrast to hybrid systems [DeJong & Mooney, 1986; Mitchell et al., 1986]. In
that use both analytic and empirical tech- a learning apprentice system, the human provides a
niques, our approach is completely analytic, complete solution to a problem. An underlying "do-
using the chunking learning mechanism in the main theory" is then used to "explain" the actions of
Soar architecture. This technique is demon- the human expert. From the derived explanation, all
strated for a block manipulation task that of the dependencies btween the actions are recovered
uses real blocks, a Puma robot arm and a and a general plan is created.
camera vision system. Two extensions to this basic model of external guid-

ance have been previously made using the Soar ar-
1 Introduction chitecture which uses an analytic learning mechanism

similar to EBL, called chunking [Golding et al., 1987;
Learning through interacting with a human is an ef- Laird et al., 1987; Rosenbloom & Laird, 1986]:
ficient method to increase the knowledge of an intel-
ligent agent. Initially, an intelligent agent may have 1. The learning through guidance is integrated with
only very general abilities and may require significant general problem solving and autonomous learn-guidncefroma hmanopertor Thoughitsex- ing. The system can learn from its own experi-
guidance from a human operator. Through its ex- ences with or without outside guidance.
periences, the agent can become more and more au-
tonomous, making most decisions on its own and re- 2. The system actively seeks advice while solving its
quiring guidance only for novel situations. It can in- own problems as opposed to passively monitoring
crease its repertoire of methods for solving problems, a human problem solver. In addition, the guid-
improve its reaction im tu eveatz in ii" "uviunment, arcc occurs in the context of the system s 1hig
learn to notice new properties of objects in the envi- a problem and the guidance is at the level of in-
ronment, as well as refine and extend its own model of dividual decisions instead of complete plans.
the domain. In this paper we will demonstrate that this tech-

This research was sponsored by grant NCC2-517 from nique can be extended to learning new domain knowl-
NASA Ames and ONR grant N00014-88-K-0554. edge, not just control knowledge. The tasks we will use
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involve simple manipulations of blocks using a Puma
robot arm and a single camera machine vision sys-
tem. This a simplification of the manipulator con-
trol tasks performed by Segre's ARMS system [Segre,
1987]; however, ARMS worked only in a simulated en-
vironment. With the real robot, the domain theory
is complicated by incomplete and time-dependent per-
ception; the camera provides only two-dimensional in-
formation and is sometimes obscured by the robot arm,
and the vision processing time is 4 seconds. The goal
of the task is to line up a set of blocks that have been
scattered over the work area. In one task, all of the
blocks are simple cubes that the gripper can pick up in
two different orientations. In the second task, one of
the blocks is a triangular prism. The gripper is unable soT VISION

to pick up the prism when it closes over the inclined E SORWARE

sides. Instead it must be oriented so that it closes over
the vertical faces of the block.

One restriction on using analytic methods such as WORKING MEMORY I
EBL and chunking is that they require a complete and
correct domain theory. The domain theory is an in-
ternal model of all of the preconditions ani effects of PRODUCTION MEMORY
the operators used to perform the tasks. For the block
manipulation task, the operators are commands to the OAR
robot controller such as open gripper, close gripper,
and withdraw gripper from work area. If the internal
model of these operators is in some way incorrect, then Figure 1: Robo-Soar .y.tem architecture.
the control knowledge learned through guidance will
also be incorrect. For example, if the domain knowl-
edge is not sensitive to the special properties of a prism rection of control knowledge using outside guidance.'
block, the control knowledge it learns will ignore the Sections 5 and 6 present demonstrations of the correc-
orientation of a prism block when attempting to pick tion and extension of domain knowledge through guid-
it up. We wil! show how it is possible to correct con- ance. The final section discusses the contributions and
trol knowledge using outside guidance and a domain limitations of the current approach.
theory for determining the relevant features of the en-
vironment and relating them to robot actions. 2 System Architecture

Even if the learned control knowledge can be cor- The system we are developing is called Robo-Soar
rected, the original domain theory may still be in- [Laird et al., 1989].2 Figure 1 shows its architec-
correct. We show that our system can correct the ture. Visual input comes from a camera mounted
original domain theory by replacing incorrect oper- drectly saove t wo r a A a ra m uter
ator definitions with new, corrected definitions, and directly above the work area. A separate computer
that it can extend the domain theory by creating com-
pletely new operators. In both cases, no modification to Soar. The vision processing extracts the positions
is made to the underlying architecture; instead knowl- and orientations of the blocks in the work area as well
edge is added to correct and create operators. In the as distinctive features of the blocks. The vision andedgek mnisladton crtand eatildeoratrs.I the robotic systems are sufficiently accurate so that there
block manipulation task, we wvill demonstrate the ac- arnosgicntesrorotolrosfrthbok

quisition of planning and execution knowledge for the are no significant sensor or control errors for the block

rotate-gripper operator. These extensions are based manipulation tasks.
on the creation of an underlying domain theory for the In Soar, a task is solved by selecting and applying
construction of new operators. In the limit, a complete operators to transform an initial state to some desired
domain theory can be acquire through ouside guid- state. Operators are grouped into problem spaces and
ance, with only very limited predefined knowledge of Soar selects an appropriate problem space for eachthe task. goal. For the block manipulation task, the states are

Section 2 presents the system architecture. Sec- different configurations of the blocks and gripper in the
tion 3 gives an example of learning control knowledge 'Some of the material in Sections 2, 3 and 4 has been
through outside guidance. This reproduces the results previously presented in Laird et al., (1989).
of Golding, Rosenbloom and Laird (1987) but in a task 2Robo-Soar is implemented in Soar 5, a new version
requiring interaction with a real environment. In Sec- which supports interaction with external environments
tion 4 we extend this work by demonstrating the cor- [Laird et al., 1990).
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move-above approach cloa.-gripper

withdraw move-left-of approach open-gripper

Figure 2: Moving a block using the primitive Robo-Soar operators.

external environment. Some basic operators are shown others, and so on. Production firing continues until
in the trace of Robo-Soar solving a simple block manip- no additional productions match, at which point, Soar
ulation problem in Figure 2. These operators generate examines the preferences and selects the best operator
motor commands for the Puma. for the current situation. Once an operator is selected,

One complication is that the camera is mour.ted di- productions can fire to apply the operator. If the oper-
rectly above the work area so that the arm obscures ator affects the external environment, the productions
the view of a block that is being picked up. Two opera- create commands to the motor system. If the oper-
tors, snap-in and snap-out, move the arm in and out ator is used for planning or internal processing, the
of the work area so that a clear image can be obtained, productions directly modify the internal data struc-
These operators are necessary, but for simplicity, they tures in working memory. Additional productions test
will not be incl-ded in any of the examples. for operator completion and signal that a new operator

This characterization of Robo-Soar does not distin- can be selected.
guish it from any other robot controller. What is dif- In a familiar domain, Soa. 's knowledge may be ad-
ferent is the way Soar makes the decisions to select an equate to select and apply an operator without diffi-
operator. Many AI or robotic systems create a plan culty. However, when the preferences do not determine
that the robot must execute to select one operator af- a unique choice, or when the productions are unable
ter another. Instead of creating a plan, Soar makes to implement the selected operator, an impasse arises
each decision based on a consideration of its long-term and ;oar automatically generates a subgoal. In the
knowledge, its perception of the environment, and its subgc al, Soar uses the same approach; it selects and
own internal state and goals. Soar's long-term knowl- applies operators from an appropriate problem space
edge is represented as productions that are continually to achieve the subgoal. The operators in the subgoal
matched against the working memory which includes can modify or query the environment, or they may be
all input from sensors, guidance from an advisor, and completely internal, possibly simulating external op-
internal data structures and goals. Commands to the erator applications on internal representations.
robot controller are issued by creating data structures When Soar creates results in its subgoals, it learns
in working memory. productions, called chunks, that summarize the pro-

In contrast to traditional production systems such cessing that occurred. The actiuns of a diuik cL

as OPS5, Soar fires all successfully matched produc- based on the results of the subgoal. The conditions
tion instantiations in parallel, which in turn elaborate are based on only those working-memory elements that
the current situation, or create preferences for the next were tested and found necessary to derive the results
operator to be taken. Soar's language of preferences Thus, knowledge used to control the selection of oper-
allows productions to control the selection of opera- ators in the subgoal is not included in the derivation
tors by asserting that operators are acceptable, not because it affects only the efficiency of producing the
acceptable, better than other operators, as good as results, not their correctness.
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Figure 3: Trace of problem solving using external guidance to suggest appropriate task operators for evaluation.
The problem solving goes left to right with squares representing states, while horizontal arcs represent operator
applications. Downward pointing arcs are used to represent the creation of subgoals, and upward pointing arcs
represent the termination of subgoals.

3 Learning Control Knowledge to apply. The advantage of this approach is that the
guidance acts only as a heuristic that is verified by

To attempt the block manipulation task, knowledge internal problem solving. Tie problem solving calcu-
about the operators must be encoded as productions. lates the internal evaluation and determines whether
This knowledge includes productions that suggest op- the chosen operator is really appropriate. The system
erators whenever they can be applied legally, as well can then learn the conditions under which the oper-
as productions that implement the operators by cre- ator is appropriate. If advice directly selected a task
ating motor commands to move the arm. Because the operator that led to motor commands, there would be
feedback from the vision system is incomplete when no internal analysis of the operator that could be used
the arm is being used to pick up a block, some pro- for learning.
ductions must also create internal expectations of the To acquire the guidance within the subgoal, Robo-
position of blocks until feedback is received when the Soar uses its advise problem space which has operators
arm is moved out of the way. that print out the acceptable task operators, ask for

With just this basic knowledge, Robo-Soar can at- guidance, and wait for a response. If guidance is avail-
tempt a task, but it will encounter impasses whenever able, the appropriate operator is selected for evalua-
it tries to select a task operator, as shown in Figure 3. tion. If no guidance arrives while the system is waiting,
To resolve these tie impasses, the tied task operators a random selection is made. All guidance in Soar takes
are evaluated in a subgoal and preferences are created this form where the advisor selects between competing
to pick the best one. The evaluations are carried out operators. This restricts the guidance to be from pre-
by operators created in the subgoal of the tie impasse. defined alternatives (the tied operators) and does not
Within this subgoal, a decision must be made as to allow the input of arbitrary data structures.
which evaluation operator should be selected first, and Once an operator has been selected to be evaluated,
thus, which task operator should be evaluated first. If an impasse arises because there are no productions
the task operator that leads to the goal is evaluated that can directly compute the evaluation. The de-
first, the other task operators can be ignored because fault response to this impasse is to simulate the task
the 'best' operator has been found. As with the orig- operator on an internal copy of the external environ-
inal decision to select between the task operators, the ment. This requires an internal model of the precon-
decision to select an operator to be evaluated will lead ditions and effects of the operators which correspond
to a tie impasse. to the domain theory of an EBL system. The internal

Outside guidance car, be used to select the best op- search continues through the recursive creation of tie-
erator to evaluate. The guidance is used to determine impasses, advice, and evaluation until a state is found
which operator to evaluate first, not which operator that achieves the goal.



Correcting and Extending Domain Knowledge using Outside Guidance 239

After the goal is achieved within the internal search, blocks, the gripper must be aligned with the vertical
preferences are created to select those operators eval- faces of the block, not just any two sides as with a
uated on the path to the goal. Each of these prefer- cube. Figure 5 shows the operators Robo-Soar applies
ences is a result of a tie-impasse, and chunks are built for this problem. If the gripper is not correctly aligned,
to summarize the processing that led to their creation. the gripper will close but not grasp the block. Upon
This processing includes all the dependencies between withdrawing the gripper, the block will not be picked
the operator's actions and the preconditions and ac- up.
tions of the operators that were applied after it to fi- There are many possible machine learning ap-
nally achieve the goal, essentially the same as the goal proaches that could be used to correct the underlying
regression techniques in EBL [Rosenbloom & Laird, knowledge. First, the system could have an underlying
1986]. Figure 4 is an example of the production that "subdomain" theory [Doyle, 1986] of inclined planes,
is learned for the approach operator. Notice that the grippers, and friction that it uses to understand why
production not only tests aspects of the current situ- the block was not picked up. This requires knowing be-
ation, but also aspects of the goal. The productions forehand that this knowledge will be necessary, and for
learned from this search are quite general and do not many tasks this additional domain knowledge may be
include any tests of the exact positions or names of difficult to obtain. A second approach is to gather ex-
the blocks because these features were not tested in amples of failure and use inductive learning techniques
the subgoal. The internal search is based on relation- to hypothesize which feature in the environment was
ships such as left-of or above instead of the exact x, responsible for the problem. This may identify the
y, and z locations of the blocks, feature, but it requires many failures and also gives no

hint as to the appropriate action. A third approach
If the approach operator is applicable, and is for the system to experiment with its available op-

the gripper is holding nothing erators to see what actually works (Carbonell & Gil,
in the safe plane above a block, 19871. This approach can be quite effective, but it also

and that block must be moved can be quite time consuming and possibly dangerous.
to achieve the goal, Our approach involves increasing the interaction be-

then create a best preference for tween the advisor and the robot so that the advisor
the approach operator. can point out relevant features in the environment and

associate them with the potential success or failure of
Figure 4: Example production learned by Robo-Soar. a given operator or set of operators.

This approach incorporates outside guidance with
Following the look-ahead search, Robo-Soar has prior work in Soar on recovery from incorrect knowl-

learned which operator to apply at each decision point, edge [Laird, 1988]. Instead of correcting the pro-
Robo-Soar applies the operators by generating motor ductions, our recovery scheme learns new productions
commands and moving the real robot arm. This is whose actions correct the decision affected by the in-
not, however, a blind application of a plan. Each of correct production. The advisor provides guidance in
the learned productions will test aspects of the envi- re-evaluating the operators being consider for a deci-
ronment to insure that an operator is selected only sion, leading to new productions that correct the er-
when appropriate, ror. This process of recovery is a domain-independent

strategy encoded as productions.

4 Correcting Control Knowledge The recovery method is invoked when the system
notices that an error has been made. In Robo-Soar,

A problem with the analytic learning approaches such the vision system detects that the prism block is still
as EBL and chunking is that the learning is only as on the table following an attempt to pick it up. The
good as the underlying knowledge. If there is an er- decision that must be corrected is the choice of the
ror in the original domain theory, the learning will approach operator when, in fact, the gripper should
preserve the error. External guidance is of no help be rotated so that it is aligned with the vertical sides of
when restricted to suggesting task operators because the prism block. Figure 6 shows an abbreviated trace
the error can be in the underlying implementation of of the problem solving to correct this decision.
operators used by the learning procedure. Once an error has been detected, the system tries

We consider a simple case vf this prubiem by at- to push fUrwdrd LU tL1- &uI, Lut MULL ,U
tempting the same task as before except with blocks that the errant control knowledge does not select the
shaped as triangular prisms. If the original operators wrong operator. Previously learned control knowledge
were encoded with only cubes in mind, all of the con- is overridden by forcing impasses for every task op-
trol knowledge and underlying simulation would be erator decision. Within the context of each of these
insensitive to a feature in the input that must be at- impasses, all of the available operators can be evalu-
tended to. To the Robo-Soar vision system, the prisms ated and new preferences can be created to modify a
look just like cubes, except for a line down the middle decision if it is incorrect.
at the apex of the triangle. In order to pick up these The underlying internal domain knowledge that gen-
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approach CIose-grlpper withdraw open-gripper
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Figure 5: Trace of operator sequence using recovery.
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Figure 6. Trace of problem solving with recovery. The subgoals that allow outside guidance are omitted and
would be used to select operators in both the selection and examine-state problem spaces.

erates the evaluation may also be incorrect. Therefore, paper we will call this feature block-orientation. The
the evaluation process is modified so that outside guid- second class of operators, called compare-features,
ance can be used to evaluate an operator and associate can perform simple comparisons between noticed fea-
that evaluation with relevant features of the environ- tures, such as detecting that two features have the
ment. This modified evaluation is performed in the same value. The third class of operators creates an
examine-state problem space. evaluation, such as success or failure, for the task op-

The examine-state problem space is an underlying erator being evaluated. Together, these three classes of
theory for determining the features of the environment operators provide a complete domain theory for com-
that are relevant to the operator being evaluated and puting evaluations and relating these evaluations to
relating them to a specific evaluation. There are three relevant features of the environment. Although com-
classes of operators in the problem space. The first plete, it is underconstrained because any evaluation
class, called notice-feature, explicitly tests the ex- can be paired with any set of features.
istence of a feature of the current task state or goal. External guidance can lead Robo-Soar to select the
This operator allows this system to explicitly search operators that notice only those features relevant to
through the feature space of the task. In our example, the current task state and associate them with the
this allows the system to test the line down the mid- appropriate evaluation. If an operator is deemed to
dle of the prism block, which was previously ignored be on the path to success, a preference will be cre-
by the task productions. For future reference in this ated to prefer it over an operator that leads to fail-
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ure. In our example, the advisor first points out that gotten. The general approach is to create a new oper-
the approach operator will fail when the gripper is ator, notice additional preconditions in the task state,
above a block where the orientation of the operator then learn the implementation of the new operator us-
is not aligned with the block-orientation. The advisor ing the original approach operator. Throughout this
then suggests evaluating the rotate-gripper opera- discussion, all guidance is through the advise problem
tor, and points out the relevant features that make space as described earlier.
its selection desirable. Figure 7 shows the produc- To control the creation of the new operator, the se-
tions that are learned to avoid the approach operator lection problem space is augmented so that when there
and select the rotate-gripper operator whenever the is an error, one alternative is to evaluate a completely
gripper is not aligned. new operator. If the advisor selects this alternative,

a new operator is created and evaluated to be better
If the approach operator is applicable, and than the original, thus replacing it. When the decision

the gripper is above a block, and is made to evaluate the new operator, the examine-
the gripper's orientation is different state problem space is used (along with outside guid-

from a line in the middle of the block, ance) and appropriate control productions are learned
then create a preference to reject approach. to propose and select this new operator.

At this point, the system does not have the knowl-If the rotate operator is available, and edge to apply this operator; therefore, when the new
the gripper is above a block, and

the gripper's orientation is different operator is selected, another impasse arises. In re-
from a line in the middle of the block, sponse to this impasse, the examine-state problem

then create a best preference for rotate-gripper, space is again selected, but it has been augmented
with an additional operator that can apply a task op-

Figure 7: Example correction productions learned by erator. To build the correct definition of the new oper-Robe-Soar. ator, notice-feature operators are selected through
outside guidance to incorporate the missing precon-

Once these evaluations are made, the recovery ditions, which for our example are the orientation of
knowledge detects that the previously preferred op- the gripper and the block-orientation. Following the
erator is now rejected, and therefore assumes that the determination of the appropriate features, additional
error has been correcte. The error signal is removed guidance can specify a task operator that should be
so that future decisions are made without forced im- used to implement the new operator in the subgoal. In
passes. From this point, the chunks apply and take this case, it would he the original approach operator.
Robo-Soar to the solution, as shown in Figure 5. In This operator is applied to the task state within the
future situations, Robo-Soar correctly aligns the grip- subgoal and the changes it makes to the state are re-per before approaching a prism. If errors still exist suits of the subgoal. These results lead to the creation
the advisor can signal this by merely typing error to of chunks that test for the new operator and its pre-
Robe-Soar. The advisor can also signal that an er- conditions, and then apply the operator to the state.

ror has been fixed if Robo-Soar is unable to detect it The new, corrected operator replaces the old operator,
automatically. thus correcting the underlying domain theory.

5 Correcting Domain Knowledge 6 Extending Domain Knowledge

Although the method described in the previous sec- The method we have described for creating a new op-
tion corrects control knowledge, it does not correct eratur using an existing operator definition can be ex-
the underlying domain knowledge; specifically, it does tended so that a new operator can be learned from
not add the precondition for the approach op -ator scratch through guidance. This is useful for building a
that the gripper be aligned with the block. Although new domain theory, as well as completing an existing
the new control knowledge prevents the operator from domain theory. In Robo-Soar, we consider the situa-
being applied, the missing operator preconditions will tion in which the original programmer decided that it
lead to errors in learning when the operator is cor- was not necessary to include a rotate-gripper oper-
rectly applied. Learning will be incorrect because the ator.
missing prnditinns will not be incorporated in fu- We extend the previous approach by adding domain-
ture chunks that depend upon the application of the independent knowledge that can generate the individ-
approach operator. ual actions of an operator. This knowledge is encoded

Instead of attempting to modify the productions as additional operators in the examine-state problem
that propose and implement the approach operator, space. These operators modify or remove existing
Robo-Soar creates a n_w approach operator that re- structures on the state or new task operator, create
places the original. The new operator will have the new intermediate structures, or terminate the new op-
appropriate preconditions and will always be preferred erator. Once the new operator terminates, chunk-
to the original operator, the original is essentially for- ing creates productions that implement it without the
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need for further impasses or guidance. and actions. Although it may not be considered the
To teach the cystem an internal simulation of most elegant or complex machine learning technique,

rotate-gripper, the orientation of the gripper and it allows the advisor to easily correct and extend the
the block are noticed, and then the gripper orienta- system.
tion is modified to be the orientation of the block. The This same approach could be used without an out-
exact values (and representations) of the orientations side agent by having the system engage in experimen-
of the block and the gripper are irrelevant. All that tation. To experiment, the system can guess at rele-
is needed is copy a pointer of the orientation of the vant features and associated actions. It may pay atten-
block on to the data structure representing the ori- tion to irrelevant features, and thus create overgeneral
entation of the gripper. From a single example the or incorrect chunks. But after many interactions with
system learns a general production for implementing an environment where there is sufficient feedback, it
rotate-gripp'ar. could gradually learn those correct associations. Many

These extensions ar, sufficient for creating operators powerful heuristics are available to avoid a blind search
that modify or remove existing structures or create through this hypothesis space, such as concentrating
new intermediate structures. They are insufficient for on new, unknown features, as well as those features
implementing operators that must create new struc- that are modified by the operators under considera-
tures with specific symbols that do not pre-exist in tion. For example, if the system has discovered that
working memory. The problem is that there is no way the rotate operator is necessary, it could concentrate
to generate these symbols so that the can be selected its search for features relevant to avoiding approach to
by an advisor. This is the one case where guidance by those features modified by rotate-gripper. This ap-
sele-ting rom a fixed set of alternatives breaks down. proach could also support hybrid methods that involve
Fortunately, the only time that specific symbols are both outside guidance and experimentation, where the
necessary is when issuing commandb to the niotor sys- system experiments when on its own but uses guidance
tern. Therefore, we have included an operator that when it is available.
can generate all of the robot command symbols, such The second major contribution is to demonstrate the
as move, open, and rotate. This is the only domain- generality of guidance in knowledge acquisition. The
dependent knowledge that must be pre-encoded in the form of guidance we allow is very restricted in that the
system. advisor must pick from a set of available options. One

All of these extensions expa:,d the examine-state advantage of this scheme is that the advice is given
problem space so that it has oufficient symbol ma- within the context of a specific problem and advice
nipulation capabilities for cieating and implement- is asked only for those decisions for which the system
ing task operators through the composition of primi- has incomplete knowledge. A second advantage is that
tive domain-indepcndent operators. However, outside the advisor does not have to make explicit the reasons
guidance is necessary to control the composition of for the selection of an operator for which the system
features and actions so that only legal operator im- has a correct internal model; the learning mechanism
plementations are generated. performs the necessary analysis. A third advantage is

In a previoub version of Soar, the system was taught that the guidance and learning occur while the system
to play Tic Tac-Toe from scratch. The system ini- is running. There is no need to ever turn off the per-
tially had no notion of two pldyer games, three in-a- formance system to update or correct its knowledge
row, winning, or losing. The system did have an initial base. Finally, by integrating the guidance, the prob-
representation of the board, the symbols X and 0, and lem solving and learning within a single architecture
the command to make a move. Through outside guid- such as Soar, the guidance can be used to correct or
ance, operators were created to pick the side to move extend any of the long term knowledge of the system.
next, make a move of the chosen side, wait for the op- The weakness of this approach is that the advisor
pcncnt to make a niove, and detect winning and losing sometimes must specify individual precondtions and
positions. effects of an operator. This can be quite tedious and

it requires the human to identify which preconditions
7 Discussion or effects that are missing when correcting a domain

theory. These problems would be greatly reduced if
There are ,wo major '..ntributions of tlh;. work. First, our interface were improved so that the advisor could
m;e have ticmnojstrated that it ib tiult ttaid a- IllbEL (jieeL Uoij,(l t_ Lilt, .,ti U-WUE v' tL~lt 1ULL.11 64LL

alytic learning systems so that not only can they learn and operator. A more long-term solution is to provide
control knowledge using an existing domain theory, the system with additional knowledge that allows it to
but through outside guidance they can also be used perform more of the diagnosis and correction by itself.
to correct and create nfw domain knowledge. The The goal of our research was to demonstrate the
examine state prublem space is -omewhat of a bruie- practicality and generality of learning using only ana-
force technique to Learn actv features and operators. lviic techniques combined with outside guidance. Al-
It currently requires ar outside agenit to lcad I th sys- though the demonstratons were performed within the
tem through a search of potenGally relevant features Soar architecture, the results should extend to simi-
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lax systems such as Prodigy [Minton et al., 19891 and [Mitchell ei al., 1985] T. M. Mitchell, S. Mahadevan,
Theo [Mitchell et al., 1990J that combine problem solv- & L. I. Steinberg. LEAP: A learning apprentice
ing and EBL. These systems may require some archi- for VLSI design. In Proceedings of IJCAI-85, pages
tectural extensions, for example, adding the ability to 616-623, Los Angeles, CA, August 1985.
cast operator creation, selection, and implementation [Mitchell et al., 1986] T. M. Mitchell, R. M. Keller,
as subproblems. S. T. Kedar-Cabelli. Explanation-based generaliza-

The actual task performed by Robo-Soar was quite tion: A unifying view. Machine Learning, 1, 1986.
simple, and did not address many of the complexi-
ties of interacting with external environments, such as [Mitchell et al., 1990] T Mitchell, J. Allen, P. Cha-
dealing with sensor and control errors. Our current lasani, J. Cheng, 0. Etzionoi, M. Ringuette, &
goal is to extend Robo-Soar to more complex tasks J. Schlimmer. Theo: A framework for self-improving
and expand the spectrum of human interaction. At systems. In K. VanLehn, editor, Architectures for
one end, we plan to investigate refining the guidance Intelligence. Erlbaum, Hillsdale, NJ, 1990. In press.
so that it is easier to correct and extend the domain [Rosenbloom & Laird, 1986] P. S. Rosenbloom & J. E.
theory, approaching the goals of the Instructable Pro- Laird. Mapping explanation-based generalization
duction System where a system is never programmed, onto Soar. In Proceedings of AAAI-86, Philadel-
only given external guidance [Rychener, 1983]. On the phia, PA, 1986. American Association for Artificial
other end of the spectrum, we plan to study experi- Intelligence.
mentation techniques so that Robo-Soar will be able [Rychener, 1983] M. D. Rychener. The instructable
to learn much of the same information on its own, production system: A retrospective analysis. In Ma-
when human guidance is unavailable, chine Learning: An Artificial Intelligence Approach.
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Abstract efficiently. Firstly, the information processing needs to
take place in real time. Observations about the world

To make efficient use of a dynamic sys- need to be recorded and decisions need to be made
tern such as a mechanical manipulator, the within the timescale of the robot's dynamics. Fur-
robotic controller needs various models of its thermore, if learning is computationally cheap then it
behaviour. I describe a method of learning in need never be switched off. Thus the robot can adapt
which all the experiences in the lifetime of the to change throughout its lifetime. Secondly, the rate
robot are explicitly remembered. They are of learning should be high. This will reduce the expen-
stored in a manner which permits fast recall sive (and possibly hazardous) period of time taken up
of the closest previous experience to any new for training. Furthermore, a robot with a high rate of
situation. This leads to a very high rate of learning can adapt quickly to changes in its environ-
learning of the robot kinematics and dynam- ment. The rate of learning depends particularly on the
ics which conventionally need to be derived quality of the system's generalization abilities. For a
analytically. The representation is a mod- robotic system which learns by monitoring itself there
ified binary multidimensional tree called a is a second factor crucial to the rate of learning: how
sab-tree which stores state-action-behaviour and when should experimental actions be applied?
triples. This permits fast prediction of the In this paper I discuss an investigation into a practi-
effects of proposed actions and, given a goal cal learning approach for robotic systems which simply
behaviour, permits fast generation of a can- uses as its performance element, the explicit set of all
didate action. I also discuss how the system the state information it has received through its sen-
is made resistant to noisy inputs and adapts sors.
to environmental changes. I explain how ap-
propriate actions can be selected in the cases 1.1 Manipulator Modelling
where (i) there has been earlier success and The principal example in this paper will be a multi-
(ii) experimentation is required. This can jointed manipulator. Its controller is able to observe
be used to transform dynamic control to a the end-point of the arm by means of a number of
greatly simplified problem. I conclude with cameras connected to a framestore-the robot's retina.
some simulated experiments which exhibit The conventional method first transforms this loca-
high rates of learning. The final experiment tion according to a perspective model into real world
also ilustrates how a compound learning task coordinates then secondly, via a kinematic model, into
can be structured into a hierarchy of simple joint space coordinates. Thirdly, a dynamic model of
learning tasks. the arm evaluates the effect which gravity and joint

torques will have on the joint angles and angular ve-
I Introduction locities of the arm. The fourth component, the con-

trol model, uses errors in the perceived location of the
To make efficient use of a dynamic system such as a arm's end-point to decide which torques need be ap-
mechanical manipulator, the robotic controller needs plied to lessen the error in future.
models of various aspects of its behaviour. Derivation This approach has been traditionally applied with a
of these models is an issue of central importance in fair degree of success [Fu et at., 1987] but has several
robotics. They can either be hardwired into the con- drawbacks. As well as the expense and complexity,
troller upon its creation, or else the controller can at- the major pioblem is adaptability and the dependence
tempt to learn them itself, using observations from its upon accurate values of system parameters. Some
sensors. The adaptability of the latter method is ap- work has attempted to eliminate the prespecified mod-
pealing. Despite this, conventional control has almost els entirely by instead making the s.stem learn them.
invariably used the former method. For example, in [Barto et at., 1983] the control and dy-

It is desirable for a robotic learning system to learn namics component were learned, while [Clocksin and
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Moore, 1989] investigates the learning of the perspec- behaviour. A second advantage is that the generaliza-
tive and kinematic models for a five joint manipulator. tion adapts to dif resolutions of interest, and in
In [Mel, 1989] the kinematics and the relationship be- particular there L . need to quantize the data. These
tween the differential kinematics and changes to the issues are expanded upon in [Clocksin and Moore,
explicit retinal image were learned. 1989]. The error between the nearest neighbour value

and the correct value is expected to be inversely pro-
2 Proximal Learning portional to the local density of exemplars.

In this work, I investigate a system whirh learns .The representation of E should, as well as permit-
nthis perspev, kinvemtice ad dysemic la nsin ting quick insertion of exemplars, provide fast searches

the perspective, kinematic and dynamics relations of nearest neighbour in the (s, a)-components and also
one compound mapping, the proximal state transition in the (s, b)-components. This can be achieved using a
function (PSTF): sab-tree. This is a form of a binary multidimensional

data structure called a kd-tree (Preparata and Shamos,
(p x ) X t P (1) 1985; Omohundro, 1987], modified to permit search on

where p is the proximal coordinates of the arm on both the (s, a) and (s, b) components as well as efficient
the robot's retina, and t is the vector of torques ap- smoothing and adaption operations described below.
plied. As I will explain later, a further result of using In theory, the number of exemplars examined during a
this mapping is that the coiitrol model can become nearest neighbour search tends towards logn as n, the
extremely simple. number of exemplars, gets large. However, the magni-

tude of n for which this behaviour is reached depends
2.1 Performance Element critically on the distribution of the exemplars. De-
The performance element is a structure which adapts spite this, trials using real data have established that

according to a set of exemplars-observations of the the proportion of exemplars searched is sufficiently low

real world. Each exemplar consists of three vectors of to make nearest neighbour searching in real time en-
real numbers, called s, a and b. s is an element of tirely practical. Figure 1 shows the average number of

the proximal state space-the proximal position and nodes inspected against tree size for a 6d-tree of robot
proximal velocity. a is the control action, a vector dynamics exemplars. The search for the correct point

of joint torques to be supplied. b is the observed be- in a sab-tree to insert a new exemplar is also O(log n).

haviour, the proximal acceleration. These exemplars
are glimpses of the underlying mapping which we wish 140

to learn:

f : SxA-.B (2) 120

The two useful tasks required of the PSTF are:

1. Prediction: Given a value (s, a) E S x A, what 10

is f(s, a)?

2. Partial Inversion: Given a value s E S and a
target value b E B, what "'alue of a E A (if any)
will give f(s, a) = b? 60

This work uses, as its performance element, the ex-
plicit set of all observed exemplars. We call this set 40

E. Prediction is based on the nearest neighbour by
the assumption of smoothness of the relation. To pre-
dict f(s,a), find the (si,aj,bi) E E for which (si,ai) 20

is closest to (s, a). The predicted behaviour is bi. The
notion of "closeness" is provided by the Euclidean met-
ric, with the components of si, a, and b, all scaled uni- 0 - 2000 4000 6000 WW 10M 12M 140M 1WW

formly from their maximum ranges to the range [0, 1]. Figure 1 Average number of nodes inspected ditring near-

are generally explicitly known to the system designer.
If not they can be discovered.

Given s and a desired b, partial inversion could be 2.2 Filtering Noise
accbmplished by finding a (se, ai, bi) E E such that s =
si and b = bi. However, in general such an exemplar In practice, the exemplars are of the form
will not be available. Insteal, the exemplar with the (s,,a,, f(s,, a,) + e(i)) where e(i) can be treated as
nearest (8,, b,) to (s, b) can be expected to have a good some unspecified noise distribution. The ioise can be
a,, provided that the predicted value of f(s, a,) is b,. reduced by taking the weighted mean of several local

The nearest neighbour generalization has several ad- exemplars. The predicted value at (s, a) is estimated
vantages. The most important is the one-shot learning as



246 Moore

0 
o

0,eval(s, a) - (we~ig se, a0)

where weighi(si, ai) is a function of the distance of 0 0 ,
(si, ai) from (s, a) which decreases to zero beyond a o 0
certain distance r from (s, a). The only exemplars 0
to make a non-zero contribution are those which lie
within this distance and so only a local range of the
tree needs to be inspected. The value of r is a property o 0
of the individual sab-tree and can be adjusted accord-
ing to how much smoothing is required. o 0

To avoid the expense of a range search for each sab- 0 ° 0 o 0
tree interrogation, and also to permit partial inversion

values are stored with each exemplar. A node of the ° o 0 o
sab-tree is thus a quadruplet: (s, a, b, ,mooth where d-

bmooth = eval(si, al). Prediction of the smoothed o 0
value of an unknown (s, a) is the bsm°oth component o
of the nearest (si, at, bi, blmooth). 1 0

Figure 2: One dimensional SAB-tree, attempting to learn
2.3 Adapting to Change a sine wave from noisy exemplars, shown as white dots.
The behaviour of a robotic system is really of the fol- Black dots are the smoothed interpretation. Top left: After
lowing form: 8 random exemplars. Top right: After 50. Bottom Left:

The underlying function is changed. Bottom right: After
factual : S x A x time --+ B (4) further 50 exemplars.

This varies very slowly but unpredictably with time.
As time progresses, some of the exemplars will rep- Aim 1 represents doing the best for the system im-
resent inaccurate values. Fortunately, such exemplars mediately and aim 2 represents an investment in the
can be detected: they are (i) relatively old and (ii) have future On ao t ts a istoehave twoa large discrepancy between bi and bHm ° t h . These ex- future. One approach to this dilemma is to have two

a lmodes of operation. The first would be experimental,
laemplars are deleted from . The smoothed values of where actions are chosen randomly with no referencelocal exemplars are update-d to take account of this to previous experience. The second is demonstration-deletion. The age of ar exemplar is recorded by a mode in which no chances are taken, and the best

"date of birth" field. Examples of noise filtering and known action is always used. These modes are altered
adapting to change for a one dimensional mapping can by an intelligent supervisor who can judge when fur-
be seen in Figure 2. ther experimentation is needed and when it is posi-

It is important that both smoothing and removing tively unwelcome. An effective example of these two
inadequate exemplars are ccmputationally cheap, so modes of operation is Mel's MURPHY [Mel, 19891.
that learning and adaption will occur during the exe- This learns the inverse differential kinematics by firstly
cution of a task. Smoothing occurs each time a point "flailing" the arm in front of its camera and then mak-
is added to the tree. Obtaining those local points witha non-zero contribution to blm°

o
t h costs O(S + log n) ing plans based on the results of the observations.

where S is the number of these local points. Each lo- Intermediate schemes are possible in which limited
cal point has its own bsoth component updated to experimentation is permitted by means of limited ran-
take aont of ithe nw ointandh tco nen pthat any dom perturbations of the best known action, againtake account of the new point, and it is then with experimentation under the control of a supervi-elderly, inaccurate points are removed.

sor.
3 Using sab-trees for Control Choice For a dynamic system with a large state space the

approach of having a controlled experimentation level
In this section I consider how to choose an action given has some drawbacks. Aside from the requirement for
(i) the current state sq and (ih) the desired behaviour an intelligent supervisor, the major problem is that
bq. There are two opposing aims in making a control experimentation is undirected. With a state space of
choice. These are non-trivial dimension, much of the data collected from

1. Perform. We wish to perform as well as possible experiments will be irrelevant to the task, leading to
gierf .t e .wiesh totinnh performasnssle an unnecessarily low learning rate.
given the kr.,wledge contained in the performance In this section I present an action choosing mech-
element. anism which is able to take advantage of the explicit

2 Experiment. In order to perform better in fu- exemplar representation to decide, independently of
ture, it is worth trying acticns with no guaranteed supervision, whether an experimental action is war-
success, but with the chance of a valuable discov- ranted. Given a set of candidate experiments, it also
ery. provides an estimate of which is the most promising.
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An initial possible action al can be obtained us-
ing the partial inversion mechanism described in Sec-
tion 2.1. The behaviour of a, is estimated as that of
the closest exemplar to (sq,a 1 ). If this predicted be-
haviour is within r of bq, where r is a task-specific s-7 Prob=0.06

tolerance1 , then al is chosen. Excmpl Om

If a, is inadequate, then it is necessary to experi- I
ment. Instead of making an entirely random guess out 6 7 8 9 10 11 12 13 14

of the space of possible actions, the controller makes
an educated guess. It generates several alternative %.6 Prob.o.17

random actions, and chooses the one with the high- eUMpjW aora
est estimated probability of success. This estimate is
obtained by the following heuristic: 6 7 s 9 10 11 12 13 14

ProbSuccess(a) =
Prob(f(sq, a) is within r of bq) (5) a-2 Prob 0.05

The behaviour at the unknown point (sq,a) is mod- E.amloE

elled as a gaussian random variable with prop- 6 ; 1 9 10 A11 2 113 14

erties depending on the nearest known exemplar
(Snear, anear, bnear, bemoth). The expected behaviour is
bsmonth. The standard deviation is proportional to the Figure 3: Choosing an action which is likely to cause be-
nearne tnard et). is moens the haviour in the range 10.5 to 11.5. Top: Action very close

distance to (snear anear). This models the increasing to earlier exemplar in which behaviour was 10. Middle:
uncertainty as we move further from a known exem- Action fairly close. Bottom: Action very different. The
plar. The constant of proportionality C reflects how
smooth the designer imagines the PSTF function will middle case is most promising because the top action is

be. very likely to have behaviour close to 10, and the bottom
action could have almost any behaviour.ProbSuccess(a) =

( 7-smooth / 1 mooth
. t er.ag+bep,. 1lerf __..... - Ierf e (6) that which has the highest score. This would require a

) search of all possible actions, which real time response
Where a. = C I (Snear, anear) - (sq, a) 1. The heuristic does not permit. Instead, the favourite of a sample
is not brittle to the choice of C: the ranking between of randomly generated actions is used. A large sam-
good and bad candidate actions is changed very little ple can be expected to provide an action close to that
as C varies within a factor of 100. which would be recommended by exhaustive search,

To illustrate the use of the heuristic, imagine that but with the penalty of more computation per action.
S, A and B are all 1-d spaces, and that we are in state It should be noted that once a successful action has
sq = 3.3 and the desired bq is 11. Assume further been discovered, computation becomes trivial, as this
that the only previous experience is that when s = 3 will be the original action, a,, returned by partial in-
and a = 7 then b = 10. The use of the heuristic, version.
with a tolerance of 0.5, is demonstrated in Figure 3. It Even if the action is only ever chosen from a small
compares three possible actions and chooses one which number of candidates, if one performs a series of trials
is fairly near to 7, so that the behaviour will be fairly all with the same sq and bq, then (subject to bq being
near to 10 (and thus might be close to the goal, 11), but attainable) aq will eventually converge to a value which
not so near to 7 that the behaviour will be extremely achieves the tolerance. However, the state, sq, of a
close to 10. dynamic manipulator cannot be expected to remain

Initially it is likely that for many states the only pre- constant. The failure or success of tht; control choice
vious experience will be negative. Then this heuristic of the previous time step may no longer be relevant.
favours those actions which are as far away as possible It is a result of the explicit storage of the exemplars
from any yet applied. This is because the probability that the performance can nevertheless be expected to
of success for actions which are close to a previous un- improve because information from all those occasionss,,or ,^,, ,haviu ...is eXtre-mely I_^ .... ...h;IC actions
..ti..ct.r ha.i.r.is..t............. .- in Chu icamri ibLury whidi ai e Lurreuuly reievuL wll

far away have a probability of success which is merely still be available.
low. Thus a wide variety of actions will be generated
until some relatively promising ones are discovered2 . 4 Proximal Control

I have defined a measure for scoring candidate ac-
tions, but have not provided a method for obtaining I have explained how the combined perspective, kine-

Ir is not an implicit experimentation level. For exam- matics and dynamics models and their inverses can

ple, if high accuracy is required a high tolerance can be peated trials, the heuristic would eventually once again
specified right from the start. favour further points, because all experiments in the local

2Notice, though, that if the promising actions were mis- vicinity would be very close to actions which had failed to
leading, for example in a local minimum, than upon re- meet the tolerance.
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be learned, and how the sab-tree performance element
is used to choose actions given the current state and
desired behaviour. Here, I explain how a high level
controller for a particular task can make use of these
facilities.

Task specifications and also plans to achieve these
specifications can take place in the abstract domain of
what the robot perceives. It is not necessary to reason
in the concrete domain of joint angles, joint torques
and feedback gains. Thus, for example, the output of
a plan to move the end-point towards an observed goal
can simply be that the observed endLpoint position
should start to move towards the observed goal.

Because the underlying model will adapt to changes
in the environment, and because the design of the con-
troller is now a fairly simple task (c.f. examples in Sec-
tion 5), there is less motivation to mal:e the high level
controller learn. Instead, at each control cycle, it spec-
ifies the acceleration which it would like to be applied
to the end-point. Each component of the acceleration
vector can be treated separately. Writing xi(t) as the Figure 4: Two jointed planar arm acting under gravity. Its
position of the ith proximal state variable at time t, task is to follow the circular trajectory.
vi(t) as its velocity and ai(t) as its acceleration gives
the trivial control equations:

vi(ti) = vi(io) + ai(t)dt (7) ao = X2 - - g(3vo + V2) (10)

The ideal acceleration is computed for each variable
xi(ti) = Xi(to) + vi(t)dt (8) independently. The proximal acceleration vector is the

behaviour bq which is passed, along with the current
Examples of this sort of controller are given in the proximal state sq, to the sab control choice mecha-
following section. nism of Section 3. The resulting aq is a torque vector

which, it is believed, will produce the proximal acceler-
5 Experimental Results ation. If these torques are too large, the largest torque

in the same direction is applied. After these torques
These experiments use a dynamic simulation of a pla- have been applied the actual proximal acceleration is
nar two jointed robot arm moving under gravity. The observed. A new exemplar consisting of the previous
dynamic model is from [Fu et al., 1987]. state, the torques and the actual acceleration is added

5.1 Tracking a moving point to the sab-tree.
Figure 5 is of the first nine journeys around the cir-

The task is to track a point moving at constant speed cle. At the start of the first journey there is no knowl-
along an anticlockwise circle in proximal coordinates, edge of the PSTF. It does not take very long at all
Figure 4 shows the initial state of the arm, and the before some very rough control is established, tending
target trajectory. at least to provide thrusts in the correct proximal di-

At each time step we can observe the position and rection, if not accurately. But within only a very short
velocity of the image of the arm's endpoint. From the time it in fact remains very close to the target point.
task specification we can obtain the ideal image po. Figure 6 is of the first nine journeys around the cir-
sition in two time steps. We consider each variable cle with a substantial noise component added to the
separately. Let x0 be the perceived current position of arm dynamics. The rate of learning is slower because
one such variable, and v0 its perceived current veloc- the initial exemplars are misleading but eventually
ity If w; npply ronsta-nt, aceleration a. for on. Limp the exemplars become sufficiently numerous t the
step, followed by acceleration al for the next, then smoothed values represent the ideal behaviour. The
from Equation 7 we obtain the perceived position and performance will never ,each that of the original ex-
velocity in two time steps: ample, because random noise is always being added.

Figure 7 demonstrates how the controller adapts
1 + a when the arm dynamics change suddenly during the

2 (3a0 fourth circuit 3 . Initially the performance is disastrous,
V2 = vo + a0 + al (9) but it gradually recovers. It takes several cycles to re-

We insert the ideal x2 and v2 to obtain the ideal 3The actuator at joint two suddenly starts providing
acceleration: twice the original torque
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0000
Figure 5: Trajectory of arm during first nine circuits, read Figure 7: Trajectory of arm. Manipulator dynamics change
from left to right down the figure. The hand was initially during the fourth circuit. By the eleventh circuit (not
near the centre of the circle, shown) the control was entirely recovered.

0 
F~VOLLEY

PREDICT RETURN STRIKE

-World-

Figure 6: Trajectory of arm with substantial random noise Figure 8: Structuring the Volley task. The tasks are shown
added to the manipulator dynamics. in rectangles, sob-trees are shown in ovals.

cover because the disasters mean that it doesn't imme- The overall task, called Volley, is broken into three
diately re-experience all the areas near the trajectory. subtasks. Predict estimates the ball's behaviour.

Each experiment took less than 10 minutes real time Strike brings the bat to contact the ball at a con-
for the simulation and learning. trolled position and speed. Return holds the bat
5.2 Underarm Volleying: A Compoand Task steady after the strike.

The Predict task models the perceived behaviour
For this task, the simulated arm is given a bat which of the ball prior to being hit. This model is learned
is fixed at right angles to the arm's second linkage. A by a sob-tree, which estimates the time until the ball
ball is fired towards the arm. The task of the arm is arrives within range of the arm and the state of the
to volley the ball so that it lands in a bucket placed ball at this point. It is a mapping
nearby. The visual location of the bucket and ball can
be obtained.

This complex task can be structured into the hier- ,Itart, x - Ballhit x Timehit
archy of subtasks shown in Figure 8. s A B
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which is updated once every trial. There is no control this is straightforward scalar algebra, which amounts
over this aspect of the ball's behaviour so A, the space to solving a quadratic equation. The ideal proximal
of control actions, is empty. acceleration can thus be recalculated on every time

The Return task simply computes a proximal accel- step to account for earlier errors.
eration to thrust the endpoint towards the stationary
waiting position. The torques to achieve this acceler-
ation are computed and executed by the low level Acc
task.

The Strike task controls the ball indirectly by
means of a collision between the ball and the bat. It
requires a model of the real world:

Ball at Hit x Bat position and direction x

Bat speed

A
,X coordinate of Landed Ball (11)

B

This too can be learned using a sab-tree. From trial
to trial, the Strike task attempts to always position
the bat to contact the oncoming ball at the bat's cen-
tre, and to have it moving in the same relative di-
rection at impact. The speed of the bat at impact Figure 9: An early volley attempt. The ball is fired from
is varied. This speed affects the landing position of the right towards the arm. From the initial state of the ball
the ball, and so can be used to indirectly control the the controller erroneously predicts it will arrive at the grey
landing position. At the trial start the sab-search is circle. The ball is clipped by the bat and flies up vertically
given sq as the estimated ball state when it arrives before falling to earth.
in range and the intended bat position and direction.
The search produces a recommended speed for the bat
at impact.

It should be noted that this sab-tree, like the oth-
ers, is simply a set of objective observations about the
world, and its own accuracy does not depend on the
performance of the subtasks which are being learned.
There is no blame or credit assignment problem. For
example, suppose that we believed that hitting speed
S1 at position P1 would ensure that the ball landed at
X1 , but due to a low level error the ball was volleyed
with the correct speed S1 , but at the wrong position
P2. The ball then lands at X2 . The speed S, will not
now be wrongly associated with landing at X 2 : the
sab-tree will simply contain an observation that hit-
ting with speed S, at the wrong position, P2, results
in a landing at X2 , and will contain no explicit predic-
tion as to what would happen were the ball hit at the
correct position.

The Meet task guides the initial proximal state
to the target impact state. Working in the proxi-
mal a ce, it do Svus ftn.ar ins- ____
dependently. The ith variable has a current state Figure 10: A successful volley. As well as modelling its
(xi(0), vi(0)) and the controller must invent a sequence own arm, the controller has correctly predicted where the
of accelerations so that at the predicted time t goal of ball will be when it is in range and found a correct speed
the ball's arrival the state will be (xgoal, Vgoal). In fact with which to hit the ball back to the bucket.
this is easy. Consider accelerating with acceleration
a0 for t, seconds, then with acceleration -ao for t 2  The Acc subtask is the task used in the circle tracing
seconds. Then there are three equations in three un- experiments to derive a torque from the PSTF which
knowns: Equations 7 and 8 with constant acceleration achieves the requested proximal acceleration.
and the constraint that ti + t2 = tgoal. The unknowns Figures 9 and 10 show the behaviour of the arm
are ao, t, and t 2. Finding the value of ao to achieve during an early and late trial respectively.
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Figure 11 graphs the performance of a relatively easy s
task, where the ball is always fired from the same posi-
tion and velocity and the bucket always remains in the 4.8

same place. After five trials a suitable hitting speed is
discovered, and a value close to this speed is used for
subsequent trials.

35

5 3

45 25

4 2

35 1.5

S 1

2i5 0s U120 11
2 0 LU

40 0 so 100 120 140

1.5 Figure 12: Histogram of distance from bucket against trial
number. Before each trial the bucket was placed at a ran-

I dom position. The ball was always fired with random speed
but constant direction.

05

0 0 2 4 a I 10 12 114

Figure 11: Histogram of distance from bucket against 45
trial number. The successful volleys, which landed in the
bucket, are shown in white. During these trials the bucket 4

was fixed and the ball always fired with the same speed
and direction. 35

Figure 12 displays the results of the considerably 3

harder task in which the ball is fired at a random speed 25

for each trial, and the bucket is placed in a random po-
sition. It requires approximately twenty trials before 2

the behaviour can be said to be fairly skilled.
Figure 13 shows the behaviour when the bucket is .

placed randomly and the ball is fired with a random
speed and direction. There is an improvement in be-
haviour but the probability of failure is still roughly
20% even after over 100 trials. This is because even 0.1
then there is still a fair probability that the starting 0

state of the ball is sufficiently far from any previous ex- 0 20 40 6 SO 10 12 140 Io
perience that the behaviour predicted by the nearest Figure 13: Histogram of distance from bucket against trial
neighbour is inadequate, number. Before each trial the bucket was placed at a ran-

dom position. The ball was always fired with random speed
6 Conclusion and random direction.

The experiments in the previous section all took only
a small amount of real time. Both the rate of learning, to an approach ; w ,hb the bn.,l ;o k-,vp ... . t
and the information processing were fast. For example, indirectly, perhaps as a set of weights in a network.
in the circle tracking task, after only twenty state- When each exemplar is presented, all or some of the
action-behaviour observations, the arm was already weights are modified according to a rule which will only
under some sort of rough control4 . The primary reason eventually, on repeated future presentations of similar
for this is that only one presentation of a sample of exemplars, converge to a representation of the same
data is required for the knowledge contained in the knowledge.
data to be fully represented. This can be contrasted A second reason for the fast rate of learning is

4The direction in which the hand was accelerated was that the mappings which are learned are objective
already on average within 30 degrees of the direction re- observations about the real world, rather than task-
quested by the proximal controller, specific knowledge of which responses are "right" or
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"wrong". This means that the knowledge obtained that that can learn difficult Control Problems.
from a "wrong" response in one context, might in an- IEEE Transactions on Systems Man and Cybernet-
other context or task be useful positive information. ics, 1983.
For example, when an erroneous volley misses the tar- [Clocksin and Moore, 19891 W. F. Clocksin and A. W.
get, the controller has the consolation that should the Moore. Some Experiments in Adaptive State Space
target, in a similar situation, ever be near the point Robotics. In Proceedings of the 7th AISB Confer-
at which the ball in fact landed, it will know about a ence, Brighton. Morgan Kaufman, April 1989.
potentially successful volley.

The performance element, the sab-tree, was updated [Fu et al., 1987] K. S. Fu, R. C. Gonzalez, and C. S. G.
and interrogated in real time. The small overall times Lee. Robotics: Control, Sensing, Vision and Intel-
for the experiments indicate that the speed of near- ligence. McGraw-Hill, 1987.
est neighbour searching is adequate. The exemplars [Mel, 1989] B. W. Mel. MURPHY: A Connectionist
obtained when performing a task tended to be dis- Approach to Vision-Based Robot Motion Planning.
tributed extremely unevenly, which helps the nearest Technical report ccsr-89-17a, University of Illinois
neighbour search considerably. With the decreasing at Urbana-Champaign, June 1989.
cost of memory and relatively fast processors it should [Omohundro, 1987] S. M. Omohundro. Efficient Al-
be entirely practical to search trees in the order of amilionexeplas. hisis he izeof tre otaied gorithms with Neural Network Behaviour. Techni-million exemplars. This is the size of a tree obtained cal report uiudcs-r-87-1331, University of Illinois at

from monitoring a robot constantly for over eleven Urbana-Champaign, April 1987.

days with one observation a second. Furthermore, it

is likely that the size of the trees could be reduced an [Preparata and Shamos, 1985] F. P. Preparata and
order of magnitude by only storing those exemplars M. Shamos. Computational Geometry. Springer-
which were predicted incorrectly prior to their obser- Verlag, 1985.
vation, but this has not been investigated.

As a result of being able to reason in proximal space,
the low level control can become straightforward. The
behaviour of the controller becomes easier to under-
stand when tasks are specified in relatively abstract
terms such as "move up" or "accelerate towards this
point", instead of concrete joint space terms. Just as
a compiler allows a programmer to think in abstract
terms without needing to know about the underlying
machine language, so sab-tree learning permits the sys-
tem designer to devise control strategies without need-
ing to know about the specific parameters, geometry
or dynamic behaviour of the robot, even if these may
change over time.

By structuring a more complex task as a hierarchy
of subtasks, the higher levels of the controller can also
become relatively easy to implement. When models of
the real world are required for these higher tasks, sab-
trees can once again be used. However, the structuring
needs to be performed by some expert, presumably hu-
man. In order to be able to classify the controller as
truly autonomous, it would have to be able to devise
the structuring strategy itself. At this stage the lack of
full autonomy is a compromise, justified by the obser-
vation that a large proportion of the effort in robotic
control using conventional methods is not in inventing
abstract strategies, but in modelling the world.
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Abstract Presently, a variety of tactile sensor technologies ex-
ist: conductive elastomers, ferroelectric polymers, op-

We study the feasibility of adaptive pat- toelectronic sensors, and silicon strain gauges [Nicholls
tern recognition of robotic tactile impres- and Lee, 1989]. Reliable sensor data can be obtained
sions using connectionist models. This pa- from some of the industria!.quality products. Sensors
per presents interim simulation results of cou- vary in size, shape, and resolution for mounting on the
pled back-error propagation (BEP) networks "fingers" of a robot or atop a work-surface.
that (i) extract relative gradient features via Research and development in tactile sensing com-
data compression, (ii) clusters families of prises: (i) biological/physiological studies, (ii) design
grey-scale patterns constrained by geometry, of artificial sensors, (iii) planning and control of hap-
size, and activation levels, and (iii) classifies tic perception to acquire object data, and (iv) pattern
these surface profiles to pre-specified cate- recognition of the tactile data. The work described be-
gories. The constraints imposed on the train- low is restricted to topic (iv) - processing and classi-
ing data are designed to capture the essence fication of tactile impressions. Past works in this area
of tactile patterns and force the artificial have primarily been limited to applying "borrowed"
neural systems (ANS) to extract useful fea- algorithms from image processing to the tactile do-
tures. Receptive field (rather than fully con- main. These methods work well for classification of
nected) processing units are used to encode simple, binary silhouettes, but are inadequate for real-
subtle features among their activation pat- time applications in more complex domains. We begin
terns. This work initiates ANS applications by investigating the domain of a planar sensor matrix
in the tactile domain and reveals basic char- and techniques for processing its data in the connec-
acteristics of BEP networks to highly con- tionist realm.
strained training data.

2 The Training Data
1 Introduction True tactile patterns comprise both the geometric
Numerous techniques are well known for pattern classi- shapes of the object as well as the surface contours
fication given an appropriate set of input features, but derived from 3D force and torque distributions on the
the determination of such features remain the central sensor. Although specific sensor designs may vary,
challenge in many pattern recognition processes. Ef- each 'tacel' provides at least the normal(i) force read-
ficient solutions for automatic (machine) derivation of ing, and some advanced designs yield all 3D force com-
these features have been elusive. We explore the pos- ponents. The force experienced by each tacel is con-
sible benefits of using artificial neural systems (ANS) verted into a grey-scale number, and the collection
for feature extraction, clustering, and classification of of values from all tacels form the "image" to be an-
relative gradients within 2D tactile impressions. alyzed. Embedded information from such data, possi-

In robotic applications, tactile sensing is critical bly combined with the global 3D moments experienced
when a machine is required to perform dexterous ma- by the sensor, must be manipulated to derive a "sense
nipulations and precise/fragile assembly tasks. Also, of touch" in robotic applications.
for object detection or identification purposes tac- We begin with a small training set based on nine
tile sensors can complement or substitute for more surface contours depicted in Figure 1. When pressed
costly vision sensors [whenever contact can be made], onto a compliant tactile seivor, these rigid surface
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profiles would produce the corresponding impressions Within each data group (rectangular or circular) the
shown in Figure 2. There are six surface profiles of size and shape of the contact surfaces are identical so
rectangular silhouette and three of circular silhouette that the ANS must discriminate the patterns based
named and tagged as: bar(B), rod(R), wedge(W), on intensities of the force experienced by the tacels
slant(L), bump(U), hole(H); and sphere(S), cylin- rather than the object's size or geometry. Moreover,
der(), cir..slant(l) respectively, the 'global' or ensemble force experienced by the ma-

trix of tacels are held approximately constant in order
to force the ANS to distinguish the relative gradient
patterns rather than the overall pressure on the sensor.
These constraints are important to ensure extraction
of useful features, but do not imply that all tactile
data embody such characteristics; we study the more
restrictive and difficult case and- contend that relax-
ing any one of the constraints (eg. different geome-
tries) would pose a simpler feature extraction problem.
Previous works in tactile pattern recognition described
processing of binary patterns and/or differing geome-

l, tries which do not focus and capture the essence of
t," , z . tactile data. [Hering et al., 1990] [Muthurkishnan ct

al., 1987] [Marik, 1981] [Kadonoff, 19831 [Togai, 1982]
[Hillis, 1982] [Sato ei al., 1977] [Takeda, 1974] [Ki-

Figure 1: Surface Primitives noshita, 1973]

3 Network Description
: .. :.. : : . ..... •

::;,;, O:: 0o .: . In this study, the domain of ANS is a controlled en-
:.ooooo. .. o . .ovironment such as a robot workcell in which several

s:: ::go Coo. regular objects are assembled with the aid of a pla-::000000. :2 • 00 :": o o

o I.0 nar tactile sensor. Thus, the ANS are not required
to create categories from random, arbitrary input pat-

............ ........ ......... terns; in fact, during training, the desired output cate-
gories would be specified and associated with a subse-

0:aoo ::D '" " a' quent task. As a result, a more direct architecture of

a layered feed-forward back-error-propagation (BEP)13O a • D (,o0 • , 0 0.

.0o3 • . o3 0.. network is chosen rather than one based on Adaptive
...... .. Resonance Theory. The 'standard' BEP network is a

... .........,, .,,,, nonparametric classifier, and its algorithm is based on
minimizing an error function ET(W) = EP Ep (W) via

• . :recursive computation of the error signal 6 with gra-. 000000. •. .000000.. .- n00-

o •dient descent in weight-space [Rumelhart et al., 1986].
ConecioisoSmuatr [odar c a.,199]O0 0: 000 OOO .0 00

.2o . .o o0 ,ooThe simulations were performed using the Rochester.. ?0OO00_ . .900009o .. o00 ".::????::- C:?oco: ?.%. Connectionist Simulator [Goddard et al., 1989].

.... ... We first study the problem of processing static tac-
.. .. " tile impressions from one planar sensor matrix, and

at this juncture, assume that object impressions are
Figure 2: Corresponding Tactile Impressions totally contained within the sensor. It is desirable to

achieve pattern recognition invariant to translations
The sensor response reflects Lord Corporation's and rotations of the tactile impressions. (An object

LTS200 model tactile sensor [Rebman and Trull, 1983; of different scale could effectively be of another class,
Muthurkishnan et al., 1987], but similar data can be since its handling and subsequent operations may dif-
obtained from other high quality, robust sensors. The fer.) In this initial phase, we impose only the trans-
impressions in Figure 2 assume uniform pressure dis- lation invariance requirement and use a 2D Fourier
tribution on the solid objects, and that the entire bot- transform as a preprocessor. The network architec-
tom surface of the object is in contact with the sensor. ture is shown in Figure 3.
The squares are graphical icons representing tacels, The first BEP module extracts salient features
and their sizes are directly proportional to the amount among the training patterns and the second module
of normal force experienced at each site. forms decision boundaries between them for catego-
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the size of the input vector and the receptive fields;
Feature Extractor we find that the more similar the input vectors are,are

,[-- i_ . j =[ feature differences, and thus more hidden units would7p 1 -' smaller receptive fields are required to encode minor

0 k.1-be created. The connectivity issue is discussed furtherin Section 4.2. The output units receive the same in-
Sensor formation and connectivity pattern as the input, since

Fourier ' the feature extraction BEP network receives no exter-
Spectrum Inal teach vector.

Classifier 4 Feature Extraction
T Saund [Saund, 1986] presented some theoretical back-

ground for using connectionist networks to discover
Figure 3: Network Architecture constraints in multidimensional data via dimensional

reduction. A subset m-dimensional features embed-
ded in n-dimensional data source can be abstracted

rization. The ovals in the Fourier spectrum are to in- into hidden units of a BEP network. Cottrell et. al
dicate that receptive fields units are used rather than [Cottrell et at., 1987], and Kuczewski et. al [Kuczewski
the standard fully connected BEP scheme. The input et al., 1987] reported on using BEP network as a self-
to the feature extraction network is quadrant-one of organization structure in image compression/data re-
the corresponding object's Fourier spectrum as shown duction. The feature extraction module in Figure 3 is
below, based on these same principles and background con-

cepts are omitted here, except to reiterate that no ex-
, .plicit external "teacher" is used in this scheme; the

network maps input patterns onto themselves whileDOoOaooo (•o 00000 OOOoo.0o

performing data compression. In the initial simula-
...... ........ tions, the feature extractor module compacted salient

features among ten 64-dimensional input vectors into 8
ooo., oo 0;;.; feature (hidden) units. Kuczewski demonstrated more

00 .0 , 0significant reduction ratio from 255 to 3 dimensions
0 000000.-00;.;;;.oO.o.. -00000 in a four-layer network; here, the specific constraints

oD0o o c2CM.CooO C00o00 of the input data in the tactile domain are of inter-
o0o;o;;,;° .......... ........ o 0 *o 0*0' * 'aest to us. Discrimination of tactile impressions pose

o.;0000? 9;00000? 9;;9o0, an interesting task for the ANS, and empirical results
0.000 000o. 0000000.o20? ogo, a00ao0o0 indicate that (i) ANS abstract the simplest (but not
O00COo OOOD. fi00000o

Brao 0 0o. a [][00130000necessarily useful) criteria while encoding features, un-
less proper constraints are imposed on the input data,
and (ii) the standard fully-connected paradigms of the

Figure 4: Input Vectors; Partial Fourier Spectra BEP architecture may not necessarily yield useful data
representation.

The spectra of the rectangular patterns (top two
rows in Figure 4) and the circular patterns are dis- 4.1 Constraints Imposition
tinctive as a group indicating that differences in ge- As mentioned in Section 2, the patterns in the train-
ometry pose a relatively easy classification problem. ing set are constrained to have the same (i) geome-
Within each group, however, the distinguishing fea- try (ii) size, and (iii) total force applied to the sensor.
tures are more subtle and pose a challenging learning The intent is to make the feature extraction module
problem for the ANS. Since the spectra of high fre- determine that relative force gradients are the key fea-
quency terms decrease rapidly, the function D(u, v) = tures to be learned, by repeated presentation of the
log(1 + IF(u, v)I) is used instead of IF(u, v)I to display training set. However, the features it does (or does
the image and preserve the zero values in the frequency not) capture can be deduced by testing the network
plane. The FFT output yields translation invariance, in its "trained" state on new data. For example, if
since its magnitude (F(u, )e-2(u-*+vY*)/N1) is not the training set itself were similar to that in Figure
affected by a shift in the time domain. 2, but the "footprint" of the rod differed in shape to

The hidden layer in the feature extraction module the bar, and the cylinder % ,s of different size than
receive input from a small neighborhood of input units. the sphere (all with proper pressure distributions) the
The exact number of hidden units would depend on network would err and exhibit marked sensitivity to
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changes in geometry and size of those objects A less sible to discern input patterns from this data. The
conspicuous feature is the aggregate force applitd to mean-absolute and mean-squared differences for all
the sensor. If the shape and size are constrained but patterns, however, indicate that the reproduction at
the total forte applied (reflected by the sum of grey- the output layer was quite faithful to the input pattern.
scale values across the sensor) is different, the network Nevertheless, this result is unacceptable since training
will use the ensemble force as the discriminating factor vectors for the next module are unavailable. We thus
among those patterns. Hence, the network misclassi- employ the concept of receptive field neurons. With
fies when the same gradient profile with differcut total partial-connections from input to hidden units with
force is shown to it. Note that although thl extracted a neighborhood radius of k units and center-to-center
features are found by the network and ntot "human- distance of 1 units, the typical convergent hidden layer
engineered', the construction of the training set from activations are as shown below in Table 2.
which the module learns must be carefully crafted. We
conjecture, however, that if large numbers of examples
with varying geometry, size and forces are shown to the Table 2: Convergence with Receptive Field Units
network for each of the surface profiles, and the net-
work is allowed to evolve over a 'long' period of time, Hidden Activations
it will discover that relative force gradients are the B .00 .03 .02 .93 .01 .04 .50 .11
common features. However, foL initial focused s'udies, R .01 .02 .02 .96 .01 .08 .38 .04
system parameters must be carefully contrclled. W .06 .23 .02 .96 .01 .07 .54 .07

PL .05 .07 .049 .65 .03 .23 .62 .30
4.2 Conetion Patterns 5 .63 . 2 .63 .14
Even if proper constraints arc imposed on the training H .11 .05 .18 .50 .07 .62 .60 .45
set and the network is trained to extract the salient S .1 .50 .42 .65 .3
force gradients, the feature information may not be C .02 .05 .021 .41 .09 .52 .74 .07
accessible for training subsequent modules. That is, I .19 .17 .05 1.66 .09 .24 .6 .14
we want the abstracted features to be manfested as
activation pattern5 across the internal hidden layer
such that these patterns can be used as the train- The features among the patterns are not distinctive
ing vectors for the classification module. During self- such that one is "high" while others are "low", but
organization, we compute the average differences (ab- results indicate that based on even a small threshold
solute or squared) over all pixels in a given image and 0, some combination of the 8 feature units can distin-
compute one metric per training pattern. This value is guish one surface profile from any other one. In the
then compared with a permissible error (PErr) term constrained tactile domain, the networks do not have
that determines when to terminate training. Using the a wide dynamic range to operate near boolean lim-
conventional fully-connected, feed-forward BEP net- its; the differences between the data are subtle, and
work architecture, repeated runs consistently resulted accordingly, feature unit,. converge at various analog
in a failure to encode salient features as activation lev- values in its activation range. Preliminary results in-
els on the hidden units. The networks do converge dicate that the dimensionality of the feature space n
below PErr, but all the feature information is stored is approximately 0.7 < n < p where p ic the number
among the pattern of link weights rather then as ac- of pattern classes. During fully-connected configura-
tivation levels of hidden units. A typical convergence tion, cach hidden unit is receiving input from the entire
pattern is shown below in Table 1. input pattern of N units and is imposed with extra-

neous/redundant data. With partial connectivity, not
only is the amount of data reduced to some propor-

Table 1: Typical Fully-connected Convergence tion of k2, but more significantly, each unit receives

!Hdden Actvaltons (all 9 patterns) 4 fraction of k private segments of the each image.
The ratio of 1 (; k < ' < 2k) controls the amount of
overlap between the receptive fields, but simulations
show that it does not have appreciable affect on fea-

The activation pattern across all 8 units are the ture -xtraction propoties. The important factor is
sae atvarlessftio nut. pattern , s a t 8nits a e the segmentation of the input data by rcccptive fic!ds

same regardless of the input pattern, thus it is impos- to enable the network to discover small distinctions

'Note that for robust perforinance, a comprehensive among the training patterns.
training set should include corresponding sets of ea ,i ob- A design question arises as to how many feature
ject in various lapes and si~es, but this initial trainir g (hidden) units are required and how large the receptive
"subset" suffices for preliminary studies. fields should be. In general, the number of required
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features nodes are not known a-priori, and it will de- ilarly, the other pattern clusters to their respective
pend intimately on the degree of correlation of the in- categories. The problem becomes much more difficult,
put vectors. To design a feature extractor network because the distinctions between the surfaces become
without too much human preprocessing and scrutiny, less clear, and one pattern can resemble another very
a network can start with a large number of feature closely. For instance, the impression of the bar rolled
nodes, each with small receptive fields. After the to the right (Figure 5a) is now very similar to the orig-
network converges, the activation patterns across the inal slant (Figure 2d) pattern. Only subtle difference
feature units separate crucial from extraneous units. remain between the patterns, such as the slightly ac-
The extraneous units can then be "pruned" either by tivated neighboring column of tacels to the right edge
human-inspection or some automatic algorithm as dis- in Figure 5a, resulting from increased deformation of
cussed by Sietsma and Dow [Sietsma and Dow, 1988]. the sensor surface there. Likewise, when the slant is
The module described above started with 16 hidden rolled to the left, it resembles the original bar (Fig-
nodes; it turns out that only 8 were sufficient to dis- ure 2a), and the same for the cylinder and cir.slani
tinguish between the patterns, objects. Note that the corresponding Fourier spectra

that serve as the input vector also becomes more and
5 Clustering Groups of Pa.tterns more similar, and poses a difficult learning problem for

the ANS.
Thus far, we discussed two coupled BEP networks, This problem requires the ANS to cluster the five
that can extract features and classify the basic data patterns as a group and derive cluster centers that
set of Figure 2. Next, we extend the problem and test are as distant as possible to distinguish between the
if these ANS can categorize "families" of such patterns, clusters. Clustering process can be view as unsuper-
We relax the previous stipulations of uniform pressure vised classification in which N samples (each charac-
distribution on the objects and consider some distorted terized by an n-dimensional vector) are classified into
patterns. In advanced robotic applications where the M classes (w1 , ...wM). The classification 0 is a vector
robot must operate without precision peripheral de- made up of the wk,s and the configuration X* is a vec-
vices such as positioning jigs, consistent acquisition of tor make up of X's. The cluster criterion J then is a
flawless sensor data is highly improbable. On a tactile function of both Q and X*;
sensor, for instance, an object is likely to be pressed ...XT)
slightly harder on one section than another. J 

= 
(['14

l
, ""tWkN]T; [XT1, I

Hence, the training set is augmented to include ad- In seeking data cluster via standard algorithms, some
ditional impressions of the nine objects as they are measure of similarity such as J establishes a rule for
"rolled" slightly to the left, right, top, and bottom of assigning patterns to the domain of a particular cluster
the objects. We simulate up to 20 % pressure gradients center. Moreover, since the proximity of two patterns
for four basic directions (right,left,top,bottom) on the is a relative measure of similarity, it is usually neces-
sensor, and obtain a total of 45 training patterns. The sary to establish a threshold in order to define degrees
impressions for the bar in various "rolls" are shown in of acceptable similarity in the cluster-seeking process.
Figure 5. Preliminary indications are that the feed-forward BEP

network could prove to be quite effective in forming

.... both the similarity measure and the threshold via some
,3 00 :1830

coo •0 combination of its link weights and bias parameters.
coo •00 •Simulation results indicate that for the clustering

.... 01 oo 0?oo problem, more hidden units are significant and con-: tribute to the feature extraction process. The acti-

0oo00o. ....... ., vation levels of the receptive field hidden units con-
_000000o thin the feature information. However, the correlation

of the input patterns are high and there exist many
overlaps of features among the 45 patterns. Even af-

000000 ter the feature extractor converges with low PErr, it001310000•- 0 00

00oooo, is difficult to discern some of the boundaries due to00o000 M

o•..... high dimensionality of the feature space. As one may
W W" suspect, clear boundaries can be found among the ex-

trema of many hidden nodes that separate the circular
and rectangular silhouettes, but as little as one hidden

Figure 5: Distorted 'bars' to Cluster node separates some patterns of same geometry, such
as (barrod), (rod,wedge), and (cylinder, cirslant). The

Despite the distortions, the network should learn collection of all the features, distinctive and subtle,
that all five patterns belong to class bar, and sim- serve as training vectors for the classification module.
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6 Pattern Classification [Kinoshita, 1973] G Kinoshita. Pattern recognition of
the grasped object by the artificial hand. Proceed-The classification module is a very standard, fully- ings of the 3rd International Joint Conference on

connected two-layer BEP module and its details are Al, pages 665-669, 1973.
omitted here. The values for its input units are prop-
agated from the activation levels of the feature nodes [Kuczewski et al., 1987] R Kuczewski, M Myers, and
from the preceeding module. The output units clas- W Crawford. Exploration of backward error propa-
sify them into nine categories, this time supervised by gation as a self-organizational structure. IEEE In-
an explicit teach vector. For the basic pattern set, us- ternational on Neural Networks, 2:89-95, 1987.
ing the patterns shown Table 2 above, the classifier [Marik, 1981] V Marik. Algorithms of the complex
learns to separate those features, and achieves clean tactile information processing. Proceedings of Inter-
and distinct class separations at convergence. Similar national Joint Conference on Artificial Intelligence,
results are obtained for classifying all 45 patterns into pages 773-774, Aug. 1981.
nine categories, although convergence time (number of [Muthurkishnan et al., 1987] C Muthurkishnan,
iterations) takes five to seven times longer. D Smith, D Myers, and J Rebman. Edge detection
7 Summary in tactile images. Proceedings of IEEE International

Conference on Robotics and Automation, 1987.
This paper presented an application of ANS for fea- [Nicholls and Lee, 1989] 11 Nicholls and M Lee. A sur-
ture extraction, clustering, and classification of tactile vey of robot tactile sensing technology. The Interna-
impressions in the robotics domain, and revealed some tional Journal of Robotics Research, 8(3).3-30, June
basic characteristics of the BEP network to geometry-, 1989.
size-, and activation-constrained grey-scale data. Fun- [Rebman and Trull, 1983] J Rebman and M Trull. A
damental results indicate that with appropriate net- robust tactile sensor for robot applications. Techni-
work architecture and training sets, ANS are able to cal Report LL-2142, Lord Corporation, 1983.
extract subtle feature differences and construct high-
dimension decision surfaces. These results however, [Rumelhart et al., 1986] D Rumelhart, J McClelland,
were derived from a very small training sample, and and PDP Research Group. Parallel Distributed Pro-
further analysis must be completed before general con- cessing, volume v1. MIT Press, 1986.
clusions can be reached. The response of ANS to noisy [Sato et al., 1977] N Sato, W Heginbotham, and
data, and their effectiveness in classifying un-trained A Pugh. A method for three dimensional part, iden-
patterns are being examined. Also, scaling studies tification by tactile transducer. Proceedings cf the
should indicate if these concepts can be extended to 7th International Symposium on Industrial Roiots,
(at least low-resolution) vision data. pages 577-585, 1977.
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Abstract that can be used to solve a class of problems,
where the members not only may differ from

The common idea among previous each other with respect to the name of the

approaches for generalizing number is to objects involved, but they may also differ in the
look for repeated applications of rules number of objects involved. For example, an inst-

(or operators) while generalizing an ance of generalizing number in the Block's
example proof to produce a general World is to learn a general schema for building
schema. We describe another approach, towers of arbitrary height from a proof of build-
the algorithm N, that generalizes ing a tower of four blocks height. Different
number from planning problems which approaches of generalizing number have been
are stated in the STRIPS-formalism. presented in [Shavlik & DeJong 87], [Cohen et al
Instead of generalizing the structure of 881, [Cohen 88], [Shavlik 88] and [Shavlik 891.
an example proof in terms of operator The common idea among these approaches,
applications, the algorithm generalizes while generalizing an example proof to produce
the order in which the literals in the a general schema, is to look for repeated
goal state description are reached, yiel- applications of rules (or operators). When such
ding a generalized precedence graph. a repetition is found, a loop construct is added to
The algorithm N is compared to one of the corresponding general schema. We have
the previous approaches for generaliz- focused on generalizing number in systems that
ing number, that can be applied to plan- solve planning problems based on the STRIPS-
ning problems which are stated in the formalism [Nilsson 82]. The previous
STRIPS-formalism. Experiments have approaches to generalizing number have only
shown that schemata produced by algo- been considered with generalizations of proofs
rithm N can be more efficiently utilized made by a Horn clause theorem prover.
than schemata produced by the previous However, one of the previous algorithms [Cohen
algorithm. Also, the algorithm N is 88] can also be used to generalize proofs in the
shown to be able to handle a class of STRIPS-formalism. This method has one major
problems that the previous algorithm shortcoming. The general schema learned by the
cannot. method, contain information about what opera-

tors to select only, and not how to apply them
(knowledge about selecting the appropriate

1 Introduction match substitution according to the terminology
in [Nilsson 821). in the tower building example,

To generalize the structure of an example proof a system using a general schema learned by the

such that a fix,,d numbr of rul .,lications in method to build a certain tower, knows what
the proof is generalized into an unbounded operator to use in a particular situation (stack,nerofappli is eneralizedinomonly r red pickup, etc.), but does not know what blocks tonumber of applications is commonly referred to involve in the action. This observation hasas generalizing number. Another name for the recently been presented in [Bostr6m 891. In manysame principle is generalizing to N. In this domains the search space may not be prunedwork, we use the termenough by the general schemata learned, to
broader sense than restricting the generaliza- enable new problems of the same class to be
tions to be made in terms of rule or operator solved within acceptable time.
applications. By generalizing number, we mean In this paper we present the algorithm N, a
the principle of generalizing the solution of a
specific example problem into a general schema, new proach o e eralIzingonm ipaning problems based on the STRIPS-formalism.
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Instead of generalizing the structure of an exam- in (sl, ..., sm), if Sk contains Ii in its add list and
ple proof in terms of operator applications, the st contains lj in its add list, then k<. (each lite-
algorithm N generalizes the order in which the ral preceding another literal in the sequence
literals in the goal state description are must be added before the other)
reached. The algorithm N is described in the
next section. In section 3 we present an algorithm Definition: Given an initial state description Id,
for interpreting schemata produced by algo- a goal state description Gd and a set of STRIPS-
rithm N, when solving new problems. A short operators S. A precedence graph G is a directed
presentation of how Cohen's algorithm can be acyclic graph, where each node is labeled with
applied to planning problems in the STRIPS- a literal, and that has the following properties:
formalism is given in section 4. Some prelimin- 0 every literal in Gd appears exactly once in
ary results comparing the algorithm N to the the graph, and there does not exist a literal in Galgorithm of Cohen are presented in section 5. that is not member of Gd (all literals in the goal

2 The Algorithm N state description, and only those, mu,4 be
mentioned in the graph)
ii) there exists a subset g of the nodes in G suchWe first define the input to algorithm N, a that each node in the graph that is not member

precedence graph, that represents all solutions of g can be reached by following the arcs from a
(with some restrictions) to an example problem. node in g, and there exists a node in the graph
Then we describe the algorithm N itself, which that can be reached from each node in g (all
produces a generalized precedence graph- nodes in the graph must be connected)
Finally, we give some examples of the limita- iii) there does not exist a goal order (11, ..., In)
tions of the general heuristic used in algorithm with respect to Id, Gd and S, such that there

exists a pair of literals (Ii, lj) in the sequence
2.1 Goal orders and precedence graphs where i<j and Ii can be reached from ij in G by

following the arcs (a literal that precedesA goal order for a problem, is a sequence of the another literal in a goal order must not be
literals in the goal state description, such that reachable from the other literal in the graph)
the literals can be added sequentially by apply- iv) there do not exist three different literals a, b
ing STRIPS-operators without ever deleting a and c in G such that b and c are successors of a,
previously added literal in the goal state and c can be reached from b by following the
description. A precedence graph represents all arcs, and there does not exist a pair of literals
possible goal orders for a certain problem. (a, b) such that there are more than one arc from
Below, we give definitions of these two a to b (redundant arcs are not allowed).
concepts. Examples of precedence graphs for
building a tower and an arch are also presented. In an example proof one particular goal order is

easily found, by regarding the order in whichDefinition: Given an initial state description Id,  the literals in the goal description are added.
a goal state description Gd and a set of STRIPS- But in order to find the corresponding precedence
operators S. A goal order is a sequence (11, ..., In) graph to the example problem we need all goal
containing all literals in Gd exactly once, such orders for the particular problem, i.e. all possi-
that there exists a solution sequence I (sl, ..., Sm) ble ways of solving the problem without delet-
with the following properties: ing a previously added literal in the goal state
i) for each literal Ij in (11, ..., In) there does not description. An algorithm for deriving a prece-
exist more than one instance si in (sl, ..., Sm) dence graph, given all goal orders for a problem
that contains ij in its add list (each literal must is presented in [Bostr6m 901. Henceforth, we
not be added more than once) assume that the corresponding precedence graphnot e ad ed m re t an o ce)is given for each problem , instead of all goal
ii) for each pair of literals (Ii, ij) in (Ii, ... , in) orders.
such that i<j, for each pair of instances (sk, 1)

Example 1
Given the initial state description Id =1A solution sequence is a sequence of instances of (handempty, ontable(a), clear(a), ontable(b),

STRIPS-operators, such that when applied to the clear(b), ontable(c), clear(c), ontable(d),
initial state description, a state description is clear(d)}, the goal state description of a tower
produced from which the goal state description
logically follows. Gd = on(a, b), on(b, , on(c, d) and the set of
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STRIPS-operators for Block's World [Nilsson 82, of repetition in a proof of an example problem.
p2811. The precedence graph (and the corres- In contrary to previous approaches for genera-
ponding tower) is shown in figure 1. The prece- lizing number, we do not look for repetition of
dence graph is linear since there exists exactly operator applications in a proof. Instead, we
one goal order, namely (on(c, d), on(b, c), on(a, look for repetition in the corresponding prece-
b)). dence graph to the example problem. The ques-

tion is: repetition of what?
The purpose of generalizing a precedence

graph is to be able, when solving a problem, to
give a partial ordering of the literals in the
goal state description. This ordering can then be

Table used to produce a solution sequence. A precedence
on(c,d)-*on(bc)-- on(a,b) graph can be viewed as an instance of a schema

that declares order constraints on the literals inFigure 1. A precedence graph for building a the goal description. We want our algorithm to
determine these order constraints by regarding

Example 2 the precedence graph that corresponds to the

Assume that we extend the set of STRIPS-opera- example problem. Then the heuristic of looking

tors in example 1, with a stack2(X, Y, Z) opera- for repetition of order constraints in the prece-

tor that can be used to stack a block on two dence graph can be used in order to generalize

blocks. Given the initial state description number.

where all blocks are on the table, the goal state eedence tha e eresensratins
description that corresponds to the arch in precedence graph can be expressed as relations
figure 2 and the extended set of STRIPS-operat- between literals that are directly connected by
ors. A precedence graph for building the arc is arcs. The algorithm must determine for each

shown in figure 2 (below the arch). The prece- pair of literals (a, b) in the precedence graph,

den gra in figure 2 is not linear since there such that b is a successor of a, how they are rela-
dence graph n g re o r e re ted. The following heuristic is used in algorithmexist more than one goal order for the problem. N: "two literals can be said to be related if they

share at least one object constant or if they have
B different object constants that appear as argu-

Z ments of the same literal in the initial state
description". Some limitations of this heuristic
are presented in section 2.3.

Table The generalization of a precedence graph is
on(d,e)--.on(c,d)-.-lon(b,c) made by the algorithm N in two steps. First, a

** o=2abf) general version of the precedence graph is

on2(h-. , b) produced where the arcs represent relations
on__hi)--. __on ___h_--.__on______ between the literals in the precedence graph.

Figure 2. A precedence graph for an arch. Then the new graph is reduced, by merging nodes
having arcs with common relations, yielding

2.2 Generalizing Precedence Graphs the final generalized precedence graph. Below,

The principle of generalizing number was defi- we give an overview of the algorithm N. A
ned as the principle of generalizing the number detailed description of the algorithm is found in
of objects involved in a specific example in order [Bostr6m 90].
to produce a general schema. Generalizing
number from examples of building a tower or an
arch means producing general schemata that can
be used to solve problems of building towers and
archs involving an arbitrary number of objects.
The commonly adopted heuristic in algorithms
for generalizing number is to look for some kind

1 By a linear precedence graph, we mean a precedence
graph where each node does not have more than one
successor and each node does not have more than one
predecessor.
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Aleorihm N R1
Input: a precedence graph G and an initial state
description Id
Output: a generalized precedence graph G'

R1 = (on(X,Y), on(Z,W), [ X=W l)
1. Let G' be a graph consisting of the nodes in G. Figure 3b. A generalized precedence graph for

For each pair of nodes (nl, n2), such that n2 is building towers.
a successor of nl in G, add an arc from nl to n2
to G'. Example 2 cont.

Label all arcs with triples, where the first Application of step 1 in the algorithm N to the
and second argument are the corresponding precedence graph in figure 2 results in the graph
literals to nl andn2, with each constant shown in figure 4a. As we can see, the same rela-
replaced with a unique variable. The third tion has been found as in the previous example
argument is a set of relations describing the (denoted R1), but also two other relations have
relation between the two literals, according been found.
to the heuristic that literals can be related In step 2, two pairs of nodes are merged, yield-
by sharing constants, or by having different ing the generalized precedence graph in figure
constants as arguments that appear in the 4b. No more nodes in the resulting generalized
same literal in the initial state description, precedence graph allow merging, since there

does not exist a pair of nodes from which iden-
2. Merge all pair of nodes (nl, n2) where n2 can tically labeled arcs lead, and where one node

be reached from nj , and where both nodes can be reached from the other.
have arcs leading from them labeled with
the same triples. R R1

Example 1 cont.
Application of step 1 in the algorithm to the
precedence graph in figure 1 results in the graph
shown in figure 3a. The only relation found
between the literals 'on(c, d)' and 'on(b, c)' in RI (onXY), on(ZW), (X=))R2 = (on(X,Y), on2(Z,V,W), ( X=V ))
the precedence graph, is that equality holds R3 = (on(X,Y), on2(ZV, W), [ X=W})
between the first literal's first argument and Figure 4a. Graph produced by step 1 in algo-
the second literal's second argument. There rithm N for the arch building example.
exists no literal in the initial state description
that has more than one argument, and thus

constants from the literals. The same relation R2
between the literals 'on(b, c)' and 'on(a, b)' in R1 R2

the precedence graph is found by step 1 in the
algorithm.

After step 2, the graph in figure 3a is genera-
lized into the generalized precedence graph in R1 = (on(X,n), on(Z,W), (X=W))
figure 3b. Two nodes have been merged, since one R2 = (on(X,Y), on2(Z,V,W), (X=V))
of them could be reached from the other, and R3 = (on(X,Y), on2(ZV, W), (X=W))
from both nodes arcs were leading labeled with Figure 4b. A generalized precedence graph for
the same triples. building archs.

RI R 2.3 Limitations of the Heuristic in Algorithm N
Three types of incorrect generalizations can be

RI = (on(X,Y), on(ZW), (X=W)) noticed due to the heuristic used in the algo-

rithm N:
Figure 3a. Graph produced by step 1 in algo-rithm N for the tower building example. i) over-generalization as a consequence of the

algorithm's unability to find a relation between
two literals in the precedence graph (i.e. there
does not exist a literal in the initial state
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description that contains object constants from equivalence relation. From the literals that
both of the literals and the litera?,s have no match the first argument of the relation,
object constant in common) trees are created in a recursive manner
ii) under-generalization as a consequence of the starting at the nodes from which the arcs
algorithm's consideration of a literal in the lead in the generalized precedence graph.
initial state description that is irrelevant,
when looking for a relation between two literals 2. A potential goal order is produced, given the
in the precedence graph set of tree shaped graphs, in the following
iii) under-generalization as a consequence of an way. The goal order is initialized to the
assumption by the algorithm that two literals empty sequence. Iteratively, it is checked if
in the precedence graph have a common object there exists a literal that is not member of
constant by necessity, when it is by a coinci- the sequence, such that each literal from
dence. which it can be reached in any of the graphs,

is a member of the sequence. If that is the
3 Interpretation of Generalized Prece- case, then the literal can be added to the end
dence Graphs of the sequence.

A generalized precedence graph is used to give a 3. Given a goal order, a solution sequence is
partial ordering of the literals in the goal state produced using a means-ends analysis

description, that can be used to produce a solut- technique [Nilsson 82, p3041. The main
ion sequence. In this section we describe the difference between our algorithm and the

algorithm Find-solution that can be used to find original algorithm is that our algorithm

a solution sequence for a particular planning does not have to non-deterministically select
problem, given a generalized precedence graph. a literal in the goal, and that no domain

The algorithm works in three steps. First, a knowledge is used to select an operator to
set of tree structured graphs are produced cons- reduce the difference between the current
training the order of the literals in the goal state description and the goal state
state description. Second, a potential goal order description. The algorithm also checks that
is derived using the set of trees. Third, a domain a previously added literal in the goal
independent means-end analysis system is used description is never deleted.
to produce a solution sequence, given the poten- Example 1 cont.
tial goal order.

The algorithm can be summarized as follows. The goal is to build the tower in figure 5a with
For algorithmic details, see [Bostr6m 90]. use of the the original set of STRIPS-operators

from the initial state where all blocks are clear
Algorithm Find-solution and on the table. Given the generalized prece-
Input: a initial state description Id, a goal state dence graph in figure 3b. All literals in the goal
description Gd, a set of STRIPS-operators 0 and state description can match the second argument
a generalized precedence graph G' of the triple '(on(X, Y), on(Z, W), {X=W})'.Output: a solution sequence S Hence, when applying step 1 in Find-solution, a

tree is constructed for each literal in the goal

1. A set of tree structured graphs is created in state description, with the literal as a root. The

the following way. First, literals in the goal set of tree structured graphs are shown in figure
state description are matched to the second 5b. The tree consists of a single literal, when thestat decritio ar mache totheliteral 'on(e, f)' is the root, since there does not
argument of relations that label arcs leading literal in th e tate descnip
to nodes without successors. For each literal exist another literal in the goal state descrip-
tot nod es ithotsuccessors.rFomena treertion that matches the first argument. such that
tat matches such an argument, a tree is

constructed where the literal is the root. the equality holds.
Application of step 2 to the set of tree structu-From each root, there may lead branches to red graphs produces the goal order (on(e, f),

other literals. These literals are such that
they match the first argument of a relation on(d, e), on(c, d), on(b, c), on(a, b)), since it is the
that labels an arc, that leads to the node of only possible goal order. The solution sequence
the root in the generalized precedence graph. produced by step 3 is (pickup(e), stack(e, f),
In addition, all facts in the third argument pick(d), stack(d, e), pickup(c), stack(c, d),

must be true with respect to the initial state pickup(b), stack(b, c), pickup(a), stack(a, b)).

description and with respect to the
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i plckup)/pickup

(putdownstack)/stack

Table (pickupunstack}/pick.up

Figure 5a. A goal tower.
(putdown,stack)/stack

on(e,f) -- on(de)--* on(cd)--on(bc) --*on(,b)

on(e,)-.-lbon(de)--on(cA) -- n(b,) {pickupunstack)/pickup

on(e,0 ---1 on(d,e)-*Pon(cA)

on(e,f)-.-on(d,e) (putdownstack)/stack

on(eO

Figure 5b. Tree structured graphs created by step Figure 6a. Initial control automaton for the
1 in Find-solution for the tower building tower building example.
problem.

4 Cohen's Algorithm (pickupunstack}/
pickup

We briefly present the algorithm of Cohen > 1
[Cohen 881. The algorithm is intended to be
applied to proofs made by a Horn clause theo-

rem prover. However, in this section we show (pickup)/pickup (putdown,stackl/

how the algorithm also can be applied to proofs stack

given in the STRIPS-formalism. Figure 6b. Reduced control automaton for the
Cohen's algorithm learns deterministic tower building example.

control automata from example proofs. Each arc
of a control automaton is labeled with an input In Cohen's system ADEPT, backtracking is not
symbol representing a set of rules, and an output permitted. In the case, when the system has
symbol representing a single rule. The control learned to build towers, and a new tower is to be
automaton guides a proof as follows: first all built, the system will not succeed if the wrong
applicable rules are collected into a set S. If block is first picked up. Since the probability for
there is an arc leading from the current state, incorrectly choosing a block is very large, the
with input symbol S, then the rule corresponding learned procedure will seldom (or in more
to the output symbol is applied. The new current complex cases never) work. However, in our
state will be the one the arc was leading to. If comparison we permit the system to backtrack
there is no arc with input symbol S, the proof when a dead-end is reached.
fails. The proof succeeds if it is completed using
the sequence of rules output by the control auto- 5 Results
maton.

Cohen's algorithm applied to a proof of build- In this section we present some preliminary
ing the tower in figure 1 produces the initial results from the comparison of the algorithm N
control automaton in figure 6a. The next step in with the algorithm of Cohen. Two main ques-
the algorithm checks the possibility of merging tions are raised in this section:
states having arcs with the same input/output a) Which of the two algorithms produces the
symbols (if it is possible to make the automaton most efficient general schema?
deterministic after merging). All possible b) Are there any examples that one of the algo-
mergings are made, yielding a reduced determi- rithms does learn from, but the other does not?
nistic control automaton. The corresponding The efficiency of the learning algorithms is not
reduced automaton to the initial control auto- considered in this comparison.
maton, is presented in figure 6b. The size of the search tree when using a

schema produced by Cohen's algorithm, is enti-
rely dependent on the number of possible opera-
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tor applications. When a generalized prece- proof of building a tower with three blocks (two
dence graph is used, the search tree depends on literals). On the other hand, there are many
the number of literals that matches relations in classes of problems that the algorithm N can
the generalized precedence graph and on the learn schemata for and the algorithm of Cohen
search made by the domain independent means- cannot. In figure 8 we show an initial control
ends analysis algorithm given the goal order. automaton for building an arch, that cannot be

Since these numbers may vary between reduced and made deterministic. The algorithm
domains and problems it is difficult to give a N is able to generalize the corresponding prece-
general answer. However, we have made a dence graph (as was shown in example 2) and
number of limited experiments comparing the thus can learn from an example problem that
efficiency of the general schemata produced by Cohen's algorithm cannot.
the algorithm N and the algorithm of Cohen.
Figure 7 shows the growth of time taken to build
towers of different height with schemata
produced by Cohen's algorithm and the algo- ,pikp
rithm N. In addition, we present the perfor-
mance of a domain independent means-ends puow,,,scjtock

analysis system, that in contrast to the means-
ends analysis system used when interpreting (putck/pku

generalized precedence graphs, has to non-
deterministically select a literal in the goal (tow,%.su tck2/tck

state description. All problems given to the
systems are stated as worst-case problems (i.e. (pc /p

the literals in the initial state description and (putdaoct, t,2)/,tk
goal state description are ordered so that the
appropriate literals are chosen last when inst- i
antiating operators and selecting subgoals
respectively). The algorithms are implemented (uo, tsc,., ,k2)/,t,
in PROLOG on a Macintosh II. The learning case
is the problem of building a tower of 4 blocks. (pi )/pk~up

(puttdownAtsckAtck2/st ack2

Towerbulidig Figure 8. An unreducable initial control automa-

1000 ton.

100 6 Conclusions

9ends 10 ------ We have presented algorithm N, a new
approach to generalizing number that can be

1used for planning problems which are stated in
0

Figur L - -I ... - .... . ...... ,.the STRIPS-formalism. Instead of generalizing a

. . . t o r - -h. .single proof in term s of operator applications,

towt r Atght our algorithm generalizes all solutions to the
.- -*-~B Mears -ns Iexample problem, by generalizing the order in

which the literals in the goal state description

_________________________________ can be reached, ylcdin a- gcncralizcd prccFigure 7. Results from the tower building exper- dence graph.
iment. The algorithm N is compared to an algorithm

for generalizing number that generalizes proofs
Two examples can be given as an answer to the in terms of rule applications [Cohen 881.
second question stated above. Cohen's algo- Experiments have shown that it takes less time
rithm is able to learn the control automaton in to find a solution sequence using a generalized
figure 6b from a proof of building a tower with precedence graph than finding a proof with a
three blocks. The algorithm N needs at least control automaton in a number of cases.
three literals in the goal state description to be The algorithm N is shown to be able to handle
able to generalize, and thus cannot generalize a a class of problems that the algorithm of Cohen
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cannot. These problems are such that it is not [Cohen 88]
possible to make deterministic reduced auto- Cohen W. W., "Generalizing Number and
mata that correspond to the example proofs. On Learning from Multiple Examples in
the other hand, we have shown how Cohen's Explanation-Based Learning", Proceedings
algorithm can learn from a smaller example of the Fifth International Conference on
than the algorithm N. Machine Learning, Ann Arbor, MI (1988)

The algorithm N can be improved with pp256-269
respect to a number of aspects. The general
heuristic used in the algorithm for finding repe- [Nilsson 821
tition in a precedence graph, may be revised, Nilsson N. J., Principles of Artificial
since there exists problems that cannot be gener- Intelligence, Springer Verlag, Berlin
alized appropriately (see section 2.3). Heidelberg (1982)

Another direction to proceed in, is to develop
an algorithm that can combine schemata lear- [Shavlik 89]
ned from different examples when solving a Shavlik J. W.,"Acquiring Recursive and
problem. Up till now, new problems have been Iterative Concepts with Explanation-
solved using a single schema only. Another Based Learning", Technical Report,
question is how to use the generalized prece- Department of Computer Science,
dence graphs to solve problems that are subpro- University of Wisconsin, Madison, WI
blems of the problems that the graphs repre- (1988)
sent.

[Shavlik 881
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Abstract to learn a better set of control rules. The second tech-
nique is to use these inductive techniques to learn ap.

One of the difficult problems in the area of prozimate control rules: that is, to learn rules which
explanation based learning is the utility prob. are approximations of the control rules which would
lem; learning too many rules of low util- be learned by standard EBL techniques. Although use
ity can lead to swamping, or degradation of inductive techniques alone does not always lead to
of performance. This paper introduces two rules of higher utility, the combination of these tech-
new techniques for improving the utility of niques is shown to substantially improve the perfor-
learned rules. The first technique is to com- mance of EBL across a variety of domains.
bine EBL with inductive learning techniques Combining EBL with inductive learning. Flann and
to learn a better set of control rules; the sec- Dietterich have noted that in the process of learning
ond technique is to use these inductive tech- control rules, many EBL systems make inductive leaps.
niques to learn approximate control rules. An example given in [Flann and Dietterich, 1989] is
The two techniques are synthesized in an al- a rule learned by LEX2 in the symbolic integration
gorithm called approzimating abductive ex- domain:
planation based learning (AxA-EBL). AxA-
EBL is shown to improve substantially over If the current problem matches
standard EBL in several domains. f czrdx(r 9 -1)

Then use the operator

1 Introduction fcf(x)dz * cff()ds
Forming this rule is an inductive leap; this is witnessed

One of the difficult problems in the area of explanation by the fact that the rule recommends the wrong action
based learning is the utility problem. The utility of a on the problem f OZ4dx (multipying out the zero to
rule is its contribution to performance improvement; get f 0dx leads to a shorter solution). Another case in
the utility is directly proportional to the coverage of which inductive decisions are made is when only one of
a rule and inversely proportional to the match cost of several possible control rules is learned; for example,
a rule, where coverage is defined as the percentage of PRODIGY might learn either a macro-operator or a
the time that the rule is used in problem solving, and set of operator preference rules from a trace (Minton,
match cost is simply the time needed to determine if a 1988].
rule is applicable. However, the standard implementation of EBL,The utility problem often arises in learning rules in which control rules are learned incrementally asintended to improve che performance of a problem needed, is relatively slow as an inductive learner. Coin-
solver. Learning too many rules of low utility can bining EBL with more powerful inductive learning
lead to swamping, or degradation of performance: techniques can improve the rate at which learning con-in the worst case, a problem solver can be slower tcnqe a mrv h aea hc erigcn
after st l arnig tha pble ler. Preiosr verges to an adequate set of control rules. A crucialafterpoint is that on average, improving the rate of conver-search on the utility problem has focused on detect- piti hto vrgipoigte.aeo ovr
ingeandh discrdn g ru utility [Moblemasfocuon, 19. gence will also improve the coverage of the individualing and discarding rules of low utility (Minton, 1988; rules learned. This is true because in order to improveMarkomv ib h and Scott, 1989], lowering the -iatc!h cost

.. the learning rate, it necessary to find fewer rules with
of rules using partial evaluation or other simplification better coverage.1
techniques [Prieditis and Mostow, 1987; Minton, 1988; bettr cverge.
Tambe and Rosenbloom, 1989], and constraining the it must be emphasized that we are not advocating use
use of learned rules [Mooiey, 19891. of pure inductive learning techniques (e.g., version spaces)

This paper introduces two new techniques for iiii- to learn control rules. Explanation-based techniques are
proving the utility of learned rules. The first technique clearly morc appropriate in learning control rules because
is to combine EBL with inductive learning techniques there is a strong theory.
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Using approzimate rules. The first technique alone, the form
however, is not enough to avoid swamping. The prob- useful(ci, A) +- Bl,..., Bq
lem is that in learning control rules, one is trying to for each clause ci = (A +- B1 ,..., B.) in the initial
maximize the utility of the set of rules. To do this, program. This 'usefulness theory" is an extension to
one must simultaneously mazimize total coverage, and the problem of Prolog clause selection of the theory
minimize total match cost. Standard inductive learn- used in the LEX/2 system [Mitchell, 1982] for operator
ing techniques, however, maximize coverage without selection.
regard to match cost. The second routine is a control rule compiler which,

Viewed in this light, !earning useful control rules is given a set of control rules and an initial program,
a multiple-resource optimization problem, in which the generates a new Prolog program which incorporates
two antagonistic resources of coverage and match cost the learned control rules. The routine takes as input
must be simultaneously optimized. A standard tech- a set of control rules of the form
nique for solving such problems is to set an artificial
constraint on one resource, and optimize the other re- useful(ci, A) +-- U(A)
source subject to this constraint. This technique can which can be read as saying "if U(A) is true, then it is
be applied to the control rule learning problem by con- useful to apply clause c to the goal A". U(A) is typ-
straining the inductive learner to only consider control ically a complex conjunctive condition involving the
rules with match cost below a certain fixed cutoff. variables of the goal A. For each such rule, the post-

Unfortunately, the control rules learned by expla- processor constructs a copy of clause c. to which U (A)
nation based techniques are almost always very corn- has been added as an additional "filtering condition";
plex; hence if a reasonable match-cost cutoff were cho- in other words, if ci = (A +- Bl,..., Bq), then a clause
sen, very few rules would be available for the induc- of the form
tive learning method to consider. This problem can
be remedied by allowing the learner to also consider A +- U(A),!, B1,..., Bqapprozimations to expeaive control rules.In the remainder of the paper, we first discuss te is constructed. Notice that the cut (!) makes selection

cntol remaringr oblthem ued, to tst t s ide, of this clause a committed choice: no backtracking willcontrol rule learning problem used to test these ideas, be done if this choice is incorrect.and then the learning algorithm used. We then de- One advantage of incorporating control rules in this
scribe the domains used for experimentation. Finally, w On avat c oing coerolrs inctiswe present and interpret our experimental results and way is that matching is done by Prolog's unification
draw some conclusions, procedure; directly using the implementation languagereduces the overhead of pattern matching.

If there is more than one control rule for ci, then
2 The learning problem multiple copies of ci are generated: i.e., multiple con-

To evaluate the learning algorithms discussed in this trol rules are interpreted disjunctively. A copy of the
paper, we used as a testbed the problem of learning original clause with no filtering condition is retained
clause selection rules for Prolog programs. This learn- if and only if some decisions to use that clause are
ing problem has several advantages. not explained by any control rule. Clauses in the new

program are ordered first according to the order of the

" Commercial Prologs are highly optimized, and clauses in the initial program to which they correspond
hence the initial problem solver has a fairly low (since this ordering may represent important control
overhead. This encourages careful experimenta- information), and then according to the ordering of
tion, and also means that comparisons of perfor- control rules.
mance before and after learning are a reasonable No simplification or compression is done.
test of the overall effectiveness of learning. Retaining the original clauses when some control de-

" Many different problem solving strategies (for ex- cisions are unexplained means that some performance
aple staesaent e problem soldinsttec six- improvement can be gained even if control rules canample, state space search, problem decomposi-. nyb ere o oeclueslcindcsos

tion, means-end analysis, etc.) can be easily only be learned for some clause selection decisions.
coded as Prolog programs in such a way that This makes the learning system less brittle; however,
learning clause selection rules significantly iiii it also means that some backtracking may still be done

prnig cmae. in the learned program. This is the motive for discard-
ing the original clauses when all control decisions have

Our learning testbed consists of two routines. The been explained, and requiring that learned control de-
first is a critic which analyzes a set of Prolog traces and cisions are not backtracked over; otherwise, in back-
extracts examples of correct and incorrect clause selec- tracking, all of the solutions considered by the original
tion decisions. A correct decision is any decision which program would still have to be examined and rejected,
leads to a solution; an incorrect decision is any decision limiting the degree to which performance can be im-
which is eventually retracted by Prolog's backtracking proved. However, discarding clauses also means that
strategy. Along with each correct decision, a proof of the learned program may fail on problems which are
its correctness is recorded. The theory used to derive solvable by the initial program. Wben this happens
this proof is very simple: it merely contains the clauses the original program is invoked or the top-level goal.
of the initial program as axioms, and also an axiom of Thus, in spite of using approximate cUlAtul rules and
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committed choice control decisions, the learned pro- near-optimal sample complexity (Cohen, 1989].
gram always solves at least as many problems as the Approximating abductive EEL (AxA-EBL):
original program did. Approximating abductive EBL works exactly like A-

EBL, except that the candidate pool consists of all
3 The learning algorithms k-bounded approzimations to a rule generated by ap-

plying EBG to some correct control decision. A k-
Three learning algorithms were experimentally corn- bounded approximation is formed by dropping all but
pared. The first two are strawmen, corresponding to j conditions from the body of the rule, for some j : k.
a conventional EBL control-rule learning system, and A k-bounded approximation rule will have low
to an extended EBL learning system which uses in- match cost, unless the operational conditions are ex-
ductive learning techniques to improve coverage, but pensive to test. For example, if the truth of op-
which ignores match cost. The third algorithm uses erational conditions is tested by database lookup in
inductive techniques to search a space of approximate a database of n facts, then the match cost of a k-
rules, and is the main focus of this research. bounded approximation is O(nk).

One important difference between these algorithms AxA-EBL is more computationally expensive than
and conventional control-rule learning algorithms is EBL; it runs ii, time polynomial in the total size of the
that they are non-incrementaL Each learning algo- proofs of the control decisions, but exponential in k.
rithm takes as input a set of examples of correct and Hence, only small values of k can be used. In the cur-
incorrect control decisions, which are generated by ap- rent implementation, two techniques are used to prune
plying the critic to a large set of traces, the search space of approximate rules: Prolog mode

Stand& rd EBL (EBL): Standard EBL starts with declaratiuns are used to eliminate ill-formed approxi-
an empty ist of control rules, and examines each cor- mations, and an admissible heuristic search is used to
rect contro decision in the order in which they were find the optimal rule from the candidate pool. These
made. If there are no existing control rules which ac- tricks substantially reduce learning time; the current
count for the decision, then EBG is applied to the implementation of AxA-EBL takes an average of 15.5
proof of the correctness of the control decision, and CPU minutes on a Sun/4 to process 120 traces from
the resulting rule is added to the end of the list of the STRIPS robot-world domain described below. (It
learned control rules.2  takes about 20 minutes to solve the 120 problems using

Standard EBL is a batch simulation of a SOAR- the original means-ends analysis planner.)
like incremental learning system which uses a learned A-EBL is also computationally expensive, but for a
clause selection rule if one is available, and which oth- different reason: to find the optimal rule in the candi-
erwise first uses search to determine the right clause, date pool, each candidate must be tested against every
then forms a clause selection rule which summarizes control decision. This is very expensive if rules have a
the results of the search process. high match cost.

Abductive EBL (A-EBL): Abductive EBL also Standrd EBL, A-EBL, and AxA-EBL share two
starts with an empty list -)f control rules, but repeat- properties which appear to be crucial for success on
edly adds to the end oi the list the control rule R this learning task. First, all three algorithms can be
which a) is consistent, i.e., does not explain any in- constrained to produce rules which contain only oper-
correct control decisions, and b) i -,.dmizes the ratio ational features. Second, like standard EBL, both A-
of the number of unexplained decisions explained by EBL and AxA-EBL usually learn several control rules
R to the size of R.3 R is chosen from a candidate which determine when a particular clause should be
pool of rules which consists of all rules which could be selected: in other words, the concept of "usefulness"
generated by applying EBG to some correct control for each clause can be disjunctively defined. The latter
decision, property is important because many Prolog programs

The main loop in the A-EBL algorithm implements contain clauses which are useful in several different
a g-eedy set cover of the control decisions; in other situations. Usually, several control rules, interpreted
words, A-EBL looks for a minimal-size set of control disjunctively, will be needed to determine when such
rules to explain all the control decisions. The greedy a clause is useful.
set cover technique has also I een used in Haussler's A-EBL and AxA-EBL differ in these respects from
algorithm for learning disjunctive boolean formulae. other inductive extensions to EBL, in particular
A-EBL has been used with some success on induc- mEBG and IOE [Flann and Dietterich, 19891.
tive learning tasks (Cohen, 1989; Cohen, 1990]. Its
main advantage over standard EBL techniquer for such 4 Experimental results
tasks is that it can be used even on an "abductive"
domain theory - one which generates multiple incon- 4.1 Description of the domains
sistent explanations. A-EBL has been shown to sat-
isfy Valiant's criterion of pac-learnability, and to have Exper" "-entation has been done with these three

learning algorithms in several domains. The domains
2Experimental studies [Shavlik, 1987] suggest that this are summarized in Table 1.

ordering is most beneficial. pLEX: A simplified version of symbolic integration3The )f a rule is defined to be the number of nodes using state-space search with iterative deepening. The
in the ex; ition structure used to form the rule. training and test problem sets and the operator set are
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Table 1: Summary of domains used in experiments

Domain Description Search Number of Training Set Test Set
__ 1 Strategy Operators Sizes Size

.aLEX simplified LEX state-space 36 4,8,12,16,19 1
RW STRIPS robot world means-ends 10 5,15,25,45,80,120 50
BW Niisson blocks world means-ends 4 5,15,25,45,80,120 100
GRID graph search depth-first 3 5,10,15,25 100

taken from [Keller, 1987]. selected; in jaLEX, the test problems were the desig-
RW: The STRIPS robot world of [Fikes et al., 1972], nated test problems in [Keller, 1987] (problem sets AT

with a means-ends analysis planner. Problems for the and BT.) Then a training set was selected, again ran-
training and test set are generated by selecting a floor- domly for BW, RW and GRID, and from the desig-
plan randomly from the three given in [Minton, 1988], nated training problems (problems sets A and B) for
randomly placing 3 blocks and the robot, and then tak- aLEX. Progressively larger subsets of the training set
ing a random walk of bounded length in state space. were then given to each learning system, again as in-

BW: The blocks world of [Nilsson, 1987], with the dicated in table 1, and the control rules learned from
identical means-ends analysis planner. Problems are each subset were applied to the problems in the test
generated by constructing an initial scene with 20 ran- set. Two statistics were kept. First, the total time re-
domly placed blocks, and then taking a random walk quired to solve all of the test problems was recorded.
of bounded length in state space. The second statistic kept was the coverage of the set of

GRID: Depth-bounded depth-first search of an ar- control rules: the percentage of the test problems that
tificial graph. The graph is a 15x15 grid, with 75 the learner program solved directly, without recourse
randomly placed obstacles, and 5 randomly placed to the original program.4 These experiments were re-
"cities", which are tightly connected by a network of peated ten times, and the results were averaged. In
five "interstate highways". There are three kinds of BW, RW and GRID, each trial used a different ran-
operationally different connections in the graph, cor- domly selected training set; in .aLEX, each trial used
responding to increasing or decreasing the value of a a different ordering of the fixed training set.
coordinate by 1 or followir," an "interstate". Problems Approximations in the domains were chosen by in-
are selected by randomly picking start and end points, crementing k until either some performance improve-
and asking for a path between the points. ment occurred, or until the cost of running AxA-EBL

BW and RW problems can be quite difficult, so the became excessive. One of the surprises of these ex-
planner includes two resource bounds: first, a bound periments was the expressiveness of a language of very
on the maximal length of the plan, and second, a time short approximations: in all of the domains except
bound. The time bound was set at 60 seconds for these GRID, substantial performance improvement occurred
experiments: almost all of the blocks world problems using AxA-EBL with k < 2.
and about 6/7 of the robot world problems were solv- The results of these experiments are sumr .. _, ia
able in this time bound. table 2. The crucial column of table 2 is the last one,

The domains are listed roughly in order of their diffi- which shows the ratio of the time spent by the program
culty for standard EBL techniques. For instance, sym- learned by AxA-EBL in solving the problems of the
bolic integration is well suited to use of EBL for opera- test set to the time spent by the program learned by
tor selection; however, unconstrained use of EBL in the EBL. AxA-EBL is marginally slower than EBL on the
blocks world domain can lead to swamping [Minton, FLEX domain, and substantially faster on the remain-
1988; Mooney, 1989]. Graph searching is a very diffi- ing domains; overall, the programs learned by AxA-
cr:Jt problem for standard EBL techniques because the EBL are about twice as fast as the programs learned
match cost of learned rules is very high, and the cost by EBL.
of problem solving without any learned rules is low; The results of the experiment are given in more de-
matching the rules learned by EBL is equivalent to tail Figure 1 and Figure 2. These figures graph the
solving the NP-complete subgraph isomorphism prob- average time spent by a learned program, and also the
tem LIVMIntoli, 1988j, whereas depth-fir st search onlly aV L&. C.... ... t; fth U L I 4-uLtdik(.., LIr pex-

requires time linear in the size of the graph. centage of the time that it was not necessary to go back
and use the original program to solve a problem) as a

4.2 Comparison of EBL and AxA-EBL function of the number of training examples given.
A series of experiments were designed to determine The three learning techniques behaved essentially

how the performance of a learned program varied as 4Recall that the program which incorporates the learned
a function of the number of training examples used in control rules may fail if not enough control rules have been
learning. In each experiment, first a test set, of the learr.ed, or if some of the control rules are incorrect. If the
size indicated in table 1, was selected. In the case of program fails, then the original problem solver is invoked
BW, RW and GRID, the test problems were randomly on the problem.
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Table 2: Summary of experimental results

Domain Average Time on Test Problems IfAxA-EB
1 Nolearn I EBL I A-EBL [ AxA-EBL EBL

/4LEX 2.019 0.103 0.103 0.104 1.01
RW 9.956 2.768 0.922 1.596 0.58
BW 3.150 2.553 4.774 0.987 0.39
GRID 0.137 0.361 0.423 0.268 0.74

Average 4.32 1.447 1.555 073 0.51

identically on the 14LEX domain. This domain is not knowledge against a benchmark. This would be pro-
very informative for the purpose of comparing the hibitively expensive in a real-world domain. Ellman
techniques: it is included in this paper as an addi- [Ellman, 1988], Tadepalli [Tadepalli, 1989] and Chien
tional demonstration of the generality of AxA-EBL. [Chien, 1989] have also investigated explanation based

In the GRID domain, AxA-EBL starts out with a learning of approximate theories. The search tech-
very bad set of control rules - one which usually leads niques described by these authors improve on Keller's
the problem solver on a wild goose chase across the by taking advantage of a partial order on approximate
graph - but then quickly recovers. In all ten 1ri- theories; however, they have not been applied to the
als, AxA-EBL converges to the same program; the problem of learning control rules.
programs learned by EBL and A-EBL are still get- Approximations to EBL rules have also been investi-
ting progressively slower. Unfortunately, the program gated in [Chase et al., 1989] in the context of the ULS
learned by AxA-EBL is still slower than the original system. The approximations done in ULS are not,
program. This indicates that some additional utility however, selected by an inductive learning mechanism;
analysis may be necessary, even when approximations as a consequence, ULS is limited to conservative ap-
are used. proximations (e.g., dropping one or two conditions).

In the RW and BW domains, AxA-EBL outperforms ULS nonetheless has made modest improvements in
EBL by wide margins. Suprisingly, A-EBL does some- planning time in the RW domain.
what better than AxA-EBL in the RW domain. We The use of k-bounded approximations is one way
interpret this result as follows. The coverage graphs of bounding the cost of learned rules. An alternative
show that although AxA-EBL generates control rules approach is described by Tambe and Rosenbloom in
which have lower match cost than A-EBL, 5 AxA-EBL [Tambe and Rosenbloom, 1989]; they describe a syn-
converges somewhat more slowly; this is probably the tactic constraint on SOAR programs which ensures
price of searching through a much larger space of pos- that chunks have match cost linear in their length.
sible control rules. In short, AzA-EBL trades off con- A corresponding constraint can be imposed on EBL
vergence speed for lower match cost in the planning rules; it is easy to see that requiring every operational
domains. This unfortunately leads to a performance predicate to have at most one solution will lead to
tradeoff: if matching rules is cheap and problem solv- EBL rules which can be matched in linear time. An
ing is expensive, as in the RW domain, then faster advantage to linear-time restricted EBL is that special-
convergence will offset the poorer quality of the rules, purpose inductive techniques are not needed to search
and A-EBL will produce faster programs. for correct rules; the standard incremental learning al-

gorithm can be used.
5 Related work In order to satisfy the constraint that every opera-
Use of approximations in learning control knowledge tional predicate has at most one solution, it is typically
was investigated in the MetaLEX project [Keller, necessary to change the operationality predicate. In
1987]. The techniques used in MetaLEX, however, the planning domains, for instance, it is sufficient to
were specific to state-space search, and required pe- modify the operationality predicate so that the holds
riodic testing of programs including learned control predicate, which determines if a condition is true in

a state, is marked as non-operational. Using the new
6This is obvious in the blocks world domain, since AxA- operationality predicate, control rules learned by EBL

EBL's control rules outperform A-EBL's control rules even are expressed in terinis uf ,cunsiraiutL oil welli.:iAs Uf
though their coverage is usually worse. It is a little more the list structure used to represent a state, rather
difficult to verify in the RW domain. One way to con- than constraints on the conditions that are true or
trol for the effect of coverage is to compare only sets of false in that state. Changing the operationality pred-
control rules with equal coverage; this comparison shows icate in this way closely corresponds to Tambe and
that AxA-EBL control rules are about 12% faster than Rosenbloom's suggestion of replacing multi-attributes
A-EBL control rules with equivalent coverage. Another in-
dication that the AxA-EBL control rules are faster is that in SOAR programs with list-processing utilities.
the best control rules learned by AxA-EBL outperform the Figure 3 shows tile result of using linear-time re-
best control rules learned by A-EBL, requiring 1.5 seconds stricted EBL (LR-EBL) in the BW and RW domain.
versus 12.9 seconds to solve the 50 problems in the test set. This experiment points out a disadvantage of the tech-
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nique: learned rules tend to be very specific, and hence rules learned by standard EBL in several domains; the
do not often transfer to new situations. As a conse- average improvement is about a factor of two over the
quence, there is little or no performance improvement domains that have been studied.
on a test set of novel problems; and so in both domains, Several open problems remain. First, the techniques
performance improvement was far less than that at- used are non-incremental; it would be desirable if
tained by AxA-EBL. In the RW domain, a modest learning could take place concurrently with problem-
15-20% improvement gain was achieved, whereas AxA- solving, rather than as a separate pass. Second, the
EBL improved performance by over 80%; in the BW current implementation of AxA-EBL must, for reasons
domain, performance was degraded slightly, whereas of computational complexity, use a very small and con-
AxA-EBL improved performance by 65%.6 straining set of approximations; it would be desirable

to use a larger set of approximations. Third, one cost
6 Conclusions of learning approximate control rules seems to be a

slower convergence rate, relative to simpler learning
The utility of a rule is its contribution to performance systems. It would be desirable if this tradeoff could be
improvement; utility is directly proportional to the lessened or avoided.
coverage of a rule and inversely proportional to the
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Abstract This is an instance of the intractable theory problem
(Mitchell, Keller,& Kedar-Cabelli 1986; Tadepalli,

In many domains it is computationally in- 1989). The problem arises in these domains because
tractable to apply EBL to learn knowledge of the resulting complexity of two steps in the EBL
that is operational, complete and correct. method: (a) constructing a complete proof and (b)
Current approaches to solving this prob- extracting a correct and operational sufficient con-
lem exploit the trade-off between correct- dition from the proof.
ness and operationality, and introduce ap-
proximations to learn operational but in- Generating the proof is intractable. In opti-
correct knowledge. In this paper we intro- mization problems, to prove that the best possi-
duce an alternative approach that exploits ble goal has been achieved requires demonstrat-
the trade-off between completeness and op- ing that all other options lead to a result of
erationality to learn knowledge that is both lower value. In games, in addition to optimiz-
operational and correct, but incomplete, ing the goal achieved, we must also demonstrate
since it only covers a subset of the origi- that the goal will be achieved under all possible
nal domain. We employ a "boot-strapping" defensive actions by the opponent. Hence, in
approach to incrementally increase cover- the worst case, proving that a goal is achieved
age of the domain by using the knowl- requires exploring an exponential number of ac-
edge learned from small problems to sim- tions (in the depth of the proof).
plify learning from more complex problems. Analyzing the explanation is intractable. The
Correct knowledge is learned by employ- goal of this analysis step is to extract a suffi-
ing a second order theory of goal achieve- cient condition from the proof that is both op-
men to construct abstract proofs that are erational and correct. This is difficult in the
usetul for learning. These proofs are com- domains of interest because there is a strong
piled into operational form by employing tradeoff between correctness and operationality.
simplifying assumptions. The advantage By operational, we mean that the sufficient con-
of this approach is that learned knowledge dition must be directly evaluable in the current
is guaranteed to be correct if the simplify- situation. Hence the operator applications in
ing assumptions made during learning hold the proof must be excluded from the sufficient
during problem solving. We illustrate the condition. When the proof only includes ex-
method in two-person games and present istentially quantified operators this is straight
preliminary results in Quinlan's lost-in-n- forward (Hlirsh, 1987). lHowever, the proofs we
ply classification problem (1983). are considering include universal quantification

over operators. There is no simple solution to

I Introduction this problem (such as treating the V as an "and"
node) since the quantification is over all possi-

In optimization and 2 person game domains it is ble operators not just those that occurred in the
computationally intractable to apply EBL to learn particular example.
knowledge that is operational, correct and complete. The principal appr.... to so,",;g this problem

*I am grateful to my advisor, Ton Dietterich, for his has been to exploit the trade-off between correct-
advice and encouragement, and to Prasad Tadepalli for ness and efficiency and introduce approximations
many interesting discussions and useful comments on a to learn incorrect but efficient knowledge (Ellman,
draft of this paper. 1988; Chien, 1989; Tadepalli, 1989). In Tadepalli
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(1989), approximations are introduced by analyz- tions from proofs. The first problem-constructing
ing only incomplete proofs, while in Ellman (1988), the proof-is discussed later.
approximations are introduced by simplifying the Before we describe our approach to solving this
initial domain theory. These systems have demon- problem, it is instructive to consider why it is diffi-
strated the usefulness of the approach in many do- cult to extract an operational and correct sufficient
mains including planning, chess end games, schedul- condition from the proofs constructed by min-max
ing and hearts. However, one problem with these (or a-3) search. Consider, for example, the following
approaches is that the knowledge learned is incorrect min-max proof that the maximizing player, denoted
and will produce errors when applied in the perfor- +, has achieved an advantageous goal G in S in 2
mance task. Moreover, because of the way the errors ply:
are introduced, the system does not know the condi- (0) achieve(G,S,-,2)
tions under which the compiled knowledge is correct V Op, 30 p+, G(do(Op+,do(Op_,S)))
and is therefore unable to determine if an answei This rule can be read as "The maximizing playerprovided is correct. Ti uecnb eda qh aiiigpae

In this paper we present an alternative approach can achieve goal G in S in two ply because for allto learning in intractable domains. Rather then the minimizing player's moves (denoted Op-) theretolearnnginintroduce iatile mapy Ratrctn exists a move for the maximizing player (denotedintroduce approximations, we apply abstractions Op+) that results in G being true." Note that we
and simplifications to learn correct but incomplete use that resuls ncbing tr oeat we
knowledge. The knowledge learned is incomplete use a situation calculus encoding for operators where
because it only applies to a subset of the complete S denotes the initial situation and do(Op,S) denotes
domain. However, the knowledge is guaranteed to the situation following the application of the opera-
be correct for that sub-domain if the simplifying as- In order for the sufficient condition of this proof
sumptions made during learning hold for that sub- to be operational it must only test properties of
domain. Examples of simplifying assumptions in- the initial situation S. Therefore, since this proof
clude assuming that only a limited number of do- currently tests properties of a future situation (in
main objects are in the problem situation. G(do(Op+,do(Op,S)))), we must replace this form

The idea is to progressively cover the domain by with some equivalent (or sufficient) condition that
learning correct knowledge for the simple cases first, only tests properties of S. If both the operators
then employing this knowledge to simplify the learn- only tcst erties ofaS.iif th the opetsing askformor copliatedcass. his"bot.- were existentially quantified, this could be achieved
ing task for more complicated cases. This "boot- within the situation calculus framework by sim-
strapping" approach relies on a transfer of learned ply unfolding G(do(Op+,do(Op_,S))) until it ter-
knowledge from simple cases to complex cases. The minated in literals that were true in S. The suffi-
performance task will continue to make errors when- cient condition would then be the leaves of this proof
ever the computational resources available are insuf- (Hirsh 1987). However, this technique only applies
ficient to solve a given problem. However, as more when we have existential quantification, and if we
of the problem instances are solved using the more
efficient learned knowledge, the overall number of apply it in (0) we will produce a sufficient conditionerrors made by the system should decline, that is over-general and therefore incorrect.

We present a new approach based on constructing
We illustrate our approach applied to two person alternative proofs that are more useful for learning.

games. In particular, we present preliminary results We construct these proofs by employing an abstract
applying the approach to a classification problem in second-order theory that defines how goals can be
a sub-domain of chess: Quinlan's lost-in-n-ply prob- achieved in terms of influence relations among op-
lem (Quinlan, 1983). erators, goals and situations. There are 3 primitive

The remainder of this paper is structured as fol- influence relations:im
lows: First, we detail our approach in a domain in-
dependent way. Second, we define Quinlan's lost- (1) q(As.G(s),Op, S) 4' -G(S) A G(do(Op,S))
in-n-ply problem. Third, we describe the method (2) 6(As.G(s),Op, S) -* G(S) A -,G(do(Op, S))
in detail applied to learning in lost-in-2-ply. Fourth, (3) p(As.G(s), Op, S) t* G(S) A G(do(Op, S))
we present preliminary empirical results for this sub- where q(G, Op, S) can be read as "if Op is applied in
domain. Fifth, we discuss related work. Finally, we S then goal G will be made true," 6(G, Op,S) can
conclude with a discussion of the current limitations be read as "if Op is applied in S then goal G will
of the approach and future work aimed at overcom- be made false," while p(G, Op, S) can be read as "if
ing those limitations. Op is applied in S then goal G will be maintained

true." Note the use of lambda binding for situations
2 Approach in the goals. This notation is employed because the

relations are second order: they take a goal as an
This discussion of our approach emphasizes the sec- argument and evaluate it in two different situations,
ond of the two problems with intractable domains: in the initial situation S and in the situation fol-
extracting correct and operational sufficient condi- lowing the 'operator application do(Op, S). We call
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these primitives influence relations because they de- A3Op+, ii(As.G 2 (s),Op+, S),
fine the ways in which the application of operators A-30p_, 6(Asi.3Op+, r7(As 2 .Gi (s2), Op+, sI), Op_, S),
affect the truth of goals. Note that the goals need A 6(Asi.3Op+, i(As 2 .G2(s 2),Op+,sl),Op-,S)
not be simple literals in the domain theory like in This rule is the familiar notion of a fork-when there
the STRIPS encoding of domains, but may be arbi- is a double threat (first two conjuncts) and the oppo-
trarily complex expressions. nent cannot simultaneously prevent both treats (last

With these primitives, we can construct axioms conjunct). In general, these rules provide a space of
that define how goals can be achieved through the possible proofs for goal achievement in counter plan-
application of operators. For example, the axiom ning situations.
below states the conditions under which a goal G is The important characteristic of these proofs which
achieved when it is -'s turn to play in situation S: makes them suitable for learning is that they don't

(4) achieve(As.G(s), S,+, 1) * explicitly test properties of future situations. The
G(S) A 3Op+,--,6(As.G(s),Op+, S) only situation included in any of the literals in the

V -G(S) A 3 Op+, q(As.G(s),Op+, S) proof is S, the initial situation. Hence, we can ex-

There are two cases: either G is already true and tract a sufficient condition from these proofs that
the operator does not affect it, or G is false and the only tests properties of the initial situation. How-
operator makes the goal true. This rule can be used ever, we still do not have an "operational" suf-
in counter planning situations to prove that G has ficient condition because during match, we must
been achieved when G is an advantageous goal for evaluate nested and universally quantified influence
+. However, for complete counter planning we need relations-a computationally expensive task. In-
to define the other case-when an advantageous goal deed, it appears that we have gained little by con-
is achieved following the opponent's (denoted -) turn structing the alternative proof. However, the alter-

to play: native proofs differ from the min-max proofs in that
the operators are not completely unconstrained-we

(5) achieve(As.G(s), S,-, 1) 4* need only consider relevant operators that affect the
G(S) A VOp_,-6(As.G(s),Op_, S) goals according to the influence relations included

V -,G(S) A VOp_, q(As.G(s),Op-, S) in the proof. In compiling the alternative proof for

This axiom is basically the same as (4) but includes fork above we need only consider operators of- that
universal quantification over the operators. These prevent + from achieving each of the two goals.
axioms can in turn be used to produce proofs of We introduce a new approach to compiling these
goal achievement for any depth of ply by composing sufficient conditions that produces a simple pattern
the two axioms. For example, the composition for of features that can be efficiently tested in the ini-
achieving G in 2 ply when the opponent is first to tial situation. The approach exploits the simplifying
move is: assumptions mentioned earlier to reduce the com-

achieve(As.G(s), S,-, 2) 4= plexity of the computation. These simplifications
achieve(As.achieve(As2 .G( 2 ),sl,, 1),S,-,1) are constraints on the situation S such as restric-

tions on the number, geometrical arrangement, or
We can produce proofs of goal achievement written properties of objects in S.
in terms of the influence relations by unfolding the This concludes our description of the general ap-
different cases of axioms (4) and (5). For example, proach. We now describe an application domain
the rule below is constructed by selecting the second (Quinlan's lost-in-n-ply) and illustrate the method
case of (4) and combining it with the first case of in detail.
(5):
achieve(As.G(s),S,-,2) 4= 3 Domain: Quinlan's lost-in-n-ply
A-3 Op_, (As. 3Op+, (As2 .G(s2),Op+,sl),O_,5) Quinlan's lost-in-n-ply domain is a sub-domain ofchess with only 4 pieces: knight and king against
This rule can be read as: "+ achieves goal G in S in rook and king. The performance task is one of
2 ply because + is threatening to achieve the goal classification-given a position, determine if it is
in 1 ply and the opponent cannot interfere." The lost-in-n-ply for the knight side, where a loss is
first conjunct in the rule describes the threat of + defined as 'the capture of the knight (without re-
achieving G, while the second conjunct describes -s capture of the rook) or check-mate. Although this
inability to prevent + from achieving G. domain is much simpler than full chess, it can

Other, more complicated rules can likewise be con- present quite a challenge even to the master-rated
structed for deeper ply, or for more than one goal. player (Kopec & Niblett, 1980). This is a large do-
For example, the following rule proves that one of main that includes over 11 million legal knight-side-
two maximizing goals is achieved in 2 ply: to-move positions and 9 million rook-side-to-move

achieve(As.[G1 (s) V G2 (s)], S,-, 2) 4= positions. In general, about half of the rook-side-to-
30p+, q(As.G(s),Op+, S), move positions and one fifth of the knight-side-to-
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staidel state2 state

Figure 1: Three problem instances from lost-in-2-ply, black to play, white to win

legal-move(S, do(Op,S),Side) # lost(SSide) -#
pseudo-move( Op, S, Side), kn.l(S,Side)

A -,in-ch eck(do(Op, S),Side) V check-mate(S, Side)

pseudo-move(op(FSq, TSq, [Type, Side], empty),S, Side) check-mate(S, Side) 4
on(S, FSq,[ Type,Side]), in.check(S, Side),

A legal-direction(Type,Dir), A V Op, pseudo-move(Op, S, Side) =
A reachable(S, FSq, TSq, Type, Dir), in-check(do(Op,S), Side)
A on(S,TSq,empty)

Table 1: Selected axioms from the chess domain theory

move positions are losses for the knight side. How- We illustrate selected lost-in-2-ply positions in
ever, many of these losing positions are lost within Figure 1 and illustrate selected axioms from the
small search horizons (i.e., small values of n). Below chess domain theory in Table 1.
we give a break down of the percentage of positions
that are lost-in-n-ply for small values of n: 4 Method

Search depth Total count of Percentage of The learning method is applied whenever the current
n lost positions total lost positions decision tree fails to classify a give problem instance.
1 3.03 x 101 58.0 % The method has three stages: (1) produce a proof of
2 0.76 x 106 15.0 % goal achievement, (2) produce an operational suffi-
3 0.37 x 106 7.0 % cient condition from the proof and (3) integrate this

sufficient condition into the decision tree. We il-
We apply our learning approach to this problem by lustrate the method learning from problem instance
learning the simple cases (small values of n) first and statel in Figure 1.
then learning the more complicated cases. The sim-
plifying assumption we employ is that all situations 4.1 Produce a proof of goal achievement
contain only the four playing pieces.

In the remainder of the paper we illustrate the The goal of this stage is to produce a proof of lost-
method solving the following problem: in-2-ply using the abstract theory and the domain

Gie:thor f...r ches. Currently, the imp~em".tation con-Given; ...... .... .........
structs this proof by first constructing a min-max

" A simple declarative encoding of chess legal search tree then reconstructing a proof of lost-in-2-
moves and goals. ply using axioms from the abstract theory. This re-

" Randomly drawn positive examples of lost-in- construction process is constrained by the min-max
n-ply for some n. search tree in a manner similar to Minton's EBS pro-

Find: cess (Minton, 1988). In the final section of the paper
we discuss an alternative approach that avoids first

* A small decision tree that efficiently and cor- constructing the min-max search tree. The proof
rectly classifies lost-in-n-ply positions. produced is given below:
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Figure 2: Compiling b(As.in-check(s),OplS)

achieve(As.lost-in-2-ply(s), S, -, 2) A on(S, SqN,[knight, black]),
in-check(S), A openline(S,SqR,SqN, Dir),

A3 Op+, ( (As.kn-l(s), Op+, S), A legal-direction(rook,Dir)
A-30p_6(Asi.30p+,j(As 2 .kn-I(s2),Op+,si),Op_., S), This feature is true in a situation S when the white

A b(As.in-check(s),Op-, S) rook is on SqR, the black knight is on square SqN
This proof can be read as: "Black is lost in 2 ply and there exists line of empty squares between SqR
because the black king is in check, white can cap- and SqN along direction Dir such that Dir is a legal
ture black's knight and both black's goals of pre- direction for the rook.
venting the check threat and preventing the knight This results in the following sufficient condition:
from being captured cannot be achieved." The in- achieve(As.lost-in-2-ply(s), S, -, 2) ,4=
check constraints arise from applying the following white-rook.attacks-knighl(S),
additional axiom from the abstract theory to the Awhite-rook-checks-king(S),
-,in-check(do(Op, S),black) constraint in the defini- A3Op_,b(As.3Op+, (As2.kn-I(s2),Op+, s),OP-, S),
tion of legal-move in Table 1. The axiom states the A 6(As.in0check(s),Op_,OS)
conditions under which a goal G is guaranteed to be
false following an operator (Op) application: The more challenging task for the compiler is to com-

pile the influence constraint over Op- into features.
"G(do(Op, S)) * The system first re-expresses the form as universals:G(S) A30p, 6(As.G(s),Op, S)

V -.G(S) A 3 Op, q'v(As.G(s), Op, S) VOp1, VOp2,6(As1 .: Op+ir(As2 .kn-l(s2 ) Op+,s),Op lS),
A 6(As.in-check(s),Op2, S) =.

4.2 Produce an operational sufficient OPI 0 P2
condition The universals reveal the problem with compil-

The goal of this stage i3 to find a sufficient condi- ing this form-we must consider all possible Opi's
tion of this proof that is efficient to evaluate. The and Op2 's in the influence relations. To simplify this
target form is a small disjunction of conjunctions of process, we exploit all the constraints that apply to
features, where a feature is defined as a conjunction S including contextual constraints and simplifying
of "operational" (i.e., directly evaluable) literals. assumptions. First, we know that both white-rook-

The first two forms in the proof are easy to com- attacks-knight(S) and white-rook-checks-king(S) are
pile. Each one is used to define a new feature by true in S. Second, we apply the simplifying assump-
extracting its sufficient condition from the example tion and assume that the 4 pieces (black knight and
bituatiua. Thlie 2 +, i(A'. kt-ib) ,Op..., S

) bIeULIUb u kll g, Wiite fn LuIU dlhi16 arc ai Lil tt, U.Ub that

the white-rook-attacks-knight(S) feature defined1 : ever occur in S.
white-rook-attacks-knight(S) <* Given these constraints we first compile the indi-

on(S, SqR,[rook, white]), vidual influence relations. In order to understandhow this can be achieved, it is useful to review the

1The system simply generates "geasyni" names for definition of the influence primitives defined pre-
the features, I have used intuitive names to assist viously. Given a situation S in which G is true,
understanding. 6(As. G(s), Op,S) must generate operators that when
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make-false(In_check,Opl,S)

ci0.

x x

X X

Figure 3: Compiling V~p, V 2 , 6 s.G(s), Op, S) A 6( s.G2 (s), @ 2, S) = Oi 5 0p2

applied in S make G false. If we were working in a unify each operator in set (1) with each operator
domain where the goals are simple literals directly in set (2) and retain those that are consistent. This
modified by the operators (i.e., the goals are literals process- is illustrated in Figure 3.
in the add and delete lists), computing make-false To generate the sufficient condition we first define
would be easy; we simply identify those operators features from the resulting patterns (in Figure 3),
that have G both in the delete list and pre=3ndition, then negate the features (since the intersection of
However, this process is more complicated when G the operators must be empty). Simplifying the result
is some derived property of the situation. produces the following operational sufficient condi-

We employ an eager partial evaluation technique tion:
that generates all possible operators in S symbol- achieve()As.lost-in-2-ply(s), S, -, 2) .€=

ically and determines those that result in G be- [ whit e-rook-altacks-knighi(S),
ing false. The result of this analysis for 6(A s.in- A white-rook-checks-king(S),
check(s), Opl,S) is illustrated graphically in Fig- A black-king-attacks-rook(S),
ure 2. Note that the technique produces 4 sets of op- A white-king-protects-rook(S)]
erators: (la) where the black knight takes the rook, V[ white-rook-attacks-knight(S),
(lb) where the black king moves out of check, (lc) A white-rook-checks-king(S),
where the king takes the rook, and (ld) where the A -, black-king-attacks-rook(S)]
knight blocks the check. Note that additional con-
straints are introduced to ensure that the goal will 4.3 Update the classification procedure
be false following the operator application. When The final stage of learning is to update the current
moving the king out of check, the direction must decision tree. This is achieved by employing an in-
not be along the line of the check, nor must either cremental version ofl1D3 such as ID5 (Utgoff, 1988).
the rook or the white king be in a position to check The final decision tree produced for lost-in-2-ply is
the black king in its destination square, illustrated in Figure 4 (the new subtree is circled on

Applying the technique to the 6(A si.30p+o(A s2 . the left).
kn-l(s2) ,Op+, si), Op2,S) similarly yields 3 sets of
operators: (o._ , ... o... bak kn'ght moe ou f 5 An evaluatlon~ ;ru ,,_;~~l.o ...
the way, (2b) where the black king takes the rook
and (2c) where the knight takes the rook. Again, We consider three evaluation criteria, two that eval-
additional constraints are included so that the goal uate the performance component and one that eval-
is false following the operator application. uates the learning method. To evaluate the perfor-

The final stage of compiling this expression into mnecmoetw osdr()terltosi
features is to eliminate the VOpi, VOp 2 expression. 2Note that this process produces two cases, one where
To achieve this we do exhaustive case analysis by the knight takes the rook. In fact, this case is impossible
"multiplying out" the two sets of operators. We due to geometry and is eliminated by a later stage.
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Figure 4: The updated decision tree
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Figure 5: Evaluation in lost-in-n-ply. Graph (a) illubLrates the curquiate problem wuiving time as a funeLiut
of the number of examples processed, for fixed n, (b) illustrates the coverage of the decision tree as a function
of the number of examples processed, for fixed n, and (c) illustrates the overall coverage as a function of the
maximum n (search depth) compiled.
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between the problem solving time and the number learns rules that recognize opportunities for achiev-
of training examples processed, and (2) the relation- ing goals via sequences of forced moves. This ap-
ship between the domain coverage of the decision proach was applied successfully to Go-moku and Tic-
tree learned and the number of tra ining examples Tac-Toe. However, it was not satisfactorily applied
processed. To evaluate the learning method we con- to chess or other complex games. One reason for this
sider (3) the relationship between the time spent is that the system employed a very restricted repre-
learning and the proportion of the domain covered sentation language for describing the forcing condi-
by the decision tree. tions underwhich a goal is achieved. It was diffi-

1. Recognition time / Instances processed: cult to represent conditions such as "for all empty

We performed an empirical study for lost-in-n- squares sq, between the my king and the attacking

ply: Let I,, be the set of all positive instances of. piece, there does not exist a piece that can move

lost in exactly n ply. For each n we incremen- into sq." The method was further limited since it
tllys len de cison tre fro rachnd y ncr n- was designed to learn from only one particular kind
tally learn a decision tree from randomly cho- of forced loss-the simple fork.
sen examples from In. Let Tn be a set of 100randomly drawn instances froni 4. After each Tadepali (1989) introduces an approach to learn-
leaningly evn (ine.,anues froI After ecn ing in chess end games based on learning optimisticlearning event (i.e., an update of the decision plans that are incorrect. These are then incremen-
tree) we used the tree to classify those exam- tally refined upon failure. This approach and the
pies in T. During experimentation we recorded tal ried upon aie s ppoh ande
both the cumulative problem solving time and one described here can be viewed as opposite sides
the average time to solve the problems in Tn. of the lazy/eager trade-off. My approach eagerly
In Figure 5(a) we report the cumulative prob- computes all relevant interactions at compile time,
lem solving time for the decision tree3 for each while Tadepalli's approach is lazy, it assumes there

fixed n. The asymptotic results for Tn are given are no interactions between plans. The principal dis-

below: advantage with the lazy approach is that a burden
is placed on the human trainer to correct the errors
introduced by the approximations. My approach

Search depth Average Problem solving time prefers to expend cpu time over human trainer time.
n No Learn I Decision Tree However, there is a danger that learning will become
1 1.2S 5.0m intractable. Ultimately, some mixed strategy may
2 10.0S 1 30.OmS be appropriate.

The Decision Tree column for n = 2 gives the Quinlan (1983) applied the inductive learning al-
relts the ecision e crad in F gorithm ID3 to learn a decision tree for small val-
results for the decision tree illustrated in Fig- ueofnilstn-py.Tswrkdm srad

ure 4.ues of n in lost-in-n-ply. This work demonstrated
ure 4. that successful learning relies critically on the choice

2. Coverage / Instances processed: We re- of instance vocabulary. Quinlan spent a consider-
peated the above experiment, this time record- able-amount of time "hand engineering" sets of fea-
ing the percentage of Ti that are classified by tures for lost-in-2-ply (2 man weeks) and lost-in-3-
the decision tree. These results are included in ply (over 3 man months), and he gave up on lost-in-
Figure 5(b). In Figure 5(c) we give the over- 4-ply. In contrast, the approach here needs no spe-
all coverage for the complete domain under the cial engineering; the chess domain theory provided is
condition that for all i, i < n, lost-in-i-ply has very simple and succinct. Hence, this approach re-
achieved 100 % coverage. duces the need to perform "vocabulary engineering"

3. Learning time / Coverage: In the current to achieve successful learning.

implementation, to learn from a lost-in-n-ply Braudaway and Tong (1989) describe a compila-
example, the system must construct a min-max tion method that is similar to the one described here.
search tree of depth n. Since the complexity The most significant similarity is the use of abstract
of constructing this proof is exponential in n, case analysis to perform the compilation. In the
the learning time grows exponentially as more work described here, the expressions that describe
of the domain is covered and complete coverage sets of operators (such as those operators that move
is impossible. We will return to this issue in the the' king out of check) can be thought of as abstract
f'n cases. Comnilation consists of enumerating all pos-linal discussion section.

sible abstract cases within a sufficient condition and

6 Related Work determining the interactions among them. This pro-
cess is well illustrated in Figure 3. Braudaway and

Minton (1984) introduced an explanation-based Tong use a similar process to compile a declarative
technique for learning plans in games. The method specification of a legal floor plan into an efficient

generator of legal designs. Here, the abstract cases
3Due to the recency of this work, only the n = 1 and are partial solution generators and compilation in-

n = 2 cases have been completed. volves simulating the generators to determine their
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interactions. One principle difference between the Braudaway, W. and Tong, C. (1989). Automated
two works is that in Braudaway and Tong's system, synthesis of constrained geiterators. In Proceed-
the abstract cases arise from an explicit hierarchy of ings of the Eleventh International Joint Confer-
structured objects (such as lines, corners, rectangles ence on Artificial Intelligence, Detroit, Michi-
etc), while- in the work described here, the abstract gan.
cases arise from partially evaluating the influence re- Chien, S. (1989). Using and refining simplifica-
lations. tions: Explanation-based learning of plans in

intractable domains. In Proceedings of the
7 Discussion Eleventh International Joint Conference on Ar-
The evaluation strongly suggests that the method tificial Intelligence.
can be effective. However, there are two princi- Ellman, T. (1988). Approximate theory formation:
pal drawbacks with the current implementation: (a) An explanation-based approach. In Proceedings
the performance task is limited to classification-a of the Seventh International Conference on Ar-
more useful performance task would be to apply the tificial Intelligence, St. Paul, MI.
learned knowledge to actually solve problems (i.e., Hirsh, H. (1987). Explanation-based generalization
play games), and (b) proof construction is still in- in a logic programming environment. In Pro-
tractable. In this section we briefly discuss a solu- in oc proram Inenionment In-
tion to both these problems that is currently under ceedings of the Tenth International Joint Con-
investigation, derence on Artificial Intelligence, Milan.

Both these difficulties stem from the same prob- Kopec, D. and Niblett, T. (1980). How hard is it to
lem: using the abstract theory only to explain prob- play the king-rook king-knight ending? In M.
lem solving and not to construct problem solving. R. Clarke (Ed), Advances in Compt ter Chess.
This approach is understandable initially, since the Minton, S. (1988). Learning effective earch con-
abstract theory is extremely under-constrained when trol knowledge: An explanation-based approach.
used in a wholly backward or top-down manner. Ph.D. Th., Computer Science Department,
However, once learning has complied some of the Carnegie Mellon University, March 1988.
proofs to patterns, a more forward or bottom-up ap- Minton S.(1984). Constraint-based generalization:
proach may be appropriate. For example, state3 in Lin n g game-plaint-pas gee a m-
Figure 1 could be solved effectively bottom-up using Learning game-playing plans from single exam-
the fork rule (given earlier in the Approach section) pies. In Proceedings of the Third International
once white-rook-attacks-knight has been learned from Conference on Artificial Intelligence, Austin,
statel and white-rook-threatens-checkmate has been TX.
learned from state2. Mitchell, T., Keller, R. and Kedar-Cabelli, S. (1986).

By constructing the proof bottom-up we can play Explanation Based Generalization: A Unifying
games by selecting at each turn the operator that View. In Machine Learning, Vol. 1.
leads to the best goal. The bottom-up approach can Quinlan, J., R. (1983). Learning efficient classifica-
also overcome the problem with intractable proof tion procedures and their application to chess
construction, since constructing a proof for lost in end games. In R. S. Michalski, J. G. Carbonell
n + 1 ply can exploit transfer from the already com- & T. M. Mitchell (Eds.), Machine learning: An
piled proofs of lost in i ply, for 1 < i < n. artificial intelligence approach San Mateo, CA:

This paper has reported preliminary results for Morgan Kaufmann.
this new approach. In addition to exploring the use
of the theory for constructing proofs and complet- Tadepalli, P. (1989). Lazy explanation-based learn-
ing the lost-in-n-ply problem, other work in progress ing: A solution to the intractable theory prob-
includes: (1) applying the technique to other sub- lem. In Proceedings of the Eleventh Interna-
domains of chess including some of the standard end- tional Joint Conference on Artificial Intelli-
game databases (Bratko & Michie, 1980), (2) apply- gence, Detroit, MI.
ing the technique to other game domains including Utgoff, P., E. (1988). ID5: An incremental ID3. In
checkers, variants of chess and Go-moku, (3) apply- Proceedings of the Fifth International Confer-
ing the technique to some non-game domains such ence on Machine Learning, pp 107-120.
as such as scheduling, and (4) developing a theory of
the method that formalizes the expected behavior in
terms of-characteristics of the application domain.
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Abstract The three-step approach was implemented in a system
called LISE (Learning in Software Engineering). LISE is
a system using EBL with an incomplete domain theory to

A weakness of EBL is its inability to explain translate informal and non-operational user requirements
when the theory is incomplete. This paper into formal and operational software specifications.
presents a three-step approach to deal with Examples from LISE will be used in this paper to
incomplete theories based on abduction, illustrate the three-step approach.
analogical reasoning and case-based reasoning. LISE was successfully applied to the design of a
Abduction allows us to explain an example in specification for a banking system and a fleet
the context of an incomplete theory, without management system.
modifyinp' the theory. The simple variant of
analogical reasoning used here not only provides 2 The Three-step Approach To Deal
an explanation, but also extends the domain With Incomplete Theories
theory. We show that the overhead imposed by An explanation in EBL is built using rules. The
our method on EBL is acceptable (at most antecedents of the rules are satisfied using facts from the
paper was implemented in a system called LISE training example or using the consequents of other rules.(Lernin imnSoftared Einsytering. LISE When the domain theory is incomplete, rules that would(Learning in Software Engineering). LISE is a be required to complete a particular explanation might-beoperational user requirements into formal and missing. If it is the case, EBL will produce one or manyoperational softwareqspecifications, partial explanations. A partial explanation is anexplanation containing proven and unproven antecedents.

Keywords: Explanation-Based The unproven antecedents are antecedents for which noLearning, Incomplete Theory, facts were found in the training example, and which

Abduction, Analytical Cost Evaluation cannot be proven in the existing domain theory.
An incomplete domain theory is recognized when one

1 Introduction or many partial explanations are produced instead of a
complete explanation. Partial explanations are built using

This paper addresses the problem of learning in the EBL rules which have in their antecedents some predicates in
framework [Mitchell et al. 1986], [DeJong et al. 1986], common with the training example facts. These rules are
[Ellman 1989] with an incomplete domain theory. The used in our approach to build a plausible explanation of
proposed strategy applies three procedures to an the training example.
incomplete explanation in order to plausibly complete it. There are three steps in our approach to deal with-the
The procedures applied are: abduction, analogical incomplete domain theory. The first step starts by
reasoning and case-based reasoning. More specifically, selecting the partial explanation providing the best
when dealing with an incomplete explanation, we are first coverage of the training example. Next, abduction is used
trying to apply abduction to the missing part of the to complete the partial explanation so that a plausible
explanation. If this fails, analogical inference is applied to explanation be produced without having to extend the
complete the explanation, and should this fail to make the domain theory.
explanation complete - case-based reasoning is used. The second step in our approach is applied when the

first step does not work. It starts by selecting the partial
explanation providing the best coverage of the training

t This work was done at the Knowledge Acquisition example. Next, a plausible explanation is created using
Laboratory, University of Ottawa. The three authors are analogical reasoning applied between the unproven
with the Ottawa Machine Learning Group (OMLG).
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antecedents of the partial explanations and the training exist another rule o <- p' which would have been used
example facts. Multiple partial explanations can also be to derive o.
combined in the creation of the plausible explanation. Abduction will be used to complete the best partial
Finally, new rules are extracted from the plausible explanation selected by .our heuristic. Considering the
explanation and added to :de domain theory. training example features as facts, we will attempt to

The third step in iealing with an incomplete domain draw hypotheses from the unproven antecedents using
theory involves -te usage of a case-based system. It will abduction. If hypotheses can be drawn for each unproven
be applied onl if the two previous steps did not work. In antecedent, the partial explanation will be completed.
this step, thr case-based system will retrieve a case and Using the above example of the rule Q <- p and Q, P
adapt it to the training example. The domain theory will would be an unproven antecedent in the partial
not be extended in this step. explanation and o would be a fact given as a training

example feature. If P is the only unproven antecedent, an
2.1 Selecting The Best Partial Explanation hypothesis can be drawn to account for the occurrence of
The abductive and analogical reasoning steps require that Q in the training example, and the partial explanation can
the best partial explanation be selected. We define the best be completed.
partial explanation to be the partial explanation w-ich Abduction is not used to extend the domain theory.
provides the best coverage of the training example The unproven antecedents of the rules used to provide the
according to a heuristic we developed, partial explanations are changed into proven antecedent

The analogical reasoning step may also require that based on the abductive inference. There is no possibility
one or more additional partial explanations be selected that the correctness of the domain theory be jeopardized
when a combination of partial explanations is required to since no new rule is created.
build the plausible explanation. We addressed that
requirement by ranking partial explanations generated for 2.3 Analogical Reasoning To Complete
a specific training example according to a score. The score Partial Explanations
is attributed to each partial explanation based on its The analogical reasoning paradigm in our work consists
coverage of the training example. The heuristic developed of deductive inferences made using goals that are common
to calculate the score is as follows: to features. Two features having a common goal are said

a. reward a partial explanation for each common feature to be analogous. Goals are kept in the domain theory.
it shares with the training example, When using analogical reasoning, a plausible

b. reward concise partial explanations, where explanation is built by first re-using the proven
conciseness is measured in terms of inferences antecedents of the best partial explanation as determined
required to prove a goal (the less inferences in the by the heuristic. Unproven antecedents of the partial
explanation, the more concise it is), explanation are replaced by analogous training example

c. penalize a partial explanation for each of its facts. New rules are extracted from the plausible
unproven leafs, explanation and will be added to the domain theory.

d. penalize a partial explanation for each feature of the On certain occasions, more that one partial explanation
training example that was left unaccounted for, and, might be required to build the plausible explanation. This

e. penalize slightly a partial explanation for eazh is because a single partial explanation might explain
abductive inference that was used in its construction. some features of a training example while leaving out

Our heuristic is based mainly on the syntactic nature other features covered by another partial explanation. Our
of the partial explanations. We are currently investigating approach provides a mean of combining these multiple
the validity of the heuristic from a cognitive science partial explanation into a single plausible explanation.
viewpoint. We anticipate that a semantic measure will be Roughly, the proven antecedents of the partial
appropriate, so that the ranking of partial explanations explanations are re-used and the unproven antecedents are
also takes into account the goals of the users. Such a replaced by analogous training example facts. When
semantic measure will require the use of background partial explanations are combined, it sometimes happens
knowledge in the ranking of the partial explanations. that several unproven antecedents have no analogous

features in the training example. An analysis of the goals
2.2 Abduction To Complete Partial of these unproven antecedents is performed to see if they
Explanations can be substituted or removed.
Abduction is the generation of hypotheses, which, if
true, would explain observed facts [Pople 1973]. More
precisely, if the rule Q <- P and the fact Q are given, then
the desired abductive conclusion is P. , can be
characterized as being an hypothesis because there could
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In LISE, the domain theory represents the specification of
2.4 Case-based Reasoning Applied To an application. In the particular application considered
Training Examples here, the domain theory will be the specification of a

The domain theory contains rules which normally enable banking system.
EBL to explain most positive training examples. The specification of the system is given in terms of
However, some instances of concepts are not readily objects and operations applicable to objects. The objects
explainable using these rules. These instances are represent structural properties of the system. The

exceptions to general rules. These instances would operations represent behavioural properties of the system.
be covered by a small disjunct according to The format of our domain theory is inspired from thenormally bcoeebyasaldsntacoigto Extended Semantic Hierarchy Model (SHM+) described in

[Holte et al. 1989]. They also correspond to the marginals
of [Matwin et al. 19901. The third step of our approach [Brodie et al. 1984).
employs a case-based reasoning system to retrieve The domain theory consists of frames arranged in a
previous cases to apply to training examples which hierarchy and allowing multiple inheritance of properties.
represent exceptions. A previous case is an extension to a Each frame specifies an object or an operation using a set

concept definition provided by the incomplete theory. of properties. One common property of all frames is is a
The case-based system will retrieve a case for a which links a frame to its parents.training example if there is a match between the features Frames representing objects are located under the high-of the case and the features of the training example, andif level frame called ENTITY. Similarly, the framesthe order of the features of the case is preserved in the representing operations are located under the framestraining example. There is a match between a case feature ACTION and TRANSACTION. Each frame describing anand a training example feature when tename of the case operation is defined by a two special properties:

feature is the same as the name of a training example precondition and procedure.
feature and the variables in the case unify with the The precondition property specifies the condition under
constants in the training example. The unification is which the operation can be applied. The procedure
propagated to other features of the case. There will also be property specifies a fixed sequence of operations.
a match when the constants in case features are associated Operations specified as ACTION in the hierarchy are

with the same constants in the training example. Finally, non-primitive operations. Non-primitive-operations are
there is a match when a feature in the case can be defined by a precondition and a procedure which includes a

associated with an analogous feature in the training single primitive operation. Primitive operations are

example as long as all the previous conditions hold. atomic and they are not defined anywhere. Operations
When more than one case is retrieved, a heuristic similar specified under TRANSACTION in the hierarchy are defined

to the one used to rank the partial explanations will select by a precondition and a procedure containing primitive

the most applicable one. and non-primitive operations arranged in a fixed sequence.
The cost of matching, the likelihood that a case be Figure 1 illustrates six frames taken from a domain

applicable, and the size of the case-base make the case- theory containing the specification of a banking system.
based approach secondary to the rule-based approach of Each frame of the domain theory is transformed into a
EBL in our methodology to deal with the incomplete rule prior to executing EBL.
domain theory. An example of case-based reasoning to The frames defining entities enumerate properties of

deal with the incomplete domain theory is in [Genest and the entity (e.g. person has a name). Some properties of

Matwin 1990]. entities and some actions possess goals. These goals are
included in the domain theory of LISE. Goals are

3 Ae LIE essential to the analogical reasoning process employed to
extend the domain theory. An instance of a goal is:

LISE (Learning In Software Engineering) is a system
inspired by the learning process experienced by an analyst goal (creditmargin (Person, Margin),
during the analysis phase. LISE uses EBL (Explanation- protectbankinterest)
Based Learning) to explain positive training examples
corresponding to user.requirements using a domain theory which is read: the goal of the credit .margin property
corresponding to a specification. When a training of a person is to protect the bank interest.
example (an instance of user requirement) can be
explained, the result is the corresponding specification 3.2 An Example Of Abduction
expressed using primitive operations. When a training The next scenario illustrates the usage of abduction,
example can not be explained, LISE will apply our three- introduced in sec. 2.2., to complete a partial explanation.
step approach to construct a plausible explanation using The training example is the requirement for the
abduction, analogical reasoning or case-base reasoning. transaction withdraw (bob, 100) where the fact

account (bob, accl) was replaced by c ient (bob)
3.1 The Domain Theory In LISE (Figure 2).



Explanation-Based Learning with Incomplete Theories: A Three-step Approach 289

person The partial explanation produced for the training
iUa.. ENTITY example contains the unproven antecedent

name account (bob, Account) as shown in the explanation tree
address of figure 3. The partial explanation generated can be
phonenumber changed into a plausible explanation by using abduction

client to transform account (bob, Account) as an hypothesisclen pcrfor the training example feature client (bob).
jsa.person

account The training example is:
goal (account, identifyclient) withdraw (bob, 100)
credit-margin
goal(credit margin,protect bankinterest) The facts are:
safetybox client (bob)
necessary condition: address (bob, 101_Colonel-by)

(client(Person) <- balance (acc_1, 150)
account (Person, Account)) sub_fmbalance(acc_1,100)

or isemnybb10(client (Person) <-issue money (bob, 1)
safetybox (Person, Safetybox)) Figure 2. The training example for the abduction scenario

withdraw(Person, Amount)
i%%u TRANSACTION withdraw(bob,100)

precondition:
account (Person, Account) c01
goal (account, identifyclient) abducdo r00

procedure: account(bob,Account) issue money bob.1001
debit (Account,Amount)

issuemoney (Person,Amount) debit (acc 1,100)
goal (issue money, inc_clientliquid)

deposit (Person, Amount)
isa. TRANSACTION

precondition: balance(acc L1150) sub fm balance(acc 1.100)
account (Person, Account)
goal (account, identify client) 150 > 100

procedure:
receive money (Person, Amount)
goal (receive money, dec client liquid) Figure 3. An example of abduction
credit (Account,Amount) As usual in EBL, irrelevant features of the training

debit (Account,Amount) example, e.g. address (bob, 101ColonelBy), are left
.i%- ACTION out of the explanation.
precondition:

balance (Account,Balance) 3.3 Examples Of Analogical Reasoning
goal(balance,protect bankinterest) Analogical reasoning is used to build a plausible
Balance > Amount explanation re-using parts of one or several partial

procedure: explanations and replacing the unproven antecedents by
subfmbalance(Account,Amount) training example features sharing the same goal. The
goal(sub fm balance, record transaction) parts re-used correspond to the antecedents of partial

credit (Account, Amount) explanations found as facts in the training example.ACTTwo examples of analogical reasoning wil be
precondition: nil presented. The first example shows how a plausible
procedure: explanation can be obtained using a partial explanationprocdure: tand replacing its unproven antecedents by analogousadd_to_balance (Account, Amount) training example facts. The second example will show

goal (add to balance, recordtransaction) how multiple partial explanations can be combined to
construct a plausible explanation.Figure 1. Frames of the domain theory for banking



290 Genest, Matwin, and Plante

3.3.1 Example 1: The Transaction borrow, deposit (bob, 1000)

This process will be illustrated using the example of
the transaction borrow (bob, 1000). Figure 4 shows the
training example.

The domain theory is incomplete because the account(bob. acc1) credit(accl,1000)
specification of the transaction borrow required to explain
the training example is missing. Consequently, a set of # record
partial explanations will be produced. Figure 5a and 5b decclient_

illustrate the partial explanations that were obtained using liquid 0 0 / transaction

transactionswithdraw(Person,Amount) and goal
deposit (Person, Amount). goa> add-to-balance(acc_1,1000)

The training example is: borrow(bob,1000) . receive_money(bob, 1000)

The facts are:
account (bob, acc_1) Figure 5b. Partial explanation for borrow produced using

credit margin (bob, 3500) deposit
recordloan (bob, 1000) The dashed lines in the partial explanations indicate
issuemoney (bob, 1000) which antecedents were left unproven. The underlined
car (bob, car_of.bob) antecedents in the partial explanations indicate which
value(car of bob, 12000) antecedents were found as training example features. The

Fig. 4. The training example for heuristic was used to score each partial explanation. The
borrow(Person,Amount) partial explanation built usingwithdraw (Person, Amount) scored the highest since it

contains more underlined antecedents than the partial
withdraw(bob, 1000) explanation built using deposit (Person, Amount) .

inc_ Figure 6 shows that the proven antecedents of
client withdraw are re-used in the plausible explanation of

iliquid borrow. he unproven antecedents were replaced by
t /goal selected training example features. A training example

/,0 -feature is selected to replace an unproven antecedent if it
account(bob. ace 1i issue moneybbob.1000) shares the same goal. In the borrow example,

* account (bob, acc_l), issue_money (bob, l00) and the
debit(acc_1,1000) operator ">" were all re-used. The antecedent

d1 balance (Account, Balance) was replaced by the
" "training example feature credit margin (bob, 3500)

' ,, because they have the same goal: protecting the bank
4 # interest. Similarly, but for a different goal,

* * record sub fm balance (Balance,Amount) was replaced by
ptransaction record loan (bob, 1000). LISE asked the user for aprotect- 4 rnato
n o B n >name to replace debit (Account, Amount) in the

bank- Balance > 1000 plausible explanation. The user provided the name
interest grant loan.

gsub f Training example features that were not re-used
nor selected are deemed irrelevant. In the example,

goa car (bob, car of bob) and value (car_of _bob, 12000)
are irrelevant.

balance(acc_1,Balance) Initially, a set of partial explanations was obtained
because the domain theory did not contain the frames for

Figure 5a. Partial explanation for bot row produced using borrow and for gran t.- oan. To circumvent the
withdraw incompleteness problem, a plausible explanation was

built from partial explanations. The next step is to
synthesize the missing frames from the plausible
explanation and to insert them in the domain theory. For
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>borrow(bob, 1000)
' / "Inc_clIent_liquid

account (bob, acc_l) issue money (bob, 1000)

g~rant_loan (bob, 1000)

protect-bank Interest J n record transaction

L al Igoal
credit margIn (bob, 3500) record loan (bob, 1000)

13500 > 1000

I Feature of partial explanation re-used

Selected training example features replace unproven antecedent since
they share the same goal

z ) Name generated by the user

Figure 6. The plausible explanation for borrow produced using withdraw

that task, the structure of the frames of the partial transfer (Person,Amount) which will be learned using
explanation is used as a guide to create the new frames two partial explanations.
from the plausible explanation. The structure of the frame The domain theory is incomplete since it does not
Of withdraw is used to create the frame of borrow and the include the frame of transfer. Consequently, partial
structure of the frame of debit is used to build the frame explanations are produced (figure 9a and 9b). It is
of grantloan. The frames are shown on figure 7. interesting to note that the partial explanation obtained

using withdraw covers some training example features
Name: grant_loan (Person, Amount) (the underlined antecedents) while the one obtained using
Isa: ACTION deposit covers other features. In that case, we recognize
precondition: that a single partial explanation will not provide enough
creditmargin (Person, Margin) foundation to build the plausible explanation. Both partial

Margn > Amount explanations will be integrated to produce the plausible
procedure:exlntooftransfer(iue1)
recordloan (Person, Amount) explanation of transfer (figure 10).

Name: borrow(Person,Amount)
isa: TRANSACTION The training example is: transfer(bob,100).

precondition:
account (Person,Account) The facts are:

procedure: account (bob, acc_1)
grantloan (Person,Amount) account (bob, acc_ 2)
issuemoney(Person,Amount) phone (bob, 992-2318)

balance (acc1, 350)

Figure 7. The frames for grant loan and for borrow sub_fmbalance (accl, 100)
add_to balance(acc_2,100)

3.3.2 Example 2: The Transaction transfer Figure 8. The training example for
A single partial explanation might contribute to the transacti-on t rans cer .Perso' ,,..,unt)

explain several features of the training example while
leaving out other relevant ones. Such a situation can b, The unproven antecedents issuemoney of withdraw,
suspected when several partial explanations match and receivemoney of deposit, do not raise any
different features of the training example. Figure 8 problem since the goal hierarchy indicates that they can
pictures the training example be mutually removed when the person and the amount

are the same.
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[Ellman 1989] mentions that the effort in EBL
withdraw (bob, 100) inc research addresses the problems of justified generalization,

client- chunking, operationalization and justified analogy. With
.Lquid regard to that classification, our work addresses the

problem of operationa!ization since our objective is to
\/ -goal translate a non-operational expression (i.e. user

account (bob. .,_l L issue money (bob, 100) requirement) into an operational one (i.e. a specification).
[Ellman 1989] divides the methods to handle the

incomplete domain theories into the analytical methods
debit (acc_1, 100) and the empirical methods. The usage of abduction,

analogical reasoning and case-based reasoning categorizes
record LISE as an analytical methods. Other analytical methods

protect-ban transaction require that a pair of training examples with similar
s 1' >functions be presented simultaneously [Hall 1988] or they

interest 150 .... 0 need an experimentation theory to refine the domain
/ al theory [Rajamoney 19881.

goal sub fm balanceacc 100) Empirical methods deal with incomplete domain
theories (e.g. [Pazzani 1988],[Fawcett 1989]) by

balance/acc1. 150) conjecturing rules to fill holes in the partial explanation
Figure 9a. Partial explanation for transfer produced and, using subsequent training examples, empirically

using withdraw refine the conjectured rules.
Building partial explanations in EBL can be very

deposit (bob, 100) expensive since the entire domain theory must be
examined. Our system was provided with a heuristic to
limit the search for partial explanations. The heuristic is
to require that the order of features in the training
examples be strictly equivalent to the order of the

account (bob. acc 2) credit (acc_2, 100) antecedents in the rules. The same heuristic is also
Srcemployed in our case-based reasoning system.

The following is an analysis of the cost concurred by
client_- trasacion our approach. The search of EBL produces a list of p
liquid I partial explanations for a training example composed of N

goal facts. To assign the score to the partial explanation and to
goal / add to balance (ace2.100 rank them, using sorting, brought a cost of o (P log P).

Considering that there is m unproven antecedents in thereceive-money (bob,100) best partial explanation and that there is R rules having
each unproven antecedents in their right-hand side, we

Figure 9b. Partial explanation for transfer produced obtain the cost of R*M for the search related to abduction.
using deposit If the abduction fails, this cost will be augmented by N*M

which is needed to solve the training example using
After the plausible explanation was built, the frame analogical reasoning. Thus, the cost for the first two

(figure 12) for transfer is synthesized and integrated steps of of our approach is o(, log P + (R+N) * m) .A
with the domain theory. It is the only frame added to the good domain theory will provide partial explanations with
domain theory since the frames of debit and credit small values for M.
already exists. The cost will increase more considerably if case-based

reasoning is applied to the training example. The cost of
4 Conclusion matching cases in our approach will be polynomial since

This paper has presented a learning method in which EBL the features are ordered in our cases and in the training
is used in concert with an incomplete domain theory. examples. The cost of assigning the score and ranking the
The approach to deal with the incomplete theoryis by cases is o (c log c), where c is the number of cases
integrating abduction, analogical reasoning and case-based having at least one match. The cost of adapting cases is
reasoning. Inasmuch as our system augments the s, , where S is the number of unmatched case features
deductive closure of its domain theory by adding rules and N is the number of training example facts. The
into it, it achieves knowledge-level learning. This is ordering imposed on the facts of the training examples,
seldom the case for EBL systems.
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Stranster (bob, I00)

account (bob,ac l

Iaccount (bob~acc_2) /, credit(ac-2 100) J

jadd_to_balance(acc_2,10

l balance(ace 1, 1so I
s ubt ract-frombalance (acc-1,1oo)

10> 100
Legtnnd.

IZ i Feature of partial explanation re-used

Q( T h Name generated by the user

Figure 10. The plausible explanation for transfer produced using withdraw (the goals arc omitted for clarity)

when faced with problems and how people apply
Name: transfer(Person,Amount) analogical reasoning to create new explanations from
isa: [transaction (Person) I previous ones. We hope to obtain an answer to these
precondition: questions from a current experiment designed jointly with

account( a cognitive scientist.
account(Person, Account 1) As for any non-empirical learning method, learning isaccount (person,Account2) limited by the amount of initial knowledge contained in

procedure: the domain theory and the case-base. A future goal for
debit (Accountl,Amount) this research is to make the system less dependent on the
credit (Account2, Amount) initial knowledge.

Figure 11. The new frame for transfer added to the Acknowledgement
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Abstract
The very first idea one can try in applying this scheme to

We propose a solution to problem solving by problem solving is to consider that A is the initial state
analogy which is an alternative to Carbonell's of the system, B is its final state, and j3 is a sequence of
transformational analogy. Given a plan that applications of operators leading from A to B. The anal-
succeeds for the base, we apply the plan to the ogy problem then becomes to find a 0' allowing to go
target and propose to correct its failures by an from a new initial state, A', similar to A, to a new final
abductive ,.ecovery mechanism inspired from state B'. This view is summarized in figure 2a below.
abducti, .ecovery from failed proofs.

BASE TARGET
1 Introdt..ction Initial state of Initial state of

The analogy scheme we shall use in this paper is quite a source problem target problem
classical one (Winston, 1982; Gentner, 1983; Chouraqui, A 0, A'
1985; Falkenhainer, Forbus, and Gentner, 1986; known looked forCarbonell, 1983, 1986; Keda-Cabelli, 1988; Kodratoff, So lton 3 =  lkefoC a b n l ,1 8 ,s9 6 e a o n so lution1988). It can be described as follows. Let us suppose that -

we dispose of a piece of information, the base, that can
be put into the form of a doublet (A, B) in which it is B 0' B'
known that B depends on A. This dependency will often Final state of Final state of
be causal, and it does not need to be very formal nor source problem target problem
strict. In the following, we shall call this relation 03, and
refer to it as the causality1 of the analogy. Suppose Figure 2a: A classical view of the use of analogy for
now that we find an other piece of information, the problem solving.
target, (A', B) that can be put into the same form, and BASE TARGET
such that there exists some resemblance (similarity) be- means of means of
tween A and A'. In the following, we shall call this rela- source problem target problem
tion a, and refer to it as the similarity of the analogy. A 0- A'
Let us call ]3' the causal dependency between A' and B', known plan a looked
and (x' the similarity between B and B', as shown in the f = for solving 3 =1 for
figure below. B by A plan

resemblance/difference B B'

BASE relations TARGET goal of source goal of target
(SIMILARITY) problem problem

A a A' dependence Figure 2b: Our scheme for using analogy in problem

relations solving. It requires a plan for a solution, instead of a
0a , .... particular solution as in figure 2a.

B' In this paper, we would like to present a somewhat differ-
Figure 1: The general scheme ofanalogy ent view of problem solving, in which A is the set of

means of the source problem, and B the set of its goals,
1 It is also often called the internal dependency of the base. and 3 is a plan for going from A to B. This view is
Arguments for calling it causality are found in section 2 and summarized in figure 2b, above. The means of the prob-
in Kodratoff (1990). lem are made of all the knowledge necessary to solve the
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problem, and of the instantiations particular to the prob- increasing the relevance of the analogy. Conversely,
lem at hand. The goals of the problem is the set of the adding information like male(Louis) & born in(Louis,
consequences, interesting for solving the problem at France) and female(Antoinette) & born in(Antoinette,
hand, of applying plan 03 to A. In the following we shall Austria) will decrease its relevance. With this added
elaborate an example coming from (DeJong and Mooney, information, the analogy can be written without
1986). The means of the base are abducting a rich causality, as follows.
person's child, and the goals be kidnapper becomes rich.
We are given a plan (the one of DeJong and Mooney, nationality nationality
1986) that solves the problem of achieving goal B by (Louis, France) (Antoinette, France)
means A. This plan gives the cause why it is possible to & lives-in( & lives_in
achieve goal B by means A, it will therefore be seen here Louis, France) o (Antoinette, France)
as the causality 3 linking A and B. We are also given an & bomin & born-in
other problem, i.e., goals B' and means A' (e.g., A' may (Louis, France) (Antoinette, Austria)
be: abducting a famous politician, and B' may be: &
terrorists advertise their political cause). The analogical '"

problem is then to use the plan (3 in order to invent a new
plan 3' that will achieve B' by A' (e.g., how terrorists can native language nativelanguage
get advertisement by abducting afamous politician?). (Louis, French) (Antoinette, French)
Our proposal for finding which transformations to apply
to plan in order to obtain plan 0' is precisely to attempt Figure 3. The given analogy, without causality.
applying plan (3 to A', analyze the partial successes and
failures of this application, and induce from them a (3' On the contrary, one can also consider that some of this
that will include the successes and eliminate the failures. information is causal. It will allow us to find back the
Thus, recovering from a failed analogy is central in our
view of problem solving by analogy. given analogy when one considers that P I
We shall present here a scheme which is very near to ab- lives_in(Louis, France) and (3'l = livesin(Antoinette,
ductive recovery of proof failures as presented by Cox and France) as causalities for the fact of being native French
Pietrzykowski (1986), Duval and Kodratoff (1989). A de- speaker, and when one does not take into account that

tailed example of abductive recovery is presented in sec- Antoinette is born in Austria.
tion 6. The fundamental technique implementing such a
recovery system is the inversion of resolution as de- nationality nationality
scribed in (Muggleton and Buntine, 1988; Rouveirol and (Louis, France) (Antoinette, France)
Puget, 1989). Let us now see what these techniques are I 01 =lives.in Illivesin
precisely, and how they can be applied to recovery from (31i n (Antoinette, Frane)
plan failures. +(Louis, France) +Atiet rne

2 Causal knowledge in creative nativejanguage nativejanguage
analogies (Louis, French) (Antoinette, French)

In the case of recognition and evaluation of existing Figure 4. Inventing again the given analogy by using a
analogies, there are no needs to draw a difference between causality of the form "x livesjn y" in order to explain
similarity and causality. In that case, causality is just one that "nativejanguage(x) = language(y)".
more similarity between source and target. On the
contrary, causality is central to the generation of new C, iider now that one adds the following information
analogies, a' Louis: born in(Louis, France). Then, the similar
As an illustration, consider the following analogy, i. iation about Antoinette, 0'2 = born in(Antoinette,
proposed in (Russell, 1989). AL 1ria), leads to the analogy nativelanguage
From nationality(Louis, France) & nationality (Antoinette, German), or to fluentin (Antoinette,
(Antoinette, France) & native language(Louis, French), French), depending on the causality to be used. If 132 and
Russel (1989) finds by analogy that P,' a considered as cua and R, and Rl are considted
native lunguge(Antoiniette, French). Adding new 2rne
information about Louis and Antoinette (we assume here as factual, then the analogy should give
that these- characters are the royal couple sent to the native language(Antoinette, German).
guillotine during the French revolution, thus taking In this analogy, one is implicitly using theorems of the
Antoinette for Marie-Antoinette), like lives in(Louis, kind: Vx [born in(x, France) =* nive language(x,
France) and lives in(Antoinette, France) will increase the French)] and Vx [born_in(x, Austria)
similarity between Louis and Antoinette, therefore nativelanguage(x, German)].
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nationality nationality

nationality nationality (Louis, France) (Antoinette, France)
(Louis, France) (Antoinette, France) & bomin & bornin
& livesjn & livesin (Louis, France) (Antoinette, Austria)
(Louis, France) (Antoinette, France)

32 =bornrn ' i1 n (Antoinette, France)
(Louis, France) (Antoinette, Austria) 4(Lis, France) F

nativejlanguage fluentin
nativejanguage native_language (Louis, French) (Antoinette, French)
(Louis, French) (Antoinette, German) Figure 6. Inventing another analogy by using a causality

Figure 5. Inventing another analogy by using a causality of the form "x lives-in y". In the context of "bornjn(x,
of the form "x bornin y" in order to explain y) this explains "nativejanguage(x) = language_of(y)".
"nativejanguage(x) = language-of(y)". In the context of "NOT bornin(x, y), this explains

"fluenLin(x, language.of(y))".
The choice of using these theorems follows from the
choice of causality. Let us show why in three steps. In this analogy, the theorems implicitly used are: Vx
First step: Understanding causality. In the present case, [lives in(x, France) & born in(x, France)
the causality is 52 = bornin(Louis, France), which native language(x, French)], Vx [lives in(x, France) &
"explains" why native language(Louis, French). From -nborn in(x, France) =*fluent_in(x, French)]. Applying
this, we can infer that the analogy has bsen using ways the above three steps in the same way would lead us to
of deducing the result from its causality. Therefore, we choose these theorems (instead of the two above). In
have to consider theorems that have a generalization of other words, we can say that we have been using
born in(Louis, France) in their premise, and that have a theorems the left-hand side of which can be instantiated
generalization of nativejlanguage(Louis, French) in their by lives.in(Antoinette, France) , such as Vx [lives in(x,
conclusion. In other words, we have to consider the France) & .. =J .. ].
different ways by which one might prove something of
the form native language(x, y) from something of the When creating analogies, the choice of an information as
form born in(x, y). This may be very-difficult, and the causality will orientate the invention process. on the
difficulty of finding the link between the causality and its contrary, when analyzing existing analogies, some
consequences may become a huge task by itself. In the informations are more relevant all kinds of information
very case we are looking at presently, this inference can play a role in rating the given analogy. For instance, in
be done in a single step by using the theorem Vx the case of the given analogy above, one might well use
[bornin(x, France) = nativejlanguage(x, French)]. both informations lives in(Louis, France) and
Second step: Using similarity. Similarity tells us that born in(Louis, France) to rate the given analogy. On the
Louis in the base must be replaced by Antoinette in the contrary, when creating analogies, one has to choose
target. Therefore, we guess that the causality in the target between the available informations which one is of causal
is 3'2 = born in(Antoinette, Austria). nature, and this choice changes the output of the analogy
Third step: Combining causality and similarity. We look process. In other words, from the analysis point of view,
for theorems the premise of which is a generalization of nativelanguage(Antoinette, German) is as good an
born in(Antoinette, Austria), and the conclusion of analogy asfluent in(Antoinette, French), while from the
which is a generalization of native language(x, y). Once invention point of view, they differ in the information
more, this step may be very complicated but, in this that has been chosen as causal. In practise, one should
case, we find in one step that Vx [bornin(x, Austria) =o always dispose of large amounts of theorems such as
native language(x, German)] is the looked for theorem, those exemplified in example 1, possibly even of
Applying it to the premise born in(Antoinette, Austria) theorems that contradict each other. Analogy, which
leads to the conclusion native language(Antoinette, contains for us a choice of causality, allows to choose
German), which becomes the conclusion of our analogy, which to use.
as shown in figure 5. D o3 AIversion rof ... '""^-Ii
Consider now that P I and Pl' are causal and that 032 andConsidernowthat2and~ are cta T h aal anud at nd Let us start with an initial theory T. Suppose that T
fluentfin(Antoinette, French). meets an example E that it cannot explain, because E

cannot be derived from T. In this case, one solution is to

consider that T is incomplete. Induction then amounts to
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find a new theory T that allows to derive both the initial thus built define the predicate newp in extension, i.e., no
theory T and the example E. generalization has been occurring. In our example, these
Inversion of resolution is based on three basic operators, new clauses are
called absorption, intraconstruction and truncation Tlb: newp(YZ) faher(Y,Z).
(Muggleton and Buntine, 1988; Rouveirol and Puget, Tlctempo:newp(helen,liz) :- mother(helen,liz).
1989). Let us illustrate how inversion of resolution The third step of intraconstruction geperates a
works by the following theory defining family relation- new version of the clause of the theory which has been
ships. Since inversion of resolution has been developing undergoing intraconstruction (here, Ti ), by replacing the
up to now in PROLOG, we shall describe these examples left-over part of this clause by the new predicate newp,
in PROLOG notation. taking again care of introducing tie correct variable bind-
TI: grandfather(X,Z) father(XY), father(YZ). ing. This generates the clause
T2: father(XY) :- child.of(Y,X), sex(X,male). Tla: grand-father(UW) :- father(tV),newp(VW).
T3: mother(X,Y) :- child..of(YX), sex(X,female).
Suppose now that the following example is wet. 3.3 Truncation
E: grandfather(tom,liz):- father(tom,helen), chilLofliz,

helen), sex(helcn,female). The truncation operator is a generalization operator which
It is clearly not entailed by the available theory. Let us must be controlled in some way. In our example, it re-
show how inversion of resolution allows to induce form places constants by variables in order to give the same
T and E a new theory, T', that entails T and E. degree of generality to the clauses generated by intracon-

struction. Applying truncation to Tictempo gives the
3.1 Absorption more general clause

Absorption of the clause Ti of the theory by the example Tic: newp(YZ) :- mother(YZ).

E is possible if the body of the clause Ti can be unified 4 Formation of a new theory
with a part of the body of E. In the example, only one
clause of the theory can be absorbed by the example, T3 The new theory T is formed by deleting from T the orig-
because its body child of(YX), sex(X, female) can be inal clause that underwent intraconstruction, and by
unified with the part of E child_of(liz, helen), sex(helen, adding to T the clauses generated by intraconstruction and
female) with the substitution {Y/helen, X/liz} truncation. In our example,-this gives the set of clauses
Absorption then replaces the body of the absorbed clause (Tia, TIb, TIC, T2, T3). T is able to recognize the new
Ti by its head properly substituted in the body of the ab- example, and all other examples of maternal grandfathers.
sorbant clause E. This gives a new form to the example. It is also possible to consult an oracle, who might pro-
E': grandfather(tom,liz) :- father( tom, helen), mother pose to call newp by the name parent. This is useful for

(helen, liz). the sake of knowledge base readability.

3.2 Intraconstruction We consider here the case where the theory has already
been used at least once with success. We shall use thisIt can occur between two clauses C1 and C2 if the heads positive past experience in order to drive the inversion of

of Ci and C2 match, and their bodies match partially. It resolution. For example, in problem solving by analogy,
proceeds in three steps. the base case is such a success. Suppose now, that new

Firstly, it generates a new clause Tlatempo problems are given to the system, and that it is unable to
the head of which is the least generalization of the heads solve them. Similarly, a theory can be able or not to
of Ci and C2. Its body is the least generalization of "recognize" an example as belonging to the theory. If it
common parts of the bodies of C1 and C2. For instance, fails to do so, we can consider that the reason of the fail-
E' and Ti can undergo the first step of intraconstruction, ure is the incompleteness of our theory, and we will ac-
giving the following clause, cordingly attempt to make it complete. We propose here
Tlatempo: grand-father(UW):- father(UV). to increase a theory by two different abduction mecha-

The second step takes care of the left-over lit nisms.
erals in CT and C2. Here, the literal mother(helen,liz) o Suppose that we start with a theory Tho and an example

E0 of a concept C, such that EO can be proven from Th0.
' and and father,Z) of Ti have been left over during This proof generates a complete proof tree Pc0 . Using

the first step of intraconstruction. Intraconstruction then now classical EBG techniques (Mitchell et al., 1986),
introduces a new literal, arbitrarily called newp that be- this proof tree can be generalized enough to keep the
comes the head of these left-over. The arguments of newp proof sufficiency to cover the example. Suppose also that
have to be carefully chosen to keep the variables bindings we meet now another example El of C, such that it is
that were present in Cl and C2. Note that the two clauses not recognized by Tho. In that case, we will suppose here
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that, nevertheless, a partial proof tree Ppl can be gener- where objI is a constant.
ated for El. Our solution to abduction consists in propos- We will be unable to prove kill(mary,mary) because she
ing abduction mechanisms that will make complete Ppl, has no shot-gun. Nevertheless we obtain one partial
thus obtaining a complete proof PcI. Our rule to control proof, and only one in this case.
abduction is to try to obtain a Pcl which as "close" as kill(mary,mary)
possible from P0. When a Pel has been obtained, inver-
sion of resolution allows to complete the theory accord- hate(mary possess(maryobj)
ingly. I I
The following example inspired from DeJong and a(may) buy(maryobjl)

Mooney (1986) will be used as an illustration. In this ex-
ample, our aim is learning a definition of the concept of Figure 8. Ppr Partial explanaticn of Mary's suicide.

suicide Kill(x,x). The domain theory Tho contains the Ppl obviously matches a sub-tree of Fco.
following rules

Theory Tho First induction (abduction the missing part)
kill(AB) :- hate(A,B), possess

(A,C), shot-gun(C). We attempt to complete Ppl by viewing Pcl as an in-
hate(WW) :- depessed(W), stance of Pco, this is one of the possible definitions of
possess(U,V) :- buy(U,V). "closeness". Therefore, Ppi will be completed by taking
where A, B, C, U, V, W, Z are variables.
The training instance E0 is a suicide, described by the fol- the missing pieces from Pc, appropriately instantiated.
lowing facts. In our example, such a forced matching leads to PcI, in

E0 which the missing part of PpI has been replaced by shot-
depressed(john). gun(objl). In this first abduction, the cause of the failure
buy(johnobjl). is attributed to our supposed "ignorance" that objl (i.e.
shot-gun(obj 1). sleeping-pills) is actually a shot-gun. This mechanism

kill(johnjohn). has already been considered in other works about abduc-
Let us call Pc0 the proof that E0 is a consequence of the tion such as Cox and Pietrzykowski (1986). Our example
theory Tho. Its proof tree can be generalized as follows shows that it can be quite a dangerous step to do since it

(DeJong and Mooney, 1986). leads to complete the theory by adding the "fact"
kill(XX) shot-gun(objl).

amounting to state that sleeping-pills are kinds of shot-
guns.

hate(X,X) possess(X,C) shot-gun(C) In the view of using this abduction in an analogical pro-
I Icess, it will be quite easy to check if this abduction al-

etessed(X) buy(X,C) lows to complete the solution of the target problem. If it
does not, we propose to use another kind of induction, inwhich Pc0 and Pcj are not supposed to match.

Figure 7. Generalized proof that John has been commit-
ting suicide. Second induction (induction of the missing theorem)

Suppose now that the system is provided with an exam- In this case, we try to add a new rule that will allow to
ple E1 of concept of suicide which is not recognized by complete the proof. One easily understand why this
the theory. Supposing that a partial proof Ppl of El can mechanism has not been taken into account so far; in
be obtained, we will try to complete each of these Ppl in principle one can add so many ridiculous rules that this
such a way that it becomes are as "close" as possible of approach seems to be hopeless.
Pc0. For instance, in our example adding to Tho the rule

kill(X,X) :- sleeping-pills(C), price (C, 6)
As an illustration of such a El, consider an other suicide will indeed allow to piove Mary's suicide. But it means
instance TR1 described by the following facts, that everyone will suicide when the price of sleeping pills

- 1 Ereaches the value 6, which is totally irrelevant to the pre-
depressed(mary)E ceding suicide case.
epresd(maryl). In order to avoid adding such ridiculous rules, we define a

buy(mary,objl). new notien of distance between Pc0 and Pco. Given two
epingpiob 1,6). possible completed proof trees, Pcl and Pcl', we shall

price~objl, 6). collect the mismatches between Pco and Pcl, on the one
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hand, and between PO and PcI' on the other hand. We Suppose that the plan 03 of the base problem amounts to
shall Eay that Pc1 is closer to PcO than Pc1' if the num- the application of a sequence of operators [Opl, ... ,
ber of mismatches between Pcl and PO is less than the OPn) . The means of the base problem contain a set of in-
number of mismatches between Pcl' and Pco, with an stantiations, called here i, such that a applied to (Opl,
exception for zero mismatches that would drive us back ... , Opn) leads to fulfill the goals of the base problem. In
to the first kind of induction. In other words, we consider other words, one has to prove that a[Opl, ..., Opn) does
the least mismatch, a complete matching being already not contradict the goals of the base which amounts to
covered by the first abduction.When they are equal, we proving that each Opi is such that cOpi does not contra-
shall say that PcI is closer to PcO than Pcl' when the dict the goals of the base, and the post-conditions of
conceptual distance (supposedly defined) between the aOpi contain the pre-conditions of cOpi+l.
mismatches is less for PcI than for Pci'. The means of the target problem contain a set of instanti-
In our example, it is clear that the number of mismatches ations, called here '. We propose to "comptte" a' [Opl,
between PcO and the proof tree obtained by using ..., Opn} and to attempt proving that it does not contra-
kill(X,X) :- sleeping-pills(C), price(C, 6) dict the goals of the target problem. Unles; we are ex-
to prove Mary's suicide is very high. tremely lucky, this proof will fall. We then propose to
We shall rather try to use our knowledge about the ob- apply the above abductive recovery techniques in order to
jects possessed by Mary to complete PpI. For instance, generate a new sequence of operators (Op'I, ..., Op'p}
completing it by sleeping-pills(obj I) gives a proof tree such that '(Op'1, .... Op'n) does not contradict the goals
Pc1. of the target problem.

Section 7 gives a detailed example on how to achieve
kill(mary,mary) such a recovery. In a few wruds, the general strategy we
~- - - - - ~ use is the following:

hate(mary,mary) possess(mary,objl) sleeping- - recognize the parts of the proof that have

pills(obj1) been succeeding. If no success at all occur 2 , we fail to re-

depressed(may) buy(maryobJ) cov - delete the operators that have been leading to

a failure. This process introduces unknown values (i.e.,
Figure 9. Pc2. Sleeping-pills are viewed as the cause of variables) in the sub-sequence of (Opl, ..., Opn) which

Mary's death. is left. Call (Op"I, ..., Op"q) this sub-sequence.
- prove that some instantiations a" coming

We can generalize this explanation by inversion of reso- from the knowledge base can insure that (Op"l ,lution. The two clausesuion.XThe two claus es d u sOp"p), together with these instantiations, does not con-
kill(XX) depressed(X), buy(XC), shot-gun tradict the goals of the target.

(C) - verify that d" do not contradict a'.
kill(marymary) - depressed(mary),-buy(maryobj), - Perform the union of the o'd a' and of-a".

sleeping-pills(obj1) This union together with [Op"1, ..., OP"CI is a complete
are generalized by intraconstruction and lead to the three solution to the target problem.
clauses
kill(X,X) :- depressed(X), buy(XC), new(C) 6 Application to Analogy
newp(C) :- shot-gun(C)
newp(C) :- sleeping-pills(C) In (Kodratoff, 1990), we analyze the ways similarity and

causality can combine, and we define the concept of full
In this example, the values of newp(c) are a description in analogies. We say that an analogy is full when the law
extension of the concept of "tool-for-suicide" which, ac- of combination of causality and similarity is at o 3 o o-1 .
tually, is a poorly defined concept. Besides guns and
sleeping-pills, it covers also various cliffs, the Eiffel The symbol o represents the composition of the substitu-
tower etc. If we would not have been driven by the first tions, i.e., the application of a- 1 to A', then the applica-
example, this abductive recovery would have been done tion of 03 to the result of the last operation, and finally
with little caution. In other words, this kind of abductive the application of a to this last result (many examples

rovery is hard to perfor, bu c.m tat it is quite are given below). In this definition, we assume that - =
necessary, and, that it finds a justification within our
frame. 2 This is the case when none of the subproblems can be

solved. For instance, in the case of Mary's suicide (section
Recovering from plan failures 4), suppose we are unable to prove also depressed(mary),

buy(mary,objl). Then, our attempt to prove kill(mary,mary)
is a complete failure during which we met no success at all.
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a'. Let us now explain why this is not a real restriction the similarity is a U o', it contains the substitutions al-
to our scheme. lowing to go from one story to the other.
In our scheme, a is a set of replacements allowing to ex-
press how to transform A into A', and a' is a set of re- 7 A detailed example of the generation
placements allowing to express how to transform B into of a new plan by abductive recovery of
B'. It may well happen that a and a' do not concern to the failure of the old plan
the same set of replacements. When this is the case, we
shall always consider that "a = a". is the global similar- We will illustrate this view of analogy by using the
ity, a u a', between the whole base and the whole tar- plans that have been learned by explanation-based learn-
get. This hypothesis would restrict the generality of our ing (EBL) in (DeJong and Mooney, 1986) for kidnapping
scheme only if the replacements could be contradictory in a rich person's child. Our aim will be to transform by
some sense. In that case, the analogy would have to take analogy this plan in order to apply it to the case of terror-
into account some kind of contradiction within the base ists abducting a famous politician in order to advertise
itself. The first work to be done when setting up a their political cause.
knowledge representation would then be to make explicit The means and goals of the two problems are given in
this contradiction, and by that, getting rid of it3 . the scheme of figure 10 which summarizes the
This definition can be represented as follows, together information contained in the two problems.
with our example. In their paper, DeJong and Mooney (1986) show that the

BASE TARGET abduction of a child can be represented by the applicationof the two operators of figure 11.
means of source means of target Operator 1

problem problem proi Oeao esn
abduction of a child abduction of a politician persnl person2
by a by a terrorist N g LIKES
kidnapper politician is famous " ' LIKE

parents of child are rich money MORE-THAN

= (X AHOLDS-CAPTIVEA
(abduction 4- abduction, kidnappers
4- politician, child's parents wealth person3

known 4- politician's fame, get+- get,
plan money 4- advertisement) looked Operator 2
for beelokefori ['.= for BARGAIN
oming pla
rich by plan

1g person "  person2
ing a IF0
child IB RELE ' o G IV E S

B RLA\ money
goal of source goal of target
problem problem person3

kidnapper gets money terrorist gets advertisement Figure 11. Generalized operators for kidnapping. The goal
of kidnapping succeeds when the application of OPI and

Figure 10. Applying our analogy scheme to the compari- OP2 succeeds. Each operation inside the operator can be
son of two kidnapping cases. The base case is the one of also a problem by itself. For instance, how person1
a child's kidnapping, the target case is the abduc-tion of a achieves to hold captive person2 may be a problem by it-
famous politician. The difficult substitution [child's par- self.

ents wealth +- politician's fame] does not need to be
found in advance to be able to apply analogy. Notice that with the instantiations [personl I- kidnapper, person2 _-

child's parents, person3 <- child, adveriisement(abstraci)
+- advertisement(concrete)]. These operators are the

3 This point could be made more precise, and be made quite "causality" 3 we have been introducing in our scheme.
formal. This is not our goal in this paper which is devoted to Actually, they do explain why the kidnapper can achieve
a more intuitive presentation. Here, it should be clear that as his goal of getting money. Let us attempt a full analogy
long'as a and a' do not contradict each other, it will be by computing J3o a 1 . In this case, we shall not use the
simple to find a similarity that includes the two of them.
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similarities as shown on figure 10, but the one which
relevant to the application of 03, i.e., kidnapper - ? POSSESSES(person2,
terrorist, ??? -- child's parents, politician 4- child, advertisement)
money(concrete) +- advertisement(concrete)]. Where the ? :- LIKES-MORE-THAN(person2,
?? express the fact that we do not know yet who is go- politician, advertisement)
ing to play the role of the child's parents. This amounts leads to a failure. It follows that we will be unable to
to apply the instantiations: [personl 4- terrorist, person2 apply OPl.

person2, person3 -- politician, advertisement(abstract) Conversely, asking to this knowledge base the questions:
advertisement(concrete)] to OP 1 and OP2. Applying

these substitutions, we find operators that still contain ? GIVES-TO(person2,x,
the variable person2. Our problem is now to use the advertisement)
background knowledge in order to find an instance of per-
son2 that will not introduce contradictions. Let us sup- gives two possible answers by using either clause 7 or
pose that our background knowledge is represented by the clause 8.
following set of clauses. Answerl : GIVES-TO(x, media, money).
1- WANTS(x, y, z) IF Answerl': GIVES-TO(x, media, exciting-news).

NEEDS(xz)
One will notice that Answerl' ilf can lead to deeper

2- LIKES-MORE-THAN(x, y, money) IF problems by using clause 9. This is not our point here,
LOVES (x,y) we just want to find possible instantiations for OP2, be-

ing understood that the application of OP2 can lead to
3-PEM RET (x, y) mny NOT- I N- new problems. Answerl' is such a case, and clause 9 is
PARENT (x, y) & NOT-EXCEPTION- here to show how the next problems can be solved, but is
PARENTAL-RELATIQN(x, y) not relevant to our present problem of analogy. Since we

found the above two above answers, and that in both4- S- O -THAN TION-BETxN y,, moy Icases the variable person2 was instantiated by media,we
can claim that we are able to apply to the terrorist case,

5- EXCEPTION-PARENTAL-RELATION(x, y) with the substitutions [personl +- terrorist, person2
IF ... media, person3 +-politician, advertisement(abstract)

advertisement(concrete)].
6- HOLDS-CAPTIVE(x, y) IF ... Since we have already been unable to answer the ques-

tions ?POSSESSES(person2, advertisement) and
7- GIVES-TO(media, x, advertisement) IF ?LIKES-MORE-THAN(person2,politicianadvertisement)

GIVES-TO(x, media, money) it would be useless to attempt to ask them again by in-
stantiating person2 by media. Our solution is then to

8- GIVES-TO(media, x, advertisement) IF delete from OP1 the links we have been unable to prove,
GIVES-TO(x, media, exciting-news) to replace person2 by media, and to replace the links be-

tween the characters in by those found as an answer to the
9- GIVES-TO(x, y, exciting-news) IF application of OP2. I follows that, in our example, the

EVENT(z) & KNOWS-OF(x, z) & scheme found by analogy will be: Apply either OPI or
RELATIVE-TO(z, t) & FAMOUS(t) oP', as shown by figure 12 below, and then apply O?2

with the instantiations [personl +- terrorist, person2 *-TV(x) media, person3 +-politician, advertisement(abstract) 4-
advertisement(concrete)].

1 EDI RADIO(x) IF Operator 1'
RADI~x)terrri~ media

12-MEDIA(x) IFNEWSPAPER(x)

HOLDS-CAPTIV money
13-

Asking to this knowledge base the questions: politician
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Abstract this paper is to consider these issues from the com-
mon perspective offered by our model, and to summa-

Many learning problem solvers operate by rize the relevant research in the field, rather than to
composing operator sequences, so that a investigate any single approach or issue in depth.
learned sequence can be applied as a unit
during subsequent problem solving. In this
paper we will describe an abstract model of 2 Assumptions and Terminology
the operator composition and problem solv- We can categorize problem-solving systems according
ing processes, and use thie model to analyze to various criteria. The first is the domain specifica-
several design issues that affect the utility tion language. Some systems use inference rules as
of the learning method. We will focus pri- their basic unit, as do theorem provers, in which case
marily on design issues that arose during the the lasie ules an be te em Others se
implementation of the PRhODIGY system[16; the learned rules can be stated as lemmas. Others use
18] and two of its predecessors[17; 15]. The operators, as in STRIPS[5] or PRODIGY. For the pur-
purpose of this paper is to consider these is- poses of this paper, we will assume only that the rules
sues from the common perspective offered by or operators have explicit preconditions and postcon-
our model, and to summarize the relevant re- ditions, and that they are composable. We will gener-
search in the field. ically refer to these basic building blocks as primi-

tive operators, and the structures composed from them
as macros. We will restrict our attention to macros

1 Introduction that represent simple operator sequences, and will
not consider disjunctive or iterative macros[22]. The

Many learning problem olvers employ the same gen- preconditions and postconditions of a learned macro
eral approach to learning from experience. They learn are assumed to be exactly the the weakest precondi-
by composing rule sequences[2; 11], so that the se- tions and postconditions of the composed sequence of
quences can be employed as single units during sub- operators[16].1
sequent problem solving. Depending on the particu- For illustrative purposes, the primitive operators we
lar system, the composed sequence may be referred will use in our examples will be simple STRIPS opera-
to as a macro-operator[5], a chunk[10], a heuristic[19], tors with conjunctive preconditions with variables, as
a search control rule[16], etc. Most of the literature these are very commonly employed. (Some systems,
in the field is concerned with how these composed se- such as PRODIGY, use more expressive precondition
quences are learned. However, there are also impor- languages and where this is relevant we will note this
tant design issues that arise when one considers how explicitly.) Our examples will be taken from robot
the composed sequences should be stored and usedduring subsequent problem solving. Most of these is- problem-solving domains, similar to the STRIPS do-

main, that involve a single robot moving from room to
sues have received little or no attention, though in fact room and accomplishing simple tasks. Since the opera-
they do influence the utility of the learning method and tors and macros have variables, they actually represent
the circumstances under which the method is appro- operator schemas, and we will assume the variables
priate. must be bound before the operator can be applied.

In this paper we suggest that operator composition We will rcfcr to an instancc of an operator with all of
has three primary effects on problem solving. Within its variables bound to constants as an instantiation of

the context of this model, we discuss how a variety iv b od n ta n ai n

of alternative methods for using composed sequences 'Often the primitive operators in a sequence can be
affect the problem-solving process. We focus primar- composed in different ways, depending on how the pre-
ily on design issues that arose while implementing conditions and postconditions of the operators unify with
three systems: PRODIGY[16; 18], MORRIS[17] and each other. Thus several different macros may actually be
the CBG learning game-player[15]. The purpose of composed from a given operator sequence.
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that operator. In our figures, variables will be indi-
cated in italics, and constants in uppercase.

A second criterion for categorizing problem solvers
is the search method. Most systems use some variation 01
of either forward search (as in production systems) or

backward search (as in means-end analysis), with ei- Statel State4
ther a depth-first, breadth-first or best-first ordering
strategy. In general, the issues we will discuss arise
regardless of the search method, althogh there are 02 d03 03 04 05
some peculiarities that are method-specific, in which
case these will be explicitly mentioned. We assume State2 State3 State5 State6 State7
only that the problem solver operates by successively
expanding the nodes of a search tree, so that at each
node of the tree some set of primitive operators and

macros is coasidered. Each edge in the tree thus cor-
responds to some operator or macro. Each node in the
tree is a state in the search space.

3 The Effects of Macro Learning 5 tatel State4

The purpose of macro learning is generally to speed
up problem solving. For example, in [16], the utility 02 0 3 04
of a learned macro is measured in terms of its expected

effect on problem-solving performance, as given by the
following: State2 State3 State5 State6 State7

Utility = (AvrSavingsxApplicFreq)-AvrMatchCost
odeterin- Figure 1: Illustration of the reordering effect for a veryAvrMatchCost is the expected time cost of dtrn- simple search space

ing whether the macro is applicable, ApplicFreq is the

probability that the macro will be applicable when it
is tested, and AvrSavings is the average time differ- operators, 01, 02, 03, 04 and 05, and one learned
ence in problem-solving performance one can expect if macro, M-2-3, created from the sequence 02, 03. (For
the macro is applied, as compared to that if it is not simplicity, the figure only shows the top levels of the
applied. Note that the average savings can be nega- search tree.) During problem solving the system al-
tive, since after applying a macro the system might ways tries applying the macro before any of the origi-
actually be farther from a solution than before. In nal primitive operators. In the figure, notice that state
general, the savings, match cost, and application fre- 5 is the fifth node visited before learning, but it is vis-
quency may depend on complex factors, such as the ited first after learning.
number of other learned macros in the system and the Another effect is a change in path cost: the cost of
matching method. Thus the formula above gives the Aohrefc sacag npt ot h otoreaching a state via a macro may be more or less than
utility of an individual macro, but offers little insight the cost of testing and applying the corresponding se-
into how well specific strategies for learning and using quence of primtive operators. Typically, the cost of
macros will perform. For this, one must consider the using a macro is less than the cost of using the cor-
overall effect of macro learning on the search space. responding sequence of primitive operators. One re-
In this section, we suggest that macro learning can be son is that there are often fewer preconditions and/or
viewed as having three primary effects. postconditions in the macro than in the corresponding

First, macro learning changes the order in which sequence of primitive operators. For, example, con-
the search space is traversed. Typically, operator se- sider a macro composed from the operator sequence
quences that have previously succeeded (i.e., those en- GO-TO-OBJ, PICK-UP-OBJ. Most of the precondi-
coded as macros) are tried before other sequences. We tions of the primitive operators are aloo preconditions
refer to this as the reordering cffeci (or 'experiential of the macro. However, the precondition (NEXT-TO
bias" [17]).2 Figure 1 illustrates the reordering ef- ROBOT object) of PICK-UP, for example, is not a
fect by showing the search tree for a simple depth- precondition of the macro because it is added by the
first, forward-chaining problem solver before and af- GO-TO-OBJ operator.
ter learning. The search space contains five primitive A third effect is that of increased redundancy, which

21n some systems, search is conducted exclusively with tends to degrade performance. There are two sources
macros after a certain point, a in Korf's system[9/, where of increased redundancy. First, after learning a set
the macros are guaranteed to find a solution. In any event, of macros, there may be many paths that lead to
si.ce we could theoretically search with the original system identical search states, since the the same sequence
if the macros fail to find a solution, we can consider this as of primitive operators can be explored using various
an extreme case of reordering, combinations of macros and primitive operators. Fig-
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the system. In the following sections, we will examine
each of these effects in more detail, and how the design
of a system influences the tradeoffs.

02/ ,4/ /4 The Reordering Effect

To some extent, all macro-learning systems employ
03 learned macros in preference to the original operators.

Otherwise, it would be pointless to learn macros. Ex-
actly what it means to "employ" a macro varies con-
siderably, however. In this section we consider various
schemes for using macros and their effect on the search
process.

4.1 Intermediate States

The first reordering issue we will consider is whether
the macro is employed as an indivisible atomic unit,

131) 0.l oil or intermediate states are explored. Consider a sim-
02 03 04 ple forward search system, where macro M-1-2-3 is

composed of individual operators 01, 02 and 03. As
shown in figure 3, if the system discovers that the pre-

Figure 2: Complete conversion of search space into conditions of macro M-1-2-3 are satisfied in the current
macros illustrates potential increase in redundancy state, then it can apply that macro, and arrive in state

4. However, if the goal can actually be achieved by just
applying operators 01 and 02, then the system may

ure 1 illustrates this source of redundancy, which we have "jumped over" the solution, since the goal may
refer to as search state redundancy. If macro M-2- not be true in state 4. (For a concrete example, con-
3 does not lead to a solution, the corresponding se- sider a macro for moving a robot from one room into
quence of primitive operators, 02, 03, will still be the next, and a problem where the goal is simply to
explored later in the eearch, and thus State5 (and have the robot be at the doorway.) An alternative op-
all of its successors) will be visited twice. Second, tion is, instead of treating the macro as a single atomic
the learned macros may have duplicate initial subse- operator, to treat the macro as a sequence of primi-
quences. For example, a macro composed of primitive tive operators, so that intermediate states 2, 3 and 4
operators 02 and 03 will share many of the same pre- are visited in succession when the macro is applied. A
conditions as a macro composed of primitive operators similar option is available to backward chaining sys-
02 and 04. Thus, the preconditions of a primitive op- tems. When considering a macro that achieves some
erator, such as 02, may be tested again and again goal, a system can successively backchain on each op-
as each of the macros containing that operator are erator in the sequence, rather than treating the macro
tested. We refer to this as path redundancy. Figure as an indivisible operator.
2 shows the transformation produced by macro for- This strategy may seem a bit odd at first, but in
mation when all operator sequences are converted into fact, this is essentially the way the STRIPS macro
macros, illustrating the potential increase in path re- system operated. Given a macro for solving a par-
dundancy. According to our model, increasing redun- ticular goal, STRIPS would scan the macro to find
dancy is one reason why a macro-learning system may the shortest subsequence whose preconditions were
perform worse than a non-learning system, as has been applicable, and thus avoid "jumping over" solutions.
observed in a variety of empirical studies (e.g., [17; 13; More specifically, given a macro representing operator
20; 14]). sequence 01, 02..0,, where O, achieves the current

.i ese three factors often have conflicting effects on goal, STRIPS would first check whether the precondi-
the performance of a macro system. For example, our tions of 0. matched, and if not, check the precondi-
experience with the MIORRUS system I1J, a STRIPS- tions of On 0,, and then On,-2, 'On- , 0, Ond bu
like macro-learning system, indicated that the reorder- on (using an efficient "planex scan" of the macro's tri-
ing effect had the highest potential for improving per- angle table) until the entire macro had been checked.
formance. but that increased redundancy could easily More sophisticated methods can be used to elim-
counter that if too many macros were learned. Path inate unnecessary operators in a macro. Consider
cost effects were much less significant than the other a macro from the STRIPS robot-world in which the
two effects. robot moves from one room into the next by going to

We also found that in designing macro-learning sys- the door, opening it, and moving through the door
tems, including PRODIGY, MORRIS and the CBG way. Given a problem where the door is already open,
learning game-playing system, many design decisions a simplistic STRIPS-like macrc system will backchain
had important ramifications with regard to the inter- on the preconditions of the macro, and have the robot
action of these effects and the resulting performance of first close the door, so that the macro can then be
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seque3nce, then it indicates a preference for the last
Statel operator in the sequence. (The last operator is cho-

sen because PRODIGY employs means-ends analysis,
01 a form of backward chaining). For example, consider a

'S e search control rule learned by the success of operator
M-1-2-3 State2 State2 sequence 01, 02, 03 in solving a goal G. Although the

02 preconditions of the control rule are the preconditions
of the entire sequence, the control rule will recommend

tate3 only that 03 be chosen to solve goal G. The obvious
State3 / disadvantage of this strategy is that it can be expen-

03 sive. After 03 is chosen, 02 and 01 still remain to
be selected after the system backchains on 03. Thus

State4 State4 multiple control rules are needed to exactly duplicate
the action of a traditional macro. However, the the-

Figure 3: Jumping over states 2 and 3 with macro ory behind this strategy assumes that at most deci-

M-1-2-3 sion points, control rules are unnecessary - the correct
choice will be made through the use of the system's de-
fault heuristics. Control rules are only needed in spe-
cific circumstances where the wrong operator would be

applied. A more sophisticated system that considers chosen, and a costly mistake would be made.
each operator in turn can eliminate the OPEN-DOOR
operator from the plan since the door is already open.

Unfortunately there are generally two drawbacks to One advantage of this "sin,,e operator" strategy is
checking intermediate states. First, there is little point that it allows control information to be brought to bearin compiling the preconditions and/or postconditions at intermediate states. Consider a situation where twoof the macro, since the individual operators must each macros exist, MA and MB, and a problem that in-be tested and applied in order to generate the interme- volves multiple goals. Assume the solution requiresdiate states. In other words, macros lose their ability interleaving macros MA and MB, e.g., applying an ini-to decrease path cost. Second, redundancy is increased tial subsequence of MA, then applying MB, and finallysincee intermediate states may be visited multiple finishing MA. If the system could only apply MA astimes. They will be visited when any macros with a unit, it would never even notice that MB was appli-time. Tey wll e viite whe an macos ith cable at an intermediate state. To be more concrete,
the same intermediate states are considered, as well as cl A a itredi s oe mor c n
when the original primitive opera ors are explored, macro MA might be "driving home from work", andmacro MB might be "going to the bank to get money•

4.2 The Single Operator Approach Given the two goals of getting home and having money,

Another common approach for employing macros also one would want to consider the option of stopping at

avoids the problem of jumping over intermediate the bank on the way home from work. Single opera-

states. This strategy is used by the PRODIGY sys- tor learning enables the system to take shorter paths

tem when it learns by observing successful opera- through the state space when they arise serendipi-

tor sequences[16; 18]. PRODIGY'S explanation-based tously because the problem solver still plans one oper-

method3 for learning from success is similar to macro- ator at a time. In the traditional macro approach, the
operator learning. (PRODIGY can also learn from problem solver is locked into pre-established sequences

problem-solving failures and goal interactions, how- of operators.

ever, we will focus only on learning from success, as
it is most similar to traditional macro-operator learn- A second advantage of the single operator approach
ing.) To learn from a successful operator sequence, is that it enables multiple rules to be combined to-
the system analyses the operator sequence in order gether into simpler rules. For example, consider a sys-
to identify the sequence's preconditions. The result- tem that has learned two macros, one for going to the
ing rule, called a search control rule, is very similar car and opening the door (assuming it is unlocked) and
to a traditional macro-operator, but it is used differ- another for going to the car, unlocking it, and opening
ently If a control rule is learned from an operator it. These macros can be combined into an efficient set

of single-operator rules, one for each step of the plan,
3PRODIGY's search control rules are learned via rather than having a separate macro for each possible

explanation-based learning. The rules can be used to se- operator sequence. Several variations of the single op-
lect, reject, or indicate preferences for operators, goals or erator approach have been developed, such as LEX2's
bindings. In this paper we restrict the discussion to learn- use of problem-solving heuristics[19], and PET's use
ing from successful operator sequences, which produces of episodes [21] (loosely packaged heuristic rules for
operator preference rules only. Although operator pref-
erence rules are used differently than macros, the EBL operator selection). A variety of methods have been
method is essentially identical to macro learning, and in- suggested for combining multiple rules, such as sim-
deed, PRODIGY's EBL method for learning from success- plification (in PRODIGY) and induction (in LEX2).
ful operator sequences has also been used to produce tra- In-depth comparisons of these approaches have yet to
ditional macros rather than search control rules[16]. be carried out.
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4.3 Backchaining on Macros

Another reordering issue (related to our discussion of Top-level goal
intermediate states) arises solely in connection with
backward chaining systems. This is the question of H- 3
whether a system should backchain on the precondi-
tions of macros in addition to backchaining on the pre-
conditions of primitive operators. In other words, if Subgoal P3 Subgoal P3
there exists a macro that can achieve a current goal
(or subgoal), but its preconditions are not currently
satisfied, should a system backchain on the unmatched
preconditions of the macro? A variety of answers are
possible. One strategy, used in PRODIGY,4 is not
to backchain on macros at all; if the preconditions
of the macro are not applicable, then the macro is digure 4: How backchaining on macros leads to redun-
not used. A second, less restrictive strategy, used in dancy
STRIPS, is to backchain on the unmatched precondi-
tions of the macro. A third strategy, even less restric-
tive, is to backchain on the unmatched prtconditions lem described in section 3, since the same work will be
of the "best" tail subsequence of a macro. (Given repeated in different paths in the search space.
a macro composed of operators O1, O2...On, a tail
subsequence is any subsequence Ok, 0k+1...On, where 4.4 Interactions Between Search Strategy
k < n.) "Best" might be defined as the sequence with and Macro Usage
the fewest unmatched preconditions, for instance. The last ordering issue we will consider in this section

Empirical evidence from a study by Mooney[20] in- concerns the interaction of macro learning and depth-
dicates that the strategy of backchaining on macros first search. For efficiency, many problem solvers use
may be counterproductive, in that it will decrease some variation of depth-first search. Unfortunately,
utility. Mooney's study compared a system that macro learning can give a depth-first search a more
backchained on macros to an extremely strict sys- breadth-first flavor, as the following example illus-
tern that applied a macro only if it could solve the trates [16; 24]. Figure 5 shows a graph representing
entire problem immediately (from the initial state). seven connected rooms in a house. Consider a sim-
The second system tended to perform better. Un- ple operator for moving a robot from room to room:
fortunately. Mooney's study did not consider inter- to move from room-z to room-y, the rooms must b
mediate points in the design space (such as a system directly connected (i.e., there must be an edge co-.-
that could apply macros to solve subgoals, but which necting them on the grarlh) and the robot must be
would not backchain on the macros) and so the is- in room-z. Given a problem where the robot must
sue of backchaining on macros still has not been corn- move to room 4 from room 1, a solution is to move
pletely addressed. Experiments (unpublished) with from room 1, through rooms 2 and 3, and into room
the MORRIS system indicated that backchaining on 4. A depth-first traversal of the search space will, in
macros can, by itself, reduce utility, which is consis- effect, explore the graph depth-first, which in this case
tent with Mooney's results. is a very efficient way to find a path. The macro that

Using our search space model it is straightforward is learned from this solution is shown in figure 5. It
to explain why backchaining on macros may be coun- states that if there is a sequence of four nnected
terproductive. Consider a node in the search tree, rooms, then the robot can move from the fir t room
as shown in figure 4. There will be a set of relevant to the last. Unfortunately, when using such a macro,
macros at that node. (In a backward-chaining system, most problem solvers w ill find all paths between rooms
a rule or macro is relevant at a node if one or more of its 1 and 4, which is considerably more expensive than
postconditions unifies with one or more goals at that finding a single path. This difficulty is due to the use
nodc.) Macros formed from similar subsequences, such of matching algorithms such as RETE [6], which at-
as M-1-2-3 and M-2-3-4 in the figure, will contain many tempt to find all matches to the preconditions of a
identical preconditions, such as P3. Each precondition macro. Thus, what was originally an efficient depth-
is a potential subgoal. For each subgoal, there will be first search is converted into a seasich where all patihs
subtree (in the search tree) that must be explored in up to length four will be explored (by the matcher).
order to achieve that subgoal (or determine that it is One might argue that this problem can be solved
unachievable). Thus, for each identical subgoal, there simply by using a matcher that stops once a single
will be identical subtrees. In the figure, precondition successful instantiation of a macro is found. Unfortu-
P3 is an unmatched precondition of both macros, and nately, the answer is not so simple. In a STRIPS-like
therefore becomes a subgoal for both macros. Thus, macro system, for instance, a macro will rarely solve
this situation is one version of the redundancy prob- an entire problem, but will only solve one or more sub-

goals. Thus, the first instantiation found may solve a
4Prodigy can learn both traditional macros and search subgoal, but after applying the instantiated macro, it

control rules, neither of which is backchained on. may not be possible to find a global solution. Alter-
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Connections between rooms Learned Macro

Rooml PRECONDITIONS:(AND (INROOM ROBOT w)

Room5 (CONNECTED w x)

(CONNECTED x y)
Room6- Room3- Room7 (CONNECTED y z))

I / POSTCONDITIONS: (ADD (INROOM ROBOT z))
Room4 (DELETE (INROOM ROBOT w))

Figure 5: Room connections, and a macro for moving between rooms

native instantiations must then be explored. Consider of macros, because precondition matching is typically
a slightly more complex domain in which some of the extremely expensive. In fact, precondition.matching
rooms have wet floors. In this domain the move op- is NP-complete, assuming the preconditions are each
erator is augmented so that moving into a room with existentially quantified- conjuncts [7; 16]. (Precondi-
wet floors will make its wheels wet. Consider a prob- tion matching is even more expensive if the precondi-
lem where the robot must be moved from room 1 to tion language allows arbitrary existential and univer-
room 4 so that it can accomplish some task in room sal quantification; in this case the task is P-space com-
4 (e.g., moving a box), but now room 2 is wet. Un- plete.) Many standard matching algorithms, including
fortunately, after taking the first path found to room4 the matching algorithm used in PRODIGY[16] and the
(though rooms 2 and 3) the problem solver may dis- RETE matching algorithm [6] used by SOAR[10], run
cover that the robot cannot accomplish its task be- in time 0(0) in the worst case, where a is the number
cause it lacks traction due to its wheels being wet. of conditions that are- true -in the state, and p is the
The problem solver must then backtrack and consider number of-preconditions in the macro.
alternative paths to room 4, until it finds one that The cost of matching is particularly important-for
leads-through dry rooms, so that a complete solution macro systems, because macros can have many-pre-
can be generated. Thus, an efficient macro problem conditions. If a macro is created from-a primitive op-
solver should stop matching as soon as an appropriate erator sequence 01, O2...6,,, -then every precondition
instantiation is found, but be capable of resuming the of every primitive operator in this sequence will also
matching process if that instantiation does not lead to be a precondition of the resulting macro, except for
a solution. preconditions that are guaranteed- to be true due to

Finally, we note that this issue is even more prob- the action of earlier operators in the sequence. (A
lematic for problem solvers, such as MORRIS, that precondition of Ok is guaranteed to be true if an ear.
use'heuristic evaluation to determine which operator lier operator O, j < k,-either tests or adds that same
or macro to select. Such problem solvers normally at- precondition, and no operator between O and Ok can
tempt to find all instantiations of relevant operators delete that condition.) Thus the number of precondi-
at- each decision point so that they can be evaluated. tions in a macro will normally be less than the sum
In other words, the system must find all instantiations of the preconditions of the primitive operators from
of all- operators and macros, and then choose the best which it is composed, but the difference is often rel-
alternative. This exacerbates the matching problem, atively small. In general, a macro may have up to
since one cannot use the method described above in (P - 1) x N preconditions, where N is the length of
which matching terminates after a single instantiation the operator sequence, and P bounds the number of
is found. In such systems, macro learning can seri- preconditions in an operator. This assumes that each
ously distort the depth-first flavor of the search, since operator in the original sequence, except for the last,
the matching process cannot proceed in a depth-first makes at least one precondition of a subsequent opera-
manncr. tor true.5 Therefore methods for reducing the match-

ing cost for macros can be quite important. A great
5 Decreasing Path Cost deal of attention was fehised n n this in the PRODIGY

Once . macro has been learned, one can "compile"
the macro by reformulating, rearranging or indexing 6This formula also as.'mts thsa there is a single goal
its preconditions and/or postconditions in order to de- that the macro is designed to wzake true, and that the
crease the cost of using the macro. Compilation can macro's preconditions are formed solely from the precondi-
reduce the cost of testing and applying a macro sig- tions of the primitive operators in the sequence. (In some

systems, extra preconditions must be inserted in the macro-nificantly when compared to the cost of successively in order to preserve correctness. For example, in STRIPS-
testing and applying the corresponding sequence of like systems, a macro may contain additional preconditions
primitive operators. such as (NOT-EQUAL a b), which specifies that variables

Much of the work in this area has concentrated a and b cannot have the same value, in order to guarantee
on reducing the cost of matching the preconditions that the postconditions of the macro operate properly.)
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system, where the process of reducing match cost was BEFORE:
referred to as "compression". (IS-OBJECT z) from GO-TO-OBJ

The most obvious technique for reducing the cost (IN-ROOM z rz) from GO-TO-OBJ
of testing a list of preconditions is to order the pre- (IN-ROOM ROBOT rz) from GO-TO-OBJ
conditions in an intelligent manner. As discussed in (ARMEMPTY) from PICKUP-OBJ
[16], if the preconditions of a macro are simply or- (CARRIABLE X) from PICKUP-OBJ
dered so that they will be tested in the same order as (IN-ROOM ROBOT ry) from GO-TO-DOOR
in the corresponding conditions in the primitive rule (IS-DOOR dr) from GO-TO-DOOR
sequence, then the cost of testing the preconditions (DRTO-RM dr ry) from GO-TO-DOOR
of the macro will approximate the cost of searching (IN-ROOM ROBOT rz) from PUTDN-NXT-TO
in the original search space.6 Many macro-learning (IS-OBJECT dr) from PUTDN-NXT-TO
systems, including MORRIS, PRODIGY and SOAR, (IN-ROOM ry dr)) from PUTDN-NXT-TO
employ heuristic techniques to generate a better or-
der. Optimal precondition ordering is generally not AFTER:
guaranteed, as it requires knowledge about the do- (IN-ROOM ROBOT rz)
main which is typically unavailable; for example, it (IN-ROOM rz)
is necessary to know the probability that a condi- (CARRIABLE x)
tion will match, given that other conditions have, or (ARMEMPTY)
have not, successfully matched. Although precondi- (DR-TO-RM dr rz))
tion ordering techniques are commonly used to im-
prove matching cost, the problem has received very
little attention in the AI literature as compared to Table 1: The preconditions of a macro, before and
the well-studied problem of finding good subgoal or-
derings for problem solving and inference (e.g., [4; after simplification and reordering

23]). However, the problem of optimizing precondition
ordering for matching has received significant atten- must be carriable and in the same room as the robot
tion in the database literature, where it is considered
apart of conjunctive query optimization[25], may greatly constrain the choice of object. Thus ap-

plying this macro may be significantly more efficient
In addition to ordering the preconditions of a macro, than problem solving. For instance, consider a forward

it is often possible to simplify the preconditions, searrh problem solver. When applying GO-TO-OBJ
thereby reducing their match cost. For example, table the system must select an object to go to, and-an-arbi-
1 shows the preconditions for a macro composed of op- trary object in-the room will be chosen; it is only irhen
erators GO-TO-OBJ, PICKUP-OBJ, GO-TO-DOOR, the system attempts to apply PICK-UP-OBJ that the
PUTDOWN-NEXT-TO, which is learned from a prob- CARRIABLE constraint is encountered, in which case
lem where the robot must position an object next to backtracking will be necessary if the object cannot be
the door. (The operator definitions are taken from carried. In contrast, after learning the macro, the pre-
[16]). Next to each precondition is shown the opera- conditions can be ordered so that the choice of an ob-
tor from which it came. These preconditions can be ject is immediately determined by the CARRIABLE
simplified considerably, as shown in the table. No- constraint. (If the preconditions are not ordered ap-
tice -that the precondition (IS-OBJECT z), for in- propriately then inefficiencies will result. For instance,
stance, is unnecessary and can be removed, because if the preconditions are ordered in the same order that
(IS-CARRIABLE z) is also a precondition, and any- the problem solver encounters them, then the matcher
thing that is carriable is an object. Also notice that can recreate the same binding mistake as the problem
if (IN-ROOM ROBOT ry) is unnecessary given that solver! This subject is discussed at length in [161.)
(IN-ROOM ROBOT rz) is true, since the robot can There are various techniques for simplifying precon-
only be in one room at a time.7 As even this simple dition expressions, depending on how much knowl-
example illustrates, simplification and reordering are edge is available. If arbitrary inference rules are avail-
most useful when the operators in a macro constrain able to the simplifier, then producing the least expen-
each other. In our example, the fact that the object sive precondition expression requires theorem-proving

[16]. Unfortunately, theorem-proving is undecidable.
GWe note that the cost of matching a list of precondi- Less expensive simplification techniques include par-

tions depends not only on the number of preconditions, but tial evaluation, and the application of heuristic trans-
also on the number of bindings generated for the variables formations. All three of these techniques were ap-
in- the preconditions. However, as described in [16], the plied by PRODIGY's compression module, although
number of bindings generated when matching a macro's the theorem-prover ".v extremely restricted.
preconditions can 1e expected to be the same as the num- Other techniques for reformulating preconditions
ber of bindings generated when matching the correspond- are teohiqe. For eamlat al.condihaon
ing operator sequence, assuming that the conditions are are also available. For e~xample, Chase et al. [3] have
tested in the same order, described a technique that takes a precondition ex-

'If the robot could be in more than one room at a time, pression and drops conjuncts that are expensive to
these preconditions would not be redundant, since rz and evaluate. The purpose is to find an approximation to
ry have different restrictions, the original expression that is less expensive to match.
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Current results indicate that their-technique leads to vious section). For example, maximizing substructure
only minor improvements in efficiency, but the ap- sharing may conflict with optimally ordering the con-
proach appears promising. Techniques for indexing ditions in a macro. Thus, if we have two macros with
-macros, which effectively reduce the average time to preconditions A, B,-C, H, and preconditions A, B, C, J,
check whether a macro is applicable, are also an area it may be that, individually, the best ordering of their
of current interest (e.g., [1]). Indexing combines as- preconditions is A, H, C, B and A, B, J, C, respectively,
pects of precondition reordering (in that the most im- which reduces the amount of sharing that is possible.
portant conditions are examined first) and structure Similarly, methods for simplifying the preconditions of
sharing (in that many macros can share indices) to macros Ynay destroy possibilities for sharing.
improve efficiency. Intezestingly, sharing of preconditions via the cre-

ation of intermediate concepts tends to recreate the
6 Eliminating Redundancy structure of the original search space. This can be seen

in figure 2. Whereas complete macro formation will
A significant problem with using macro-operators is convert the space shown on the top of the figure into
that they introduce redundancy. As described ear- the space shown on the bottom the figure, the creation
lier, macros introduce redundancy in two ways. First, of intermediate concepts tends- to work in exactly the
states may be searched repeatedly. Secondly, macros opposite direction, i.e., it-will-convert the space shown
which represent common subpaths may have duplicate on the bottom of the figure-into the space shown on the
substructure. top of the figure. For this reason, Wogulis and Lan-

One way to reduce the first type of redundancy is gley describe their method for creating intermediate
simply to record each search state so that it is not vis- concepts as the inverse-of explanation-based learning.
ited more than once. This approach was investigated However, when both techniques are used in conjunc-
by Markovitch and Scott[141, who pointed out some tion, in a discriminating way, the advantages of both
obvious problems. First, the bookkeeping costs are can be combined (as wasfound with the CBG game-
high, especially the space cost. Secondly, the problem player[15] where structure sharing was implemented
is not completely eliminated, since the problem solver by hand).
would still visit some states more than once (although The most intensively -investigated technique for re-
it would recognize that such a state-had already been ducing redundancy is to'limit the number of macros
-visited, and discontinue search along that path). Nev- that are used by the system- [17; 16; 13; 27; 8]. (As
ertheless, Markovitch and Scott did implement this so- this subject has received considerable attention else-
lution, and found that performance of their system was where, we will only briefly touch upon it.) There
improved by a factor of two. are a variety of methods-for selecting the most useful

A method for reducing the second type of redun- macros. Frequency of use, heuristic informativeness,
dancy is to employ a scheme for sharing common sub- and a variety of other utility metrics have all been in-
structure within macros. For example, if two macros vestigated. Markovitch -andScott[12] introduce a tax-
share several preconditions, we can separate them into onomy of methods for limiting macro use. Depend-
three structures, one intermediate structure with the ing on when the "filtering" process takes place, they
shared preconditions, and two others each with the re- distinguish between selective experience, selective at-
maining conditions. This way the shared preconditions tention, selective acquisition, selective retention, and
in the intermediate structure need only be matched selective utilization. These methods have a common
once. Wogolus and Langley [26] have suggested such a purpose - by restricting a system's consideration to
scheme for creating intermediate concepts from an ini- the most useful macros, not only is redundancy lim-
tial domain theory. Such techniques would presumably ited, but the ordering bias-is improved so that the most
be even more useful once macros have been learned, useful paths in the search space are explored first.
due to the increase in redundancy.

A limited form of substructure sharing is automati- 7 Conclusion
cally implemented within the RETE match network[6],
upon which the SOAR system is built. If SOAR con- This paper has introduced a model that suggests that
tains a chunk with preconditions A, B, C, D, E and macro learning has three primary effects: the search
another chunk with preconditions A, B, C, F, G, H, space is reordered, the path cost of reaching particu-
then the network will automatically create a shared lar states may change, and redundancy may increase.
structure for matching conditions A,B and C. Unfor- The model represents a first step towards a predictive
tunately, if the second chunk is H, A, B, C, D, the theory of the utility of macro learning. Previous work
network will not create shared substructure, since it has indicated that the utility of macro learning is high
will only do so if it can find an identical initial subse- when a small set of macros can be learned that are suf-
quence. ficient for solving most problems. In this case, accord-

More complex methods for sharing substructure are ing to our model, the positive effect of reordering is
of course porsible, but little research has been done. maximized, while the negative effect of redundancy is
Methods for maximizing shared substructure may be minimized. In this paper, we have examined a variety
quite complex. Moreover, unfortunately, such meth- of more detailed issues in the design of macro systems,
ods generally conflict with compilation schemes for re- and the complex tradeoffs that determine the utility
ducing path cost (such as those discussed in the pre- of macro learning. Eventually, we hope that through
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Abstract results (lessons, explanations, plans) of processing the
old case and give them to the understander, planner

This paper describes how a reasoner can im- or problem-solver. (c) Adapt the results from the old
prove its understanding of an incompletely case to the specifics of the new situation. (d) Apply
understood domain through the application the adapted results to the new situation.
of what it already knows to novel problems The intent behind case-based reasoning is to avoid
in that domain: Recent work in Al has the effort involved in re-deriving these lessons, expla-
dealt with the issue of using past explana- nations or plans by simply reusing the results from pre-
-tions stored in the reasoner's memory to un- vious cases. However, this process assumes that past
derstand novel situations. However, this pro- cases are well understood and provide good "lessons"
cess assumes that past explanations are well to be used for future situations, since it is these very
Understood and provide good "lessons" to be cases that determine the performance of the system in
used for future situations. This assumption new situations. This assumption is usually false when
is usually false when one is learning abouti usualy foa n ne iatios eningn t one is learning about a novel domain, since cases en-
a novel domain, since situations encountered countered previously in this domain might not have
previously in this domain might not have been understood completely. Instead, it would be rea-
been understood completely. Instead, it is sonable to assume that the reasoner would have gaps
reasonable to assume that the reasoner would in the knowledge represented by these cases.
have gaps in its knowledge base. By rea- Even if past cases are not well understood, they
soning about a new situation, the reasoner can still be used to guide processing in new situations.
should be able to fill in these gaps as new However, in addition to using the past case to under-
information came in, reorganize its explana- stand the new situation, a reasoner.can also learn more
tions in memory, and gradually evolve a bet- about the old case itself, and thus improve its under-
ter understanding of its domain, standing of the domain. This is an important problem
We present a story understanding program that has not been addressed in case-based reasoning
that retrieves past explanations from situa- research, and one that is suited to a machine learn-
tions already in memory, and uses them to ing approach in which learning occurs incrementally
build explanations to understand novel sto- as these gaps are filled in through experience.
ries about terrorism. In doing so, the system This paper describes a case-based story understand-
refines its understanding of the domain by ing system that retrieves past explanations from situa-
filling in gaps in these explanations, by elab- tions already in memory, and uses them to build expla-
orating the explanations, or by learning new nations to understand novel situations encountered in
indices for the explanations. This is a type newspaper stories about terrorism. The system learns
of incremenial learning since the system im- in an incremental manner, by filling in the gaps in the
proves its explanatory knowledge of the do- retrieved explanation that is being used as a precedent
main in an incremental fashion rather than in understanding the new situation. What is done with
by learning new XPs as a whole. the newly learned information depends on the kind of

"knowledge gap" the system is trying to fill. The new
I Case-based learning piece of knowledge could result in a new explanation in

memory; it could be used to fill in a gap in an existing
Case-based reasoning and learning programs deal with explanation; it could be used to elaborate an exist,-
the issue of using past experience3 or cases to under- ing explanation if that explanation was not detailed
stand, plan for, or learn from novel situations [Kolod- enough to deal with the new situation; or it could be
ner, 1988; Harmnond, 1989]. This happens accord- used to reorganize or re-index knowledge in memory
ing to the following process: (a) Use problem descrip- to allow the reasoner to use what it already knows in
tion to get reminded of old case. (b) Retrieve the novel situations to which that piece of knowledge had
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not been applied before. Each type of learning leaves it is difficult to determine the correct level of gener-
the system a little closer to a complete understanding alization. Furthermore, many stories do not provide
of its domain. Each type of learning could also result enough information to prove that the explanation is
in a new set of gaps as the system realizes what else it correct. The understander must often content itself
needs to learn about, which in turn drives the system with two or more competing hypotheses, or otherwise
towards further learning, jump to a conclusion. This means that in a real world

Much of real-world learning is an incremental pro- situation, an explanation-based learning system may
cess of this type. A reasoner learns by modifying what still need to deal with the problem of incomplete or
it already knows using little pieces of new information incorrect domain knowledge.
that it comes tcross during its experiences. This pa- Thus the system's memory of past experiences will
per presents a theory of incremental learning for case- not always contain "correct" cases or "correct" expla-
based story understanding. nations, but rather one or more hypotheses about what

the correct explanation might have been.2 These hy-
2 Explanation patterns potheses often have questions attached to them, rep-

resenting what is still not understood or verified about
Before we can discuss the learning process, we must those hypotheses. As the understander reads new sto-
describe what needs to be learned. This depends on ries, it is reminded of past cases, and of old explana-
the purpose to which the learned knowledge will be tions that it has tried. In attempting to apply these
put. Consider the problem of building motivational explanations to the new situation, its understanding
explanations for the purpose of understanding stories, of the old case gradually gets refined. New indices
An understander could construct such explanations by are learned as the understander learns more about the
using rules connecting typical goals and plans of peo- range of applicability of the XP. The XP is re-indexed
ple (e.g., [Wilensky, 1978]). However, this would be in memory and is more likely to be recalled only in
very inefficient in complicated situations, where moti- relevant situations.
vational causal chains could be several steps long. To Thus XP learning is an incremental process of the-
get around this problem, a case-based understander ory formation, involving both case-based reasoning
uses pre-stored explanations for stereotypical situa- and explanation-based learning processes.
tions. These explanations represent standard patterns
that are observed in these situations, and hence are
called explanation patterns [Schank, 1986]. When the 4 The AQUA program
understander sees a situation for which it has a canned AQUA is a story understanding program which learns
explanation pattern (XP), it tries to apply the XP to about terrorism by reading newspaper stories about
avoid detailed analysis of the situation from scratch. terrorist incidents in the Middle East [Ram, 1987;
Thus an XP is like an abstract case; it represents a Schank and Ram, 1988; Ram, 1989]. AQUA reads
generalization based on the understander's experiences stories about suicide bombing and attempts to under-
that can be used as a paradigmatic case for similar sit- stand them by constructing causal and motivational
uations in the future. explanations for the events in the stories.

For example, a "blackmail" situation may be repre- AQUA's case memory is based on XPs that have
sented by the following XP (xp-blackmail): 1  been used to explain past situations. AQUA improves

(1) The blackmailee has a goal G1. its explanatory knowledge of the domain through a

(2) The blackmailer has a goal G2, and the black- process of re-indexing and incremental modification of

mailee does not have the goal G2 (since otherwise these XPs. For example, suppose AQUA has just read

he or she would satisfy the goal without needing the following suicide bombing story (New York Times,

to be threatened). April 14, 1985):

(3) The blackmailee has a goal G3, which he or she Boy Says Lebanese Recruited Him as
values above goal GI. Car Bomber.

(4) The blackmailer threatens to violate G3 unless the JERUSALEM, April 13 - A 16-year-old
blackmailee performs an action A that satisfies Lebanese was captured by Israeli troops hours
b2,aee efor anction A , hae atie before he was supposed to get into an explosive-
effect of violating G1. laden car and go on a suicide bombing mission

to blow up the Israeli Army headquarters in

3 Learning explanation patterns Lebanon ...
What seems most striking about [Mo-

How are stereotypical XPs formed in memory? The hammed] Burro's account is that although he
work in explanation-based learning focusses on the
problem of learning through the generalization of 2Actually, a single story or episode can provide more
causal structures underlying novel situations [DeJong than one "case," each case being a particular interpretation
and Mooney, 1986; Mitchell et aL, 1986]. However, or dealing with a particular aspect of the story. For an

explanation program, each anomaly in a story, along with
Details of XP representitions may be found in [Ram, the corresponding set of explanatory hypotheses, can be

1989]. used as a case.
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is a Shiite Moslem, he c'un.: from a secular fam- the situation. For example, a classic blackmail situa-
ily background. He speni free time not in tion is one where a rich businessman who is cheating
prayer, he said, but riding his motorcycle and on his wife is blackmailed for morny using the threat
playing pinball. According to his account, he of exposure. If one read about a r; h businessman
was not a fanatic who wanted to kill himself in who suddenly began to withdraw large sums of money
the cause of Islam or anti-Zionism, but was re- from his bank account, one would expect to think of
cruited for the suicide mission through another the possibility of blackmail. However, one does not
means: blackmail. normally think of blackmail when one reads a story

about suicide bombing, although theoretically it is a
After reading this story, AQUA builds the following possible explanation.
hypothesis tree in memory, representing an anomaly
(Why would the bomber perform an action that resulted The point is that XPs are associated with stereo-
in his own death , alternative hypotheses constructed typical situations and people in memory. An under-
by applying known XPs to the anomalous situation stander needs to learn the stereotypical categories that

(religious fanatic'and blackmail), questions that would serve as useful indices for motivational explanations.

verify these hypotheses, and answers to these ques- This is a type of inductive category formation [Diet-

tions, if any:3  trich and Michalski, 1981]; however, the generalization

WHY DID THE BOMBER DO THE SUICIDE BOMBING? process is constrained so that the features selected for
generalization are those that are causally relevant to

/ \ the explanations being indexed [Flann and Dietterich,
THE BOMBER WAS A THE BOMBER WAS 1989].
RELIGIOUS FANATIC BLACKMAILED INTOreuted). THETI SICIDED BOING. AQUA indexes motivational XPs in memory us-
(refuted). THE SUICIDE BOMBING. ing typical contexts in which the XPs might be en-

/ I countered (situation indices), as well as character
WHAT IS THE WHAT IS THE WHAT COULD THE stereotypes representing typical categories of people to
RELIGION OF RELIGIOUS ZEAL BOMBER WANT MORE whom the XPs might be applicable (stereotype indices)
THE BOMBER? OF THE BOMBER? THAN HIS OWN LIFE? [Ram, 1989]. In the above example, AQUA learns a

I I new context for blackmail (suicide bombing), as well
SHIITE MOSLEM NOT A FANATIC as a new character stereotype representing the type

The final explanation built for this story involves a of person who one might expect to see involved in a
novel application of a stereotypical XP, xp-blackmail. "blackmailed into suicide bombing" explanation. Let
Even though the system already knows about black- us discuss how AQUA learns these indices.
mail, it learns a new variant of this XP (xp-
blackmail-suicide-bombing), based on the partic- 5.1 Learning situation indices
ular manner in which xp-blackmail was adapted to
fit the story. AQUA also learns indices to the new XP. AQUA learns new contexts (e.g., "suicide bombing")
Both kinds of learning are important in a case-based for stereotypical Xis (e.g., "blackmail") which are
reasoning system. Let us start with the latter. then used as situation indices for these XPs in the

future. The main issue here is how far the context

5 Learning indices for explanation should be generalized before it is used as an index. In
the above example, should the new situation index for

patterns blackmail be suicide-bombing, suicide, bombing,

Regardless of whether a new XP is learned from destroy, or indeed any MOP (action) with a neg-
scratch or by applying an existing XP to a new sit- ative side effect for the actor? The issue here isn't
uation, the XP needs to be indexed in memory ap- one of correctness but of utility. As discussed earlier,
propriately so that it can be used in future situa- xp-blackmail is a possibility whenever the actor does

tions in which it is likely to be useful. Ideally, an XP something he would ordinarily not do because of a neg-
should be indexed in memory such that it is retrieved ative side effect. However, XP theory tries to replace
only in those situations in which it is applicable. But generalized reasoning of this form with specific reason-
this is impossible in practice. For example, consider ing about stereotypical situations. The latter is more
the applicability conditions for "blackmail." In gen- efficient even though it is less general.
eral, blackmail is a possibility whenever "someone does After reading the above story, for example, one
something he doesn't want to do because not doing it would expect to think of blackmail when one reads an-
results in something worse for him." But trying to other story about a suicide bombing attack. However,
show this in general is very hard. Thus, in addition to one would probably not think of blackmail on read-
general applicability conditions, an understander mist ing any story about suicide, say, a teenager killing
learn specific, sometimes superficial, features that sug- himself after failing his high school examinations, even
gest possibly relevant XPs even though they may not though theoretically it is a possible explanation. Fur-
completely determine the applicability of the XP to thermore, it would not be useful to index the new XP

under bombing in general (as opposed to suicide-
3The understanding process by which AQUA builds this bombing in particular), since the particular goal viola-

-hypothesis tree is irrelevant for the purposes of this paper. tion of the p-life goal is central to this explanation.
Details may be found in (Ram, 1989]. Thus in the above example, AQUA uses suicide-
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Figure 1: Learning situation indices for XPs. Upward lines represent isa links, and downward dotted lines represent
scenes of MOPs. Heavy lines represent situation indices, which point from MOPs to XPs. Here, AQUA has just built a
situation index from suicide-bombing to a copy of xp-blackmail.

bombing as the situation index for the new variant of and beliefs, along with predictive features for these el-
xp-blackmail (figure 1). After reading several stories ements. Such a collection is called a character stereo-
about blackmail, AQUA would know about different type.
stereotypical situations in which to use the blackmail
explanation, rather than a generalized logical descrip- Character stereotypes serve as motivational cate-
tion of every situation in which blackmail is a possible gories of zharacters and are an important index for
explanation. In other words, AQUA would have in- XPs in memory. In the above example, AQUA learns
dexed a copy of xp-blackmail under all the MOPs for a new stereotype (stereotype. 79) representing a typ-
which it has seen xp-blackmail used as an explana- ical Lebanese teenager who might be blackmailed into
tion. Whenever these MOPs are encountered, AQUA suicide bombing, which is used to index the blackmail
would retrieve the new blackmail XP (if the other in- XP. The stereotype is built from the novel blackmail
dices are also present) .4 The reason that a copy of the explanation by generalizing the features of the charac-
original XP is used is that the XP, once copied, will ter involved in that explanation:
need to be modified for that particular situation, as
discussed below.

5.2 Learning stereotype indices

The main constraint on a theory of stereotype learning
is that the kinds of stereotypes learned must be useful Answering question: WHY DID THE BOY DO THE SUICIDE
in retrieving explanations. In other words, they must BOMBING?
provide the kinds of discrimination that are needed for with: THE BOY WAS BLACKMAILED INTO
indexing XPs in memory. Since volitional explanations DOING THE SUICIDE BUhSINuG.

are concerned with goals, goal orderings, plans and
beliefs of characters, the learning algorithm must pro- Novel explanation for A SUICIDE BOMBING'
duce typical collections of goals, goal-orderings, plans Building new stereotype STEREOTYPE.79:

'AQUA can still understand other blackmail situations Typical goals:
that it has not learned about as yet, as it did the story in P-LIFE (in)
the above example. Thus not having a situation index for A-DESTROY (OBJECT) (out)
an XP does not necessarily mean that the XP cannot be AVOIDANCE-GOAL (STATE) (question)
applied to the situation, but rather that this XP is not one Typical goal-orderings:
that would ordinarily come to mind in that situation. AVOIDANCE-GOAL (STATE) over P-LIFE (question)
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Building new stereotype (STEREOTYPE.79):
Typical beliefs:

RELIGIOUS-ZEAL = NOT A FANATIC (in) Inferring GOALS
Typical features: from XP-BLACKMAIL (successful):

AGE - TEENAGE AGE (hypothesized) THE ACTOR WANTED TO PRESERVE HIS OWN LIFE.
RELIGION - SHIITE MOSLEM (hypothesized) THE ACTOR DID NOT WANT TO PERFORM THE
GENDER - MALE (hypothesized) TERRORIST MISSION.
NATIONALITY w LEBANESE (hypothesized) THE ACTOR WANTED TO AVOID SOMETHING.

Indexing XP-BLACKMAIL-SUICIDE-OMBING Inferring GOAL-ORDERINGS
Stereotype index - STEREOTYPE.79 from XP-BLACKMAIL (successful):
Situation index = SUICIDE-BOMBING THE GOAL OF THE ACTOR TO AVOID SOMETHING

WAS MORE IMPORTANT THAN THE GOAL OF
THE ACTOR TO PRESERVE HIS OWN LIFE.

The label in (out) marks features that are known to These goals and goal-orderings are added to the stereo-
be true (false) of this stereotype [Doyle, 1979]. These type being built. At this point, stereotype .79 has
features are definitional of the stereotype. The label the following features:
question marks -features that are in but incomplete.
In this case, (AVOIDANCE-GOAL (STATE)) refers to an Typical goals:
unknown goal that needs to be filled in when the in- P-LIFE (in)
formation comes in. This is represented as a goal A-DESTROY (OBJECT) (out)
with an unknown goal-object. Finally, the label AVOIDANCE-GOAL (STATE) (question)
hypothesized marks features that were true in this Typical goal-crderings:
story but were not causally relevant to the explana- AVOIDANCE-GOAL (STATE) over P-LIFE (question)
tion. These features are retained for the purposes of 5.2.2 Learning from failed explanations
recognition and- learning. Since AQUA does not as- M
sume that its explanations are complete, there is the many explanation-based learning programs learn only
possibility of-learning more about this explanation in from positive examples (e.g., [Mooney and Deong,
the future that would help to determine whether these 1985; Segre, 1987]). However, it is also possible to
features have explanatory significance. This has not apply this technique to learn from negative examples
yet been implemented in AQUA. (e.g., [Mostow and Bhatnagar, 1987; Gupta, 1987]).

AQUA uses refuted hypotheses to infer features that
The stereotype is used to index the new explanation should not be present in the newly built stereotype.

in memory (figure 2). After reading this story, AQUA These are features which, if present, would have led to
uses the new stereotype to retrieve the blackmail ex- the hypothesis being confirmed.
planation when it reads other stories about Lebanese For example, in the blackmail story, AQUA knows
teenagers going on suicide bombing missions. that the person being blackmailed is not a religious

fanatic, since the religious fanatic explanation, whichThis stereotype is built through generalization un- depended on this fact, has been refuted. The kind of

der causal constraints from the hypotheses that were
person likely to be blackmailed into suicide bombingconsidered, including the ones that were ultimately re- 5s hrfrnta eiiu aai~ This feature is

futed. The causal constraints are derived both from is, therefore, not a religious fanatic.

the successful explanation (blackmail) as well as from recorded in the newly built stereotype.

unsuccessful hypotheses, if any (here, religious fanati- Building new stereotype (STEREOTYPE.79):
cism).

XP-RELIGIOUS-FANATIC failed because:
THE BOY DID NOT BELIEVE FANATICALLY IN THE
SHIITE MOSLEM RELIGION.

5.2.1 Learning from successful explanations
Inferring BELIEFS

Clearly, much of stereotype.79 comes from the moti- from XP-RELIGIOUS-FANATIC (failed):
vational aspects of the blackmail explanation. AQUA THE ACTOR DID NOT BELIEVE FANATICALLY IN
retains those goals, goal orderings and beliefs of the A RELIGION.
character in-the story that are causally implicated in This results in a new belief being added to
the blackmail explanation. Since blackmail relies on a stereotype.79:
goal ordering between two goals, one of which is sac-

.rificed for the other, the stereotype must specify that 'As before, this is a stereotypical inference and not a
the character has a goal that he or she values above logically correct one. A religious fanatic could indeed be
p-life. The stereotype also specifies that the char- blackmailed into suicide bombing; however, on reading a
acter would -normally not have the goal of performing story about a religious fanatic going on a suicide bombing
terrorist missions, since this is part of the blackmail mission, blackmail would not normally come to mind. This
explanation. In the above story, AQUA infers the fol- means that xp-blackmail-suicide-bombing should not be
lowing goals and goal-orderings for the actor (corre- indexed under religious-fanatic, at least on the basis of
sponding to (1), (2) and (3) of xp-blackmail, page 2): this example.
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Figure 2: Learning stereotype indices for XPs. Upward lines represent isa links, and downward dotted lines represent
scenes of MOPs. Heavy lines represent indices to XPs. Here, AQUA has just built a stereotype index from stereotype. 79,
representing a lebanese-teenager, to xp-blackmail-suicide-bombing

Typical beliefs: 6.2 Incremental refinement of XPs by
RELIGIOUS-ZEAL - NOT A FANATIC (in) answering questions

The reason that learning from the failed explanation In addition to raising new questions, of course, an un-
works in this example is that the blackmail explana- derstander must answer the questions that is already
tion specifies that the verson being blackmailed would has in order to improve its knowledge of the domain.
normally not have the goal to perform that action. AQUA uses its questions to focus the understanding
This rules out other explanations which would result process, and learns when these questions are answered.
in this goal. Our theory does not deal with the issue of For example, consider the following story:
multiple successful explanations; more research needs JERUSALEM - A young girl drove anto be done in this area. JRSLM - on ildoea

explosive-laden car into a group of Israeli guards

6 Modifying existing explanation in Lebanon. The suicide attack killed three

patterns guards and wounded two others ...
The driver was identified as a 16-year-old

6.1 Associating new questions with XPs Lebanese girl. ... Before the attack, she said that

Suppose AQUA reads the blackmail story with only a terrorist organization had threatened to harm

the religious fanatic XP for suicide bombing in mem- her family unless she carried out the bombing

ory. When reading this story, AQUA is handed an mission for them. She said that she was prepared

explanation for the suicide bombing: the story explic- to die in order to protect her family.

itly mentions that the bomber was blackmailed. In a When this story is read, AQUA retrieves the new
sense, then, the story has been understood since an ex- xp-blackmail-suicide-bombing and applies it to the
planation for the bombing has been found. However, story. The question that is pending along with this
one could not really say that AQUA had understood explanation is also instantiated. When the question
the story if it didn't ask the question, What could the is answered, it is replaced by a new node representingboy an! mom than ... oW. lNf .Ul this question the protect-family goal, and be.orties par, of xp-

is raised while reading the story, one would have to say blackmail-snicide-bombing. Since no explanations
-that AQUA had missed the point of the story. are known for the newly added node, this in turn be-

Such questions correspond to gaps in the explana- comes a new question about the elaborated XP (not
tion structures that are built during the understand- shown in the figure). The question is seeking a rea-
ing process (figure 3). These questions are associated son for the unusual goal-ordering of the actor, in
with the XP, and may be answered later in the story which protect-family is given a higher priority than
or when the XP is applied to a future story. When p-life.
they are answered, the understander can elaborate and When the elaborated XP is applied to a new sui-
modify the XP, thus achieving a better understanding cide bombing story, the new node will now be one of
of the causality represented by the XP. the premises of the hypothesis, causing AQUA to ask
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Figure 3: Associating new questions with XPs. The XP represents a situation in which an ager~t A volitionally performs
(chooses-to-enter) an action whose outcome is known (knows-result) to be the death-state of A, as well as an unknown
state that A wants more than he wants to avoid his death-state (the goal-ordering). The unknown goal represents
the new question, noat could the actor want more than his own life? This is depicted as an empty box, representing a
gap in the program's knowledge. The XP is elaborated by filling in this gap when this question is answered.
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whet!her A.he actor was trying to protect his family. [Mitchell ei al., 1986] T. M. Mitchell, R. Keller, and
This reflects a deeper understanding of this particular S. Kedar-Cabelli. Explanation-Based Generaliza-
scenario and is shown in figure 4. The new question tion: A Unifying View. Machine Learning, 1(1):47-
will also be instantiated, causing AQUA to look for an 80, 1986.
explanation for the unusual goal-ordering. Should
new questions be raised and then answered during fu- [Mooney and DeJong, 1985] R. J. Mooney and G. F.
ture stories, AQUA will again be able to elaborate this DeJong. Learning Schemata for Natural Language
XP in a similar manner. Thus AQUA evolves a better Processing. In Proceedings of the Ninth Interna-
understanding of the "blackmailed into suicide bomb- tional Joint Conference on Artificial Intelligence,
ing" scenario through a process of question asking and pages 681-687, Los Angeles, CA, August 1985. IJ-
answering. OAT.

7 Conclusions [Mostow and Bhatnagar, 1987] J. Mostow and N.
Bhatnagar. FAILSAFE - A Floor Planner that uses

Explanation patterns are used for constructing expla- EBG to Learn from its Failures. In Proceedings of
nations for anomalous situations by applying stereo- the Tenth International Joint Conference on Arti.
typical packages of causality from similar situations
encountered earlier. Thus XPs are abstract cases that ficial Intelligence, pages 249-255, Milan, Italy, Au-
are used as paradigmatic exa'ii.s of stereotypical sit- gust 1987. IJCAI.
uations. [Ram, 1987] A. Ram. AQUA: Asking Questions

This paper presents a theory ,fXP learning through and Understanding Answers. In Proceedings of
the incremental modification -f existing XPs, using the Sixth Annual National Conference on Artifi-
explanation-based learning techniques to constrain the cial Intelligence, pages 312-316, Seattle, IA, July
modification process. The modifications involve the cia7 Ineien As 12 Sat tle, IAtJly
adaptation and elaboration of XPs, as well as the 1987. American Association for Artificial Intelli-
learning of indice.: for XPs. Both types of knowledge gence, Morgan Kaufman Publishers, Inc.
are essential in an case-based reasoning system. The [Ram, 1989] A. Ram. Question-driven understanding:
theory is implememed in the AQUA program, which An integrated theory of story understanding, mem-
learns about terrorism by reading -i-wspaper stories ory and learning. Ph.D. thesis, Yale University, New
about unusual terrorist incidents in t.- Middle East. Haven, (.,T, May 1989. Research Report #710.
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classification systeins for agricultural [71 and medical
Abstract [8] applications. In domains where the learning events

can be represented as vectors of <attribute, value>
This paper describes the results obtained pairs, interesting results have been obtained using

in applying the learning system ENIGMA to a decision trees [11,121.
fault diagnosis problem of electromechanical Many of the above mentioned results in
devices at ENICHEM (Ravenna, Italy). The classification systems have been obtained using mainly
system ENIGMA is capable of learning inductive methods; however, an important requirement,
structured knowledge from examples and a which characterizes many applications, is that the
domain theory, using an integrated learned rules be understandable in the light of a pre-
inductive/deductive paradigm. existing knowledge of the domain; this is particularly

The results are compared with the ones true for diagnostic systems.
obtained by an expert system, designed for the This paper describes the work done, and the
same task, in which the knowledge base was resuits obtained, in a pilot project aimed at checking
acquired using the traditional method of expert the real possibilities offered by the state of the art in
interview. The comparison indicates that Machine Learning in order to automate the process of
performances obtained by the learning system knowledge base construction for an expert system
are systematically better than the ones oriented to electromechanical troubleshooting. In order
obtained by the manually developed expert to achieve these goals, the prototype system ENIGMA,
system. The conclusion is that, even if still based on an integrated inductive/deductive paradigm [41,
leaving room for improvements, automated has been developed and an extensive experimentation
learning is a viable approach to the has been performed, the most important aspects of
construction of expert systems, from the point which will be described in the following. The
of view of both obtainable performance and of performances of the knowledge base acquired by
limiting the development time and cost. ENIGMA have been compared with those of MEPS, a

rule based Expert System, whose knowledge has been
1. Introduction manually acquired by interviewing the domain expert

[5]. However, performances are not the only useful
It is widely recognized that the feasibility of parameter for the comparison: also knowledge

expert systems exhibiting human like performances understandability and meaningfulness and development
strongly depends upon the possibility of developing time have been taken into consideration. The results
mechanisms for automating the processes of knowledge have been considered encouraging enough to justify a
acquisition and maintenance. In the last decade, a large funding, by ENI, for a new project aimed at
number of research projects have been devoted to developing an industrial version of this learning
machine learning and knowledge acquisition. Although system.
many steps ahead have been made, especially for the
problem of learning concept descriptions from 2. The Learning Problem
examples, we have still to recognize that the problem
is, in general, extremely hard. This is confirmed by the The case study has been supplied by the
fact that a number of learning systems have been Enichem-Anic chemical plant at Ravenna, Italy. In this
described in the literature, but very few real applications plain a technique of predictive maintenance is applied to
were addressed, in which machine learning proved to be a large set of apparata including motor-pumps, turbo-
capable of generating a knowledge base with the same alternators and ventilators.
(or better) performance as the one construcied b,' a All these apparata share the common feature of
human expert. We mention, in this sense, the results possessing a rotating shaft to which various rotors are
obtained by Michalski in developing automatic connected. When a machine possesses rotating



Integrated Learning in a Real Domain 323

elements, several unavoidable vibratory motions are to define an adequate description language. It turns out,
induced in its parts; these vibrations occur also during in fact, that the single mechanalysis measures are too
the correct machine operation and are not dangerous as low level as features and cannot be used directly to
long as their amplitude remains limited. When some build up a description space. On the contrary, features
fault occurs in the machine, new, anomalous vibrations of a higher level, defined in terms of groups of items,
appear, beside other manifestations. The aim of the are to be introduced in order to describe hypotheses.
predictive maintenance is to locate failures (still in the This form of "constructive" learning [10] has been
initial stage) and to diagnose their severity, through an strongly guided, in the current implementation, by the
analysis of these vibrations which is called domain theory.
inechanalysis. Mechanalysis basically performs a
Fourier analysis of the vibratory motions taken in 3, The Learning System
prespecified and labelled points, precisely on the
supports of the machine components. By means of a The system ENIGMA is basically an evolution
special analyzer, the technician obtains, for each of an earlier version, the system ML-SMART [2,3],
support, the amplitude and velocity of the global enhanced in order to include deductive capabilities as
vibration along the vertical, horizontal and axial described in [4]. In fact, several attempts to apply to the
direction; furthermore, the same data can be taken for described case study the former version of ML-
each of the harmonic components of the vibrations. SMART, which was a purely inductive system,
Also qualitative evaluation of the vibration phase can generated knowledge that was very difficult to
be done. understand in the light of the existing domain theory.

Mechanalysis has strong mathematical We will not describe here the system ENIGMA,
foundations in vibration theory, and, hence, the being a detailed description already available in [1,3,5],
relationships between anomalous frequencies and faults but we will mention some points necessary to
could be, in principle, predicted. In practice, things are understand how the system has been applied.
not so simple, as, usually, many- more vibrations than ENIGMA receives in input a set of learning
those predicted occur; this is due to several reasons, events and a body of background knowledge described-as
such as mechanical imperfections in the parts, mutual a Horn theory and produces in output a structured
influence among motions, resonance phenomena and knowledge base of classification rules. The peculiarity
fault co-occurrence. Moreover, a vibration does not that makes this system suitable to deal with structured
begin abruptly, but its intensity increases over time, domains is that the learning events are described- as
until a level, deemed to be dangerous, may be reached. vectors of items. Each item is in turn a vector of

The proposed learning task was that of <attribute,value> pairs and corresponds to a part
learning automatically from examples of mechanalysis, (subpattem) of a concept instance.
and with the help of background knowledge, a In the present case the learning events
knowledge base suitable to derive diagnoses of the type correspond to the mechanalysis data, obtained
produced by human experts. This task can be seen as a through Fourier analysis, which are collected in a
classical case of learning concept descriptions [61, but table of the type described in Fig. 1.
shows many difficulties which are not present in other Inside the table the data are arranged into groups
learning tasks described in the literature, residing both of three rows; each group corresponds to a given
in the kind of available data and in the support and each row to one spatial direction
conceptualization of the problem. (Horizontal, Vertical and Axial). A first group of two

First of all, the examples are complex, each columns (denoted by "Total Vibration") contains the
one consisting, for the motor-pumps, of about 20 to 60 measures of amplitude and velocity of the total
measures taken in differents points and conditions of vibration, whereas a second group (denoted by "Fourier
the machine. Each measure has 2 or 3 attributes (value, Analysis") contains the measures of frequency, velocity
direction and frequency, if appropriate). But, more than and (possibly) phase of the harmonic components of the
that, the examples are very noisy; in fact all the vibration. Notice that, for the harmonics, the measure
measures are affected by large uncertainty margins, of the velocity v (for which more reliable analyzers
depending both on the intrinsic limits of the exist) allows the amplitude to be known as well, being
measurement apparata and on the human subjectivity in this last proportional to v through the (known) w. The
recording the observed values, measure consists, in some cases, of a single value (the

From the conceptual point of view, the index of the analyzer is stable), whereas, in others, of a
principal difficulty resides in the fact that the expert's range (the analog index of the analyzer osciliates
conclusion mainly arises from a global evaluation of between two extremes). This distinction is an important
the mechanalysis measures. a particular frequency factor for the differential diagnosis. The qualitative
pattern (or value) may acquire great relevance in a given behavior (stable, unstable, oscillating, rotating, fixed)
context and may not be significant in another. of the vibration phase, when observed, is denoted by a
Moreover, only few of the many measures are letter attached to the corresponding frequency value. For
important for that particular diagnosis and the human instance, the "i" occurring in the figure denotes an
expertise consists exactly in knowing how to identify instable phase.
them. This "globality" characteristic makes it difficult
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Total Vibration Fourier Analysis

Spt Dir- Amplitude Speed 0 v . . v
port tion [pm] [mm/s] [CPM] [mrn/s. [CPM [mm/si

Hor 7/11 2.4/2.6 3000' 0.7/0.9 ........... 18K 0.7
A Vert 4/8 1.2/1.4 3000 0.2/0.7 18K 0.4

Ax 20 12 3000 3/3.2 ........... 18K 0.8/1

Fig. 1: Organization of the data collected during a mechanalysis.

implication are implicitely considered as OR-ed. As a
A mechanalysis table is described to ENIGMA consequence, the knowledge base learned by ENIGMA

by supplying an item for each non empty entry. Each can be described as a graph of rules. ENIGMA produc.s
item is described by a vector of attributes characterizing such a graph by searching in the rule space using a
the support, the direction, the amplitude, the type (total general-to-specific strategy, starting from the most
vibration or Fourier Analysis), the value of the general formula rue-H 0 and generating more and more
measure, the "normal" value, and the rotation speed of specific formulas until classification rules are
the shaft. These attributes correspond to what in discovered. This process is guided by statistical
Explanation Based Learning are called "operational" heuristics which trades off consistency and completeness
predicates (elementary features). Other predicates (higher criteria and by the background knowledge supplied at the
level features) can be defined using a Horn theory. In beginning. The strategies and the heuristics are described
particular, it is possible to let ENIGMA work b, in [2,3,4,5].
applying pure EBG [9], if a complete theory, defining a
non operational description of the concept, is given. 4. The Learning Set
However, this is practically difficult to achieve and
ENIGMA was provided with a theory that only defines All the experiments have been performed using
high level features capturing contextual information, a set F0 of N=209 mechanalysis tables (examples),

The rules learned by ENIGMA take the general filled by an experienced domain expert and referring to
form: diagnoses of motor-pumps.

w The considered faults can be grouped into six
r: Hi; T --- Hk 4 Hl  (1) classes:

Rule r can be interpreted as follows. Suppose that H0 is C 2 = Problems in the joint

the set of all classes and h e H0 is the concept to be C2 = Faulty bearings
C3 = Mechanical loosening

identified in a given event f. Suppose moreover, that, C4 = Basement distortion
owing to some reasoning made by using other rules (of C = Unbalance
this type), we arrived at supposing that h can only
belong to the subset Hj c H0 ; then, if the assertion T C6 = Normal operation conditions
is verified on f, the rule (1) concludes that h belongs to However, as mentioned in Section 2, these
Hk with probability w or to HI with probability 1-w. faults rarely occur in isolation and, even then, it is not
The relations Hkr)HI = 0 and Hj) Hk, HI always always possible to individuate them precisely. Thus,

not all the N examples have been univoquely classified
hold. Hj is called the context of the rule, Hk the by the human expert, but, on the contrary, the
primary implication and Hi the secondary implication, diagnoses generated by him followed the taxonomy
If the probability is w=J, the secondary implication is reported in Fig. 2. According to this diagnostic
not present. As a special case, the set Hk may consist taxonomy, the following intermediate .lasses have been
of a single concept h. used by the expert:

The assertion (p is a first order logic formula, C7 = Shaft misalignment (C7 = CIuC4)
expressed with operational predicates only. Numerical C8 = Problems in the pump (C8 = C2 uC 3uC 5)
quantifiers such as Atleast n, Atmost n, Exactly n and C9 = Problems in the motor (C9 = C2uC3uC5)
negation are also allowed. Usually the primary CIO = Problems in the machine (CI0 = C8uC9 )
implication of a rule coincides with the context of
another formula. Formulas having the same primary
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The ambiguity c(f) of a classified example f is Hi will be said more specific that a diagnosis Hj ifl Hj
the minimum number of classes f is hypothesized to is an ancestor of Hi in the diagnostic taxonomy.
belong to; for instance, an example f classified in class
C8 has an ambiguity a(l) = 3. Moreover, a diagnosis

Normal Operation Problems in
B Conditions cthe Machine

Problems in
Problems in ty Class Misalignment
the Pump th C

C8 9 7

Faulty Mehncl Ublne Polm nBasement

Bearings Loosening the joint Distortion
C2  2 C3  1 1  C 2

Fig. 2.- Diagnostic taxonomy of the motor-pump faults

Table I
Diagnoses generated by the expert. The classes correspond to the taxonomy in Fig. 2

iNo. OF N o. 01

Class Examples Ambiguity Class Examples [Ambiguity

C1 0 29 5 C7 "C51- 2 1

C 7  42 2 C 7  -C2 21

C8 26 3 C 1  C9q 2 1
Cq 8 3 C 1  C Ft 1 1
C1 13 1 c7C a 7

C 2  23 1 C 1 , C2 1 4 1

C 3  6 1 C 1 - C9  1 1

C 4  5 1 C 4 "C 9  1 1

C 5  13 1 C 4 -C 8  1 1

C 6  27 1 C 3 ,C 4  1 1

C- C1 1
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Obviously, we desire that the automated system Table I are the most specific ones, which are still error
be at least as specific as the expert was.The ambiguity free. In this context, we say that an error occurred when
parameter a roughly corresponds to the amount of the true class is not included in the set of the proposed
efforts required to exactly individuate the cause of a ones.
single fault. In fact, the higher a, the greater the
number of components that need to be examined. For 5. Results with the Expert System
example, if faulty bearings in the pump is assessed, MEPS
then only the bearings have to be disassembled; if,
instead, only problems in the pump can be MEPS is a prototype expert system [6]
hypothesized, then the whole pump has to be developed manually by means of interviews with the
dismounted. same domain expert who supplied the classified

In Table I the expert's classification of the N examples. MEPS' knowledge is represented by means of
examples is reported; the average ambiguity of the rules and frames and contains both diagnostic and
examples is a = 2.08. Notice that, whereas an internal structural information. The chosen implementation
node of the diagnostic taxonomy denotes uncertainty environment is the GOLD-WORKS shell on an IBM
about the right choice among the descendant nodes, the Personal Computer. The system contains about 290
intersection Ci r- Cj denotes co-occurrence of both Ci diagnostic rules and 70 structural frames. Its
and Cj; for this reason, the ambiguity of the diagnosis representation language is a first order logic based
Ci r Cj is evaluated as the minimum between those language with an associated continuous-valued
assigned to Ci and C . Regarding the expert's semantics. The process of designing and implementing
classification, it has to be pointed out that, in many the MEPS prototype took about 18 months, 12 of

which devoted to the acquisition, encoding andcases, the expert was actually able to generate a less maintainance of the knowledge base.
ambiguous hypothesis than the one reported in Table I. Intained of the exdgrt
However, he judged this more specific diagnosis as out In Table i othe results obtained from the expert
of reach for a system not acquainted with a deeper system MEPS ae resported. MEPS perrms, on a given
understanding of the domain; then, he indicated what, in case, an evidential reasoning and generates, as a result,
his opinion, was an acceptable answer for a prototype a list of possible faults, ordered according to decreasing
autoted sysem. Moreoverpta e anera ofo a orotye value of evidence. The recognition rate has beenautomated system. Moreover, the generation of a more evaluated in two ways, a pessimistic and an optimistic
precise diagnosis, by the part of the expert, entrained an
error rate of about 5% (according to the expert's one.
subjective estimate), whereas the diagnoses reported in

Table II
Results of MEPS on the examples of the set F0

Ambiguity Nt.Mer of Cases The best hypothesis The correct hypothesis was

was the correct one included in the proposed set

1 131 122 122

2 60 49 59

3 18 15 18

In the pessimistic case, only the best scored hypothesis is a=1.46, the pessimistic error rate is TI=0.86 and the
hbest has been considered; if hbest is a descendant, in optimistic error rate is 11"=0.95.
the diagnostic taxonomy, of the node corresponding to
the diagnosis given by the expert and is an ancestor of 6. Results Obtained Using ENIGMA
the correct diagnosis, then hbest is considered correct
(the system gives an answer of equal or higher The learning experiments with ENIGMA were
specificity then that of the expert and conatins the performed exploiting the incremental abilities of the
correct class). In the optimistic case, MEPS' diagnosis system and consisted of a sequence of six runs (phases).
is considered correct if at least one hypothesis with the i the first phase, 60 cases, randomly chosen,
preceding characteristics is included in the set of were used as learning set (LS) and the remaining 149
generated hypotheses. The obtained average ambiguity examples as test set (TS). Afterwards, 20 examples,
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randomly selected among the 149, were used to update reported in Table III. As an example, we report here one
the current knowledge base and the 129 left over ones of the rule learned by ENIGMA:
acted as test set. Also the error rate on the (60+20) "If the shaft rotating frequency is w0 and the harmonic
training examples has been computed Notice that the at w0 is reported to have high intensity and the
previously used 60 examples are test examples for the
knowledge acquired with the 20 following ones.The harmonic at 2w0 is reported to have high intensity in at
whole process has been repeated 5 times, by randomly least two measurements, then the example is an
choosing the examples to be added in each phase, but instance of one of the classes CI, C4 or C5 .
keeping their number fixed, and the average results are

Table III
Results of the automatic system ENIGMA with incremental learning

Phase I Phase 2 Phase 3 Phase 4 Phase 5 Phase 5
Number of added 60 20 24 21 20 22
training examples

Cai-dinality of 149 129 105 84 64 42
the Test Set (TS)
Recognition rate 0.97 0.99 0.96 0.98 0.97 0.96
Learning Set (LS)
Recognition rate 0.93 0.94 0.93 0.9 0.9 0.86

Test Set
Recognition rate 0.94 0.95 0.93 0.95 0.94 0.94

complete set I
Ambiguity 1.15 1.24 1 18 . 1.18 1.23 1.19

Number of rules in 39 70 128 131 142 147
the Knowledge Basei I I_

ambiguity inherent in the examples, adding new ones to
7. Discussion the training set does not contribute any new

information, but, on the contrary, mixes up infor C
An interesting comment about the results of the from different faults. In fact, by denoting by cv ,

automatic learning is that the performance is quite average ambiguity of the learning examples a(
stable by varying the number of seen examples and j-th phase, we notice from Table IV an increw,..
eventually slightly degrades. This counter-intuitive confusion of this set, which is iesponsible tr the aouve
phenomenon is due to the fact that, because of the mentioned phenomenon.

Table IV
Ambiguity of the learning set in each learning phase. The last column refers to examples of classes CI -C5.

Ambiguity in the Ambiguity in the Ambiguity of the examples
added Learning Set global Learning Set of classes Cl-C5

Phase 1 1.98 1.98 2.18

Phase 2 2.23 2.04 2.24

Phase 3 2.36 2.11 2.31

Phase 4 2.23 2.13 2.33

Phase 5 2.85 2.23 2.43

Phase 6 2.36 2.25 2.44
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Table V
Comparison between ENIGMA and MEPS

Ambiguity Recognition rate Recognition rate Development
on complete set on test set time

ENIGMA 1.21 0.95 0.94 18 months

MEPS 1.46 0.95 4 months

More precisely, the main confusion arises among For what concerns the development time, an
the five fault classes, whereas the examples in class C6  initial phase of problem mastering was common to
(non faulty machine) are always good examples; in fact, both projects (about 2 months) and a further month was
both the expert system MEPS and the knowledge spent in preparing and memorising the data. Afterward,
generated by ENIGMA never confuse among faulty and the manual knowledge acquisition and updating lasted
non faulty machines. As it is not possible to select 12 months, whereas ENIGMA acquired the knowledge
more "clean" examples than those used in these base in a few hours.
-experimentations, the only way to further increase the To make the acquired knowledge more
KB performances seems to be that of supplying both understandable to the expert, a domain theory, dtfining
MEPS and ENIGMA with a deep model of the domain, higher level features, has been given to the system. An
allowing a more complex, but more subtle, reasoning example of rules in this domain theory is the following:
to be performed, as the human expert does. The "If the shaft rotating frequency is coo and -a
evolution of the approach toward this direction is under vibration has ficquency o) and (o is a multiple-of
development and preliminary encouraging results have o0, then (o is a HARMONIC of w0"
already been obtained [5,13,14]. The process of defining and implementing this theory

A second point to be investigated is the tooks about one month more.
comparison between the knowledge base acquired by
ENIGMA and that of MEPS. Some parameters useful 8.Conclusions
to this aim are reported in Table V.

For ENIGMA, the knowledge base acquired In this paper we described an application of the
during the second phase has been actually retained and learning system ENIGMA to a real problem of
used. As one can see from Table V, the performance of mechanical troubleshooting. The problem was a
-the two systems are comparable, but the knowledge difficult one, due to the complexity and high degree of
automatically acquired needed much less time and efforts noise of the data and to the effort required for choosing a
to be built up. Notice that, even if we must consider, in suitable description language and a problem
general, the recognition rate on the test set as the conceptualization.
performance measure, it is more fair, in this case, to The results obtained indicate that it starts to becompare the two systems on the basis of the realistic to apply machine learning techniques to
recognition rate on the complete set of 209 examples. significant problems, largely reducing the development
Even though this discussion could seem pointless, time of expert systems, at the same time keeping a
given the substantial identity of the two values (0.94 performance level comparable with that of expert
versus 0.95) and the fact that in the second phase the perfoma level co b with thatoofexe
learning events are only 80 over 209, it is interesting systems developed with classical methodologies.
from a methodological )oint of view. In fact, the
considered 209 cases (spanning a time-period of about
25 years) are the very source of the knowledge of the
human expert who supplied the MEPS rules. He did not
have a teacher, nor there was expertise available in
advance, and he formed his expertise by handling this
set of cases (according to his own statement). Then,
MEPS knowledge base is in fact tested on its own
learning set. It is also interesting to notice that about
1/3 of the rules acquired by ENIGMA was coincident
with corresponding rules in MEPS.
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Abstract 2 Version Spaces and the
Candidate-Elimination Algorithm

This paper describes a generalization of Mitch- Given a set of training data and a language in which the
eli's version-space approach to concept learning desired concept must be expressed (which defines the space
that significantly extends its range of applicabil- desie concept earnin thl sace
ity. The key idea is to remove the central idea of of possible generalizati ons pacept learning will search),aMitchell (1978] defines a version space to be"the set of all
consistent with training data, and allow arbitrary concept descriptions within the given language which are
sets of concepts, however generated, alo asbita consistent with those training instances". Mitchell noted
they can be represented by boundary sets. Learn- that the generality of concepts imposes a partial order that

ing is accomplished with version space intersec- allows efficient representation of the version space by the
tion, rather than the traditional candidate-elimi- boundary sets S and G representing the most specific andmostngeneralrconcet definitionsiinate space.aTheel-man
nation algorithm. Applications of the learning most general concept definitions in the space. The S- and
method, incremental version-space merging, in- G-sets delimit the set of all concept definitions consistent
lude learning from forms of inconsistent data and with the given data-the version space contains all concepts

combining empirical and analytical learning. as or more general than some element in S and as or more
specific than some element in G.

Given a new instance, some of the concept definitions
in the version space for past data may no longer be con-
sistent with the new instance. The candidate-elimination

1 Introduction algorithm manipulates the boundary-set representation of a
version space to create boundary sets that represent a new
version space consistent with all the previous instances plus

Concept learning can be viewed as a problem of search the new one. For a positive example the algorithm gen-
[Simon and Lea, 1974; Mitchell, 1978; 1982-to identify eralizes the elements of the S-set as little as possible so
some concept definition out of a space of possible defini- that they cover the new instance yet remain consistent with
tions. Mitchell [1978] formalizes this view of generaliza- past data, and removes those elements of the G-set that do
tion as search in his development of version spaces. He de- not cover the new instance. For a negative instance the al-
fines a version space to be the set of all concept definitions gorithm specializes elements of the G-set so that they no
in a prespecified language that correctly classify training longer cover the new instance yet remain consistent with
data-the positive and negative examples of the unknown past data, and removes from the S-set those elements that
concept. Although a landmark work, it was limited in its mistakenly cover the new, negative instance. The unknown
underlying assumption that the desired concept definition concept is determined when the version space has only one
will be strictly consistent with all the given data. This work element, which in the boundary set representation is when
generalizes the version-space approach to concept learning the S- and G-sets have the same single element.
to partially overcome this assumption. To demonstrate the candidate-elimination algorithm, con-

The paper begins with a brief review of the version-space sider a robot manipulating objects on an assembly line. Oc-
approach to concept learning, followed by an overview of casionally it is unable to grasp an object. The learning task
the generalized approach. Summaries of two different ap- is to form rules that will allow the robot to predict when an
plications of the resulting learning method are then pre- object is graspable. To make the example simple, the only
sented: emulating and extending the candidate-elimination features of objects that the robot can identify, and hence the
algorithm, and combining empirical and analytical learn- only features that may appear in the learned rules, are shape
ing. A third application, learning from data with bounded and size. An object may be shaped like a cube, pyramid,
inconsistency, is presented elsewhere in these proceedings octahedron, or sphere, and may have large or small size.
[Hirsh, 1990b]. The paper concludes with a discussion of Further structure to the shape attribute may be imposed by
computational issues for the approach. including in the robot's vocabulary the term "polyhedron"
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Given the generalized definition of version spaces, the
candidate-elimination algorithm can no longer be used-it,

any-shape too, assumes strict consistency with data. Thus an alterna-
tive incremental learning method was developed. Rather

an than basing the learning algorithm on shrinking the ver-
sion space, the new algorithm is instead based on version-

polyhedron sphere space intersection. Given a version space based on one set
of information, and another based on a second set of in-

large small formation, the intersection of the two version spaces re-
cube pyramid octahedron fiects the union of the sets of information. Such version-

space intersection forms the basis for the incremental learn-
ing method, called incremental version-space merging, de-

Figure 1: Generalization Hierarchies. veloped as part of this work.
The algorithm for computing the intersection of two ver-

sion spaces is called the version-space merging algorithm.
It computes the intersection using only boundary-set rep-
resentations. This is pictured in Figure 2. Given version

for cubes, pyramids, and octahedra. The generalization hi- space VS with boundary sets Si and Gt, and VS2 with
erarchies that result are shown in Figure 1. Concept def.,,i- boundary sets S2 and G2, the version-space merging algo-
tions take the form rithm finds the boundary sets Stn2 and Gtn 2 for their inter-

section, VSt n VS2 (labeled VStn2). It does so in a two-step
Size (X, small) A Shape (X, polyhedron) process. The first step assigns the set of minimal general-

Graspable (X), izations of pairs from St and S2 to Sin2, and assigns the set
which will be abbreviated to "[small, polyhedron]." The of maximal specializations of pairs from G, and G2 to Gin2.
language is assumed to be sufficient for expressing the de- The second step removes overy general elements from Stn2
sired concept, and the data are assumed to be consistent. and overly specific elements from Gin2. In more detail:1

The first object the robot tests is graspable, and is thus 1. For each pair of elements st in Si and s2 in S2 generate
a positive example of the target concept. It is a small their most specific common generalizations. Assign to
cube, and hence the initial version space has boundary Sn2 the union of all such most specific common gen-
sets S={ [small, cube]) and G={[any-size, any-shape]}. eralizations of pairs of elements from the two original
The second object on the assembly line cannot be grasped, S-sets. Similarly, generate the set of all most general
so is a negative instance. It is a small sphere, yielding common specializations of elements of the two G-sets
new boundary sets S={[small, cube]} and G={[any-size, G, and G2 for the new G-set Gtn2.
polyhedron]}-the only way to specialize the G-set to ex- 2. Remove from Sn2 those elements that are not more
elude the new instance but still cover the S-set element specific than some element from G, and some element
is to move down the generalization hierarchy for shape from G2. Also remove those elements more general
from any-shape to polyhedron. A further negative in- than some other element of Sin2 (generated from a dif-
stance, a large octahedron, prunes the version space yet ferent pair from Si and S2). Similarly remove from
more, to S={[small, cube]} and G={[any-size, cube]; Gtn2 those elements that are not more general than
[small, polyhedron]). The new G-set now has two ele- some element from each of Si and S2, as well as those
ments since there are two ways to specialize the old G-set more specific than any other element of Gtn2.
to exclude the new instance but still cover the S-set ele- The only information a user must give for this version-
ment. After a final, positive instance that is a small pyramid, space merging algorithm to work is information about the
the boundary sets become S=G={[small, polyhedron]}, concept description language and the partial order imposed
yielding the final generalization that all small polyhedral by generality. The user must specify a method for deter-
objects are graspable. mining the most general common specializations and most

specific common generalizations of any two concept defini-3 Incremental Version-Space Merging tions. The user must also define the test of whether one con-
cept definition is more general than another. Given this in-There were two principal insights in Mitchell's work. The formation about the concept description language, the two-

first was to consider and keep track of a set of candidate - p . s ,
concept definitions, rather than keeping a single definition inep procss above Will intersec L, e
deemed best thus far. The second insight was that the set g the boundary-set representation of the intersection.
of all concept definitions need not be explicitly enumerated The result of this change of perspective, from version-
and maintained, but rather the partial ordering on concepts space shrinking to version-space intersection, is that each
could be exploited to provide an efficient means of rep- new constraint that should reduce the version space of vi-
resentation for the space of concept definitions. The key able concept definitions must be represented as a version
idea in this work is to maintain Mitchell's two insights, but space itself, to be intersected with the current version space
remov ints w o f toictn Michell'insi htraining of candidates. When new information is obtained, incre-remove its assumption of strict consistency with triig mental version-space merging forms the version space of
data-a version space is generalized to be any set of concept
definitions in a concept description language representable 1Mitchell (1978] provides an equivalent version-space inter-
by boundary sets. section algorithm.
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are presented elsewhere [Hirsh, 1989b; 1989a; 1990a.
Gi G A further application of incremental version-space merg-

ing, to learn from inconsistent data, is presented elsewhere
in these proceedings, and will be briefly summarized here.
The approach taken is to forego a solution to the full prob-
lem of learning from inconsistent data, and instead solve
a subase, called bounded inconsistency. Data are said to
have bounded inconsistency when some small perturbation

VS1 ~ in2VS2to the description of any bad instance will result in a good
instance (such as when misclassifications are due to small
measurement errors). When this is true, a learning sys-
tem can search through the space of concept definitions that
correctly classify either the original data, or small pertur-
bations of the data. Instance version spaces will contain
all concept definitions consistent with either the instance
or some neighboring instance description. The resulting

Si S2 version space after each incremental intersection not only
contains concept definitions that correctly classify all the
training data (if any such definitions exist), but also those

Figure 2: Version-Space Merging. that miss some (or even all) of the data by only a small
amount. Further details are presented elsewhere [Hirsh,
1989b; 199ObJ.

concept definitions that are relevant given the new infor-
mation and intersects it with the version space for past in-
formation. This is pictured in Figure 3. As each new piece
of information is obtained, its version space is formed (VS,)
and intersected with the version space for past data (VS,) VS,
to yield a new version space (VS,+,), which will itself be VSM VSn+i
intersected with the version space for the next piece of in-
formation. VS.

The general algorithm proceeds as follows:
1. Form the version space for the new piece of L

information.
2. Intersect this version space with the version

space generated from past information.
3. Return to the first step for the next piece of

information. Figure 3: Incremental Version-Space Merging.
The initial version space contains all concept descriptions in
the language, and is bounded by the S-set that contains the
empty concept that says nothing is an example, and the G-
set that contains the universal concept that says everything 4 The Candidate-Elimination Algorithm:
is an example. Emulation and Extensions

The insight from which the generality of incremental
version-space merging arises is that the specific learning Incremental version-space merging should maintain the
task should define how each piece of information is to be functionality of the original version-space approach. This
interpreted-what the version space of relevant concept section demonstrates how the candidate-elimination algo-
definitions should be. Use of incremental version-space rithm can be emulated using incremental version-space
merging requires a specification of how the individual ver- merging, and furthermore describes an extension that en-
sion spames should be formed in the first step for each it- ables learning from ambiguous data (such as when features
eration. Forming the version space of concept definitions are not uniquely identified).
consistent with each instance (i.e., those concept definitions
that correctly classify the given instance) results in an em- 4.1 Emulating the Candidate-Elimination Algorithm
ulation of the candidate-elimination algorithm, and permits The key idea for emulating the candidate-elimination algo-
an extension that handles cases of ambiguous data (such as rithm with incremental version-space merging is to form
when the color attribute of some instance is known to be the version space of concept definitions strictly consistent
either brown or black without knowing which). Forming with each individual instance and incrementally intersect
the version space containing concept definitions consistent these version spaces with incremental version-space merg-
with the explanation-based generalization of data provides ing. The results after each incremental intersection can be
a way to integrate empirical and analytical learning. These shown to be the same as those after each step of the candi-
are the applications discussed in this paper. Further details date-elimination algorithm [Hirsh, 1989b].
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Emulating the candidate-elimination algorithm with in- shape]; [any-size, polyhedron]}-nothing more gen-
cremental version-space merging in this manner requires eral excludes the negative instance. When merged with
forming the version space of concept definitions consistent the previous version space, the new boundary sets are
with a single instance in boundary-set representation. This S={[small, cube])} and G={[any-slze, polyhedron]}.
is done as follows. It the training instance is a positive ex- This is obtained by taking for the new S-set the most
ample, its S-set is assigned the most specific elements in specific common generalizations of [small, cube] and 0
the language that include the instance. When the single- that are more specific than [any-size, any-shape] and
representation trick holds (i.e., for each instance, there is one of [large, any-shape] and [any-size, polyhedron]-
a concept definition whose extension is only that instance i.e., covered by elements of the two original G-sets.
[Dietterich et at., 1982]), the S-set contains the instance as This simply yields {(small, cube]}. For the new G-
its sole element. When it does not hold, the learning-task- set the most general common specializations of [any-
specific method that generates instance version spaces must size, any-shape] and [large, any-shape]--{ [large, any-
determine the set of most specific concept definitions in the shape]}-and the most general common specializations
language that cover the instance. The new G-set contains of [any-size, any-shape] and [any-size, polyhedron]-
the single, universal concept that says that everything is an {[any-size, polyhedron]}-are taken for the new G-set,
example of the concept. If the training instance is a negative but [large, any-shape] must be pruned since it is not more
example, its S-set is. taken to be the single, empty concept general than an element of one of the original S-sets.
that says that nothing is an example of the concept, and its The third, negative example, a large octahedron, has
G-set-is the set of minimal specializations of the univer- boundary sets S={0} and G={[small, any-shape]; [any-
sal concept that don't cover the instance. This forms the size, sphere]; [any-size, cube]; [any-size, pyramid]}.
boundary-set representation of the version space of concept Merging this with the preceding boundary sets yields
definitions consistent with a single training instance. S={[small, cube]} and G={[any-slze, cube]; [small,

The emulation can be summarized as follows: polyhedron]}. Finally, the last, positive instance, a small
1. Form theversionspaceofallconceptdefini- pyramid, has boundary sets S={[small, pyramid]) and

tions consistent with an individual instance. G={[any-size, any-shape]}, resulting in the final version
2. Intersect this new version space with the ver- space S=G={[small, polyhedron]).

sion space for past data (which starts as the 4.2 Ambiguous Data
full version space containing all concepts in
the concept description language) to gener- When an instance is not uniquely identified, it is said to be
ate a new version space. ambiguous. For example, only knowing a range for a per-

son's height or age is a form of ambiguous data. More ex-
3. Return to Step 1 for the next instance. treme examples are when data are provided at too general a

Note that this merely instantiates the general incremental level (such as only knowing that someone is tall), or when
version-space merging algorithm given earlier, specifying attributes are totally missing. The incremental version-
how individual version spaces are formed. Furthermore, in space merging emulation of the candidate-elimination al-
contrast to the candidate-elimination algorithm, this emu- gorithm pro, &v a mechanism for doing concept learning
lation allows the first instance to be negative and does not even when gr ct, ambiguous data. The basic idea is to form
assume the single-representation trick. the version space of concept definitions for ambiguous data

To demonstrate this incremental version-space merging by identifying the set of all concept definitions consistent
implementation of the candidate-elimination algorithm, the with any potential identity for the ambiguous instance; its
robot learning task presented in Section 2 will again be version space should include concept definitions consistent
used. The initial version space has boundary sets S={0} with any possible interpretation of the instance. For exam-
and G={[any-size, any-shape]) (where 0 represe its the ple, if a positive instance is known to be either black or
empty concept that says nothing is an example of the target brown, its version space should contain all concept defi-
concept). The version space for the first positive instance, a nitions that include the black case plus all concept defini-
small cube, has the boundary sets S={[small, cube]} and tions t'1at include the brown case. This version space can
G={[any-size, any-shape]} (Step 1 of the incremental be viewc. as the union of two version spaces, one for black
version-space merging algorithm), and when merged with and the other for brown.
the initial version space simply returns the instance ver- Defining a version space requires defining the contents
sion space (Step 2). This is obtained using the version- of its boundary sets. For ambiguous training data this is
space merging algorithm (Section 3): in its first step the done by setting the boundary sets to the most specific and
most specific common generalizations of pairs from the general concept definitions consistent with some possibility
two original S-sets are formed-here it is the most specific for the training instance. If the instance is a positive exam-
common generalizations of 0 and [small, cube]: {[small, ple, the S-set contains the most specific concept definitions
cube]}; the second step prunes away those that are not min- that include at least one possible identity for the ambiguous
imal and those not covered by elements of the two orig- instance. If the single-representation trick holds, the S-set
inal G-sets, but here nothing need be pruned. Similarly, contains the set of all instances that the training instance
for the new G-set the most general common specialization might truly be. The G-set contains the universal concept
of [any-size, any-shape] and [any-size, any-shape] is that matches everything. If the instance is negative the S-
[any-size, any-shape], and nothing need be pruned. set contains the empty concept that matches nothing and the

The version space for the second, negative example, a G-set contains the minimal specializations of the universal
small sphere, is defined by S={0} and G={ [large, any- concept that do not include one of the possibilities for the
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uncertain data. scription language, whose terms are assumed
The algorithm can thus be summarized as follows: to be operational.

1. (a) Form the set of all instances the given * Concept Description Language: A languageinstance might be. in which the final concept must be expressed.
n) Fom the version space of all concept It is a superset of the instance description

definitions consistent with any individ- language, and is where generalization hier-

ual instance in this set. archies would appear.* Positive.Data Domain Theory (optional): A
2. Intersect the version space with the version storesaa fat for p ina A

spac fo pas daa t obtin newverionset of rules and facts for proving that an in-
space for past data to obtain a new version stance is positive. Proofs terminate in ele-
space. ments of the instance description language.

3. Return to Step 1 for the next instance. * Negatlve-DataDomain Theory (optional): A
This is again just the algorithm of Section 3, with a new set of rules and facts for proving that an in-
specification of how individual version spaces are formed. stance is negative. Proofs terminate in ele-
If there is no ambiguity, the algorithm behaves like the can- ments of the instance description language.
didate-elimination algorithm emulation above. Determine:

Note that ambiguous data cannot be handled through the
use of internal disjunction [Michalski, 19831. An example A set of concept definitions in the concept
of an internal disjunction would be the concept definition description language consistent with the data.
[small, octahedronvcube]. This says that small objects The method processes a sequence of instances as follows,
that are either octahedra or cubes will be positive. Both starting with the first instance:
small octahedra and small cubes are included as positive by 1. (a) If possible, apply EBG to the current instance to
it. An ambiguous instance, on the other hand, cannot guar- generate a generalized instance. Do so for all pos-
antee that both will be positive; it may be that only small sible explanations. If no explanation is found,
cubes are positive, whereas the internal disjunction would pass along the ground data.
errantly include small octahedra. A correct solution to han- (b) Form the version space of all concept defini-
dling ambiguous data must not rule out concept definitions tions consistent with the (perhaps generalized) in-
whose extension only includes one of the possible identities stance. If there are multiple explanations include
of an ambiguous instance, those concept definitions consistent with any sin-

To demonstrate how ambiguous data are handled, the gle explanation.
learning task of Section 2 is again used. If the first, pos- 2. Intersect this version space with the version space gen-
itive instance were known to be small and either cube erated from all past data.
or octahedron, the instance version space would have
boundary sets S={[small, cube]; [small, octahedron]} 3. Return to the first step for the next instance.
and G={[any-slze, any-shape]}. After the second in- This is again an instantiation of the general incremental
stance (a small sphere, negative example) is processed, version-space merging algorithm given earlier.
the resulting boundary sets are S={ [small, cube]; [small, The basic technique is to form the version space of con-
octahedron]} and G={[any-size, polyhedron]}. The cept definitions consistent with the explanation-based gen-
third instance (a large octahedron, negative example) re- eralization of each instance (rather than the version space
sults in S={ [small, cube]; [small, octahedron]} and of concept definitions consistent with the ground instance).
G={[any-size, cube]; [small, polyhedron]}. It takes the The version space for a single training instance reflects the
final instance (a small pyramid, positive example) to fi- explanation-based generalization of the instance, represent-
nally make the version space converge to S=G={ [small, ing the set of concept definitions consistent with all in-
polyhedron]}, stances with the same explanation as the given instance.

The merging algorithm has the effect of updating the ver-
5 Combining Empirical and Analytical sion space with the many examples sharing the same expla-

Learning nation, rather than with the single instance. In this manner
irrelevant features of the instances are removed, and learn-

The previous section described how incremental version- ing can converge to a final concept definition using fewer
space merging can be used to emulate and extend the instances.
c anida te-l tion t,.m.gthi. h;° o.,.,;e,%n doc.ribeo thea- The techniaue also apnlies to cases of multiple, compet-
use of incremental version-space merging to implement and ing explanations, when only one explanation need be cor-
extend Mitchell's [1984] proposal for combining empirical rect. In such cases the version space of concept definitions
and analytical learning. The key idea is to form version consistent with one or more of the potential results of EBG
spaces consistent with the results of explanation-based gen- is formed. EBG is applied to every competing explanation
eralization (EBG) [Mitchell et al., 1986], rather than con- of an instance, each yielding a competing generalization of
sistent with ground data. The problem addressed is: the instance. The space of candidate generalizations for the

Given: single instance contains all concept definitions consistent
with at least one of the competing generalizations. The fi-

e Training Data: Positive and negative exam- nal generalization after multiple instances must be consis-
ples of the concept to be identified. Train- tent with one of them. The situation is similar to that of am-
ing data are expressed within an instance de- biguous data (Section 4.2), only here it is unknown which
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explanation is correct. Like theearliertreatmentofambigu- 5.1 Cup Example
ous data, the version space contains all concept definitions The first example of the combination of incremental version-
consistent with at least one of the possibilities, space merging and EBG demonstrates how a definition of

The version space of all concept definitions consistent Cup can be learned given incomplete knowledge about cups
with at least one explanation-based generalization of the plus examples of cups. It is based on the examples given by
instance is the union of the version spaces of concept def- Mitchell et al. (19861 and Flann and Dietterich [1990].
initions consistent with each individual explanation-based The following is the domain theory used (written in Pro-
generalization. For positive examples this union has as its log notation):
S boundary set the set of competing explanation-based gen-
eralizations, and the G boundary set contains the universal cup (X) -holds_liquid (X),
concept that labels everythingpositive. If one resultofEBO can drink from (X),

is more general than another (e.g., one mentions a super- stable (X).
set of the training-instance facts mentioned by the other), holds_liquid (X) :-pyrex(X).

only the more specific result is kept in the S-set. Over holds_1iquid(x):-china(X).
multiple instances these version spaces consistent with the holds_liquid (X) :-aluminum (X).

explanation-based generalizations are Incrementally inter- can_drinkfrom (X) :-liftable (X),

sected to find the space of concept definitions consistent open top (X).
with the analytically generalized data liftable (X): -small (X).

The approach is also useful given theories for explaining stable (X) :-flat_bottom(X).
negative data, when the system is provided with a theory ca. It can recognize and explain some, but not all, cups. The
pable of explaining why an instance is negative. For exam- concept description language used for this problem by em-
ple, in search control an example of a state in which an op- pirical learning utilizes generalization hierarchies, includ-
erator should not be used is a negative instance, and a theory ing the knowledge that pyrex, china, and aluminum are non-
for explaining why the instance is negative would analyze porous materials, and that black and brown are dark colors.
why the instance is negative-that the operator does not ap- Note that this information is not present in the domain the-
ply, or that it leads to a non-optimal solution. This theory ory, but is known to be true in general. Empirical learning
is then used to generalize the negative instance to obtain a has many such possible generalizations. The goal for learn-
generalization covering all instances that are negative for ing is to determine which potential generalizations, such as
the same reason. Incremental version-space merging then those mentioning nonporous material, are relevant.
uses this generalized instance by setting the S-set equal to Learning begins with the first, positive example:
the empty concept that says nothing is an example of the china (cupl).
concept, and setting the G-set equal to all minimal special- small (cupl).
izations of the universal concept that do not cover the gen- open _top (cupl).
eralized negative instance. If there are multiple, competing flat bottom ( cup1).
explanations, the G-set contains all minimal specializations bla ck (cupl).
that do not cover at least one of the potential generalizations EBG results in the rule
obtainable by EBG using one of the explanations.

Note that it is not necessary to have a complete theory ca- cup (X) :-china (X),
pable of explaining (and generalizing) all correct instances small (X),
for this technique to work. The version space of all concept open.-top (X),
definitions consistent with a plain non-generalized instance flat bottom (X).
-whether negative orpositive--can always be formed. In- written "[china, small, open, flat, anycolor]" for short.
stead of usingEBG, the version space consists of all concept This forms the S-set for the version space of the first in-
definitions consistent with the instance, rather than its ex- stance (and the first step of incremental version-space merg-
planation-based generalization. If a theory for only explain- ing), and its G-set contains the universal concept [anyma-
ing positive instances exists, negative instances can be pro- terial, anysize, anytop, anybottom, anycolor]. The sec-
cessed without using EBG. If an incomplete theory exists ond step of incremental version-space merging intersects
(i.e., it only explains a subset of potential instances), when this with the initial full version space, which gives back this
an explanation exists the version space for the explanation- first-instance version space.
based generalization of the instance can be used, other- Incremental version-space merging then returns to its first
wise the pure instance version space should be used. When step for the next, positive instance, which is:
there is no domain theory the learner degenerates to be- pyrex (cup2).
have like the candidate-elimination algorithm. The net re- small (cup2).
suit is a learning method capable of exhibiting behavior at open top (cup2).
various points along the spectrum from knowledge-free to
knowledge-rich learning. bo (cup2).

T illustrate how incremental version-space merging browncup2)
combines empirical and analytical learning, two examples EBG results in the rule
are presented. The first demonstrates how empirical learn- cup (X) : -pyrex (X),
ing generalizes beyond the specific results obtainable with small (X),
EBG alone. The second demonstrates how empirical learn- open top (X),
ing deals with multiple explanations. flat_bottom(X) .
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The S-set for this instance's version space contains the re- light (X).
sultof EBG, namely [pyrex, small, open, flat, anycolor], stable X) :-flat-bottom (X).
and its G-set contains the universal concept. Merging this It provides two potential explanations for when an object
with the version space for the first Iteration yields a version can successfully be placed on a table: the object must be
space whose S-set contains [nonporous, small, open, flat, stable, and either small or light. Given an unclassified in-
anycolor] and whose G-set contains the universal concept. stance, the theory cannot be used to predict its classifi-

The final instance is a negative example: cation-whether it is positive or negative--since the theory
aluminum (canl). can explain too many things, and will classify some poten-
small (cani). tially negative examples as positive. However, itis possible
closed top (cani). to explain a positiveinstance once its classification is given.
flat bottom (canl) . The goal for learning is to determine a defihiition consistent
white (cani). with the data plus the subset of the theory that actually mod-

For this example the theory of negative data is assumed to els the observed data. Furthermore, when there are multiple
include the following rules (among others): competing explanations of a given positive instance, later

instances should allow determining which of the compet-
nota odcupi(X):r- ing explanations is consistent across all data.

cannot drink from (X). For example, given a can as a positive example of an ob-
cannotdrink_from(X) :- ject that can be placed on a table:

closed top X). flat bottom(canl).
EBG yields the following rule: small (canl).

nota_.cup(X) :-closedtop (X). light (canl).
This is then used to determine the most general con- the first step of the incremental version-space merging pro.
cept definitions that exclude this generalized case of cess uses EBG to form two rules, each corresponding to a
not-a.cup, namely {(anymaterlal, anysize, open, different explanation:
anybottom, anycolor]}, which forms the G-set of the ver- can_put-ontable(X):-
sion space for this third instance. The S-set contains the flat bottom (X),
empty concept. small (X).
When this third instance version space is merged with the can_put on table (X) : -

result of the previous two iterations of incremental version- flat bottom (X),
space merging, the resulting S-set contains [nonporous, light(X).
small, open, flat, anycolor] and the resulting G-set con-
tains [anymaterlal, anysize, open, anybottom, any- These will be abbreviated to *[flat, small, anywelght]"and
color]. Note that the domain theories have done part of =[flat, anysize, light]". The resultinginstanceversion space
the work, with the color attribute being ignored and only is bounded by an S-set containing these two concept defini-
the third attribute being deemed relevant for the negative tions and a G-set containing the universal concept that says
instance, but empirical learning determining nonporous, everything is an example of the concept. Intersecting this
Further data would continue refining the version space. version space with the initial version space that contains
However, it is already known that whatever the final rule, all concept definitions in the concept description language
it will include small, nonporous, open-topped objects, like yields the instance version space in return.
Styrofoam cups, which theoriginal theory did not recognize Returning to the first step of the learning process for the
as cups. following positive, second instance,

This simple domain also demonstrates the point made flat bottom (cardboardboxl).
earlier about the technique degenerating to look like pure big (cardboard _boxl).
empirical learning. Consider the same examples, only with- light (cardboard_boxl).
out the domain theory present. At each iteration the re- ERG can only generate one rule:
suiting version space would be exactly the same as would
be created by the candidate-elimination algorithm. The fi- canput on table (X) : -
nal version space would have an S-set containing [non- flatbottom (X),
porous, small, open, flat, darkcolor], and a G-set con- light (X).
tamining two elements: [anymaterial, anysize, open, any- This results in an instance version space containing [flat,
bottom, anycolor] and [anymaterial, anysize, anytop, anysize, light] in the S-set and the G-set containing the
anybottom, darkcolor]. This version space contains more universal concept. Merging the two instance version spaces
elements than the corresponding version space using EBO. (step two of incremental version-space merging ) results in

an S-set with the single element [flat, anysize, light] and
5.2 Canputoniable Example the G-set containing the universal concept.
As an example of using domain theories with multiple com- As an example of dealing with negative data with no
peting explanations consider the following domain theory negative-instance domain theory, consider the following
for can_put on table: negative example of canputon table:

canput ontable(X):-stable(X), roundbottom(bowling_balll).
small (X). small (bowlingballl).

canput ontable (X) :-stable (X), heavy(bowlingballl).
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The version space of concept definitions that do not in- For negative instances there are nkb elements in the un-
clude it has an S-set that contains the empty concept and pruned G-set, where b is the number of ways on average to
a G-set that contains three concept definitions: {[flat, any- specialize a feature to exclude a value.3 Pruning nonmax-
size, anyweight], [anybottom, large, anyweight], [any- imal elements therefore requires (nkb)2 concept compar-
bottom, anyslze, light]}. When merged with the ver- isons. For tree-structured features b is at most (w -1) log v,
sion space for past data, incremental version-space merg- where wn is the maximum branching factor for all feature hi-
ing yields a version space whose S set contains [flat, any- erarchies, and thus computing the G takes time proportional
size, light] and whose G-set contains the two concept def- to (nk(w - 1) log v) 2k log v = (n(w - 1))2(k logv) 3. In
initions [flat, anysize, anyweight] and [anybottom, any- the case where features are ranges of the form a < x <
size, light]. Subsequent data would further refine this ver- b, with the range of x discretized to a fixed set of values
sion space. (such as measuring values to the nearest millimeter [Hirsh,

1990b]), b < 2, and thus the time to compute a G-set is pro-
6 Computational Complexity portional to-at most n2k3. In both cases, this is again feasi-

ble as long as determining the n possibilities is tractable.Previous sections have described incremental version-

space merging and two of its applications. This section ana- 6.2 Version-Space Merging
lyzes the computational complexity of incremental version- The second step of incremental version-space merging is to
space merging. Inceremental version-space merging has intersect two version spaces using the version-space merg-
two major steps: version-space formation, and version- ing algorithm. The complexity of version-space merging is
space intersection. The computational complexity of each again dependent on the particular concept description lan-
of these is first discussed, followed by an analysis of the guage, and again the analysis is done for conjunctive lan-
complexity of the overall incremental version-space merg- guages over k features. The algorithm computes for the
ing method. Further details are provided elsewhere [Hirsh, new S-set the most specific common generalization of pairs
1989b]. from the two S-sets that are covered by some element of

each of the G-sets but not by some other element of the
6.1 Version-Space Formation new S-set, and does a symmetrical process for the G-sets.
The first step of each iteration of incremental version-space For both tree-structured features and features of the form
merging is to form the version space of concept definitions a < x < b the minimal common generalization of two
to consider given the current piece of information. Since concept descriptions is unique. Therefore, if there are m,
this occurs at each step, itis clearly necessary for it to be fea- and m2 elements in the two initial S-sets, there are at most
sible computationally. A general analysis of the complexity mim2 in the resulting unpruned S-set. When features
of this step is impossible-it depends both on the specific are tree-structured, the process that computes the minimal
method for generating version spaces and on the particu- generalization of two concept definitions takes time pro-
lar concept description language being used. However, it portional to k log2 v. Computing the unpruned S-set thus
is possible to do this analysis for specific approaches, and takes time proportional to MIm 2k log2 v. Computing min-
that is what will be done here. The particular method con- imal elements takes an additional (MIM2) 2 k log v, and re-
sidered here works for conjunctive languages over a fixed moving elements not covered by some G-set element takes
set of k features, and handles the case when each version Mt m2(ni + n2)k log V, where ni and n2 are the two G-set
space is effectively the union of n version spaces (as occurs sizes. Thus the overall complexity is proportional to at most
with ambiguous data, data with bounded inconsistency, and 1. ,,,_ t .',,
EBG with multiple explanations). The analysis applies to .. +.I....,2(ni +.n2)k log .
the applications given here, as well as for learning from data The G-set case is nearly symmetric, with the exception that
with bounded inconsistency [Hirsh, 1990b]. computing the maximal specialization of two concept def-

For positive instances, unpruned S-sets have n elements. initions takes time proportional to at most k log v, so the
Prunng onmniml elmens tereoro equresat ost overall complexity is proportional to at most ni fl2k log v +Pruning nonminimal elements therefom. requires at most )

n2 comparisons of relative generality. Each comparison (nin2)2k logv + ntn2(Ml + m2)k logv. Whichever is
of concept definitions requires k feature comparisons. For greater will be the overriding term.
tree-structured features, each feature comparison takes time When features are of the form a < x < b, computing
proportional to the height h of the tree-structured hierar- the minimal generalization of two concept definitions takes
chy for that feature. However, h is at most log v, where time proportional to k. Computing the new S-set therefore
v is the maximum number of values any feature can take takes time proportional to at most mlrm2k + (mlm) 2 k +
on.' Therefore the time to compare two concept descrip- mIm2(ni+n2)k, andfortheG-setitis ntn2k+(nn 2)'k+
tions takes time proportional to at most k log v. Thus corn- ntn2(mI + m2)k. Again, whichever is greater is the over-
puting an S-set for tree-structured features takes at most riding term.
time proportional to n2k logV. In contrast, when features
are ranges of the form a < x < b, feature comparisons take 6.3 Incremental Version-Space Merging
constant time, and thus computing the S-set takes time pro- The preceding two subsections discussed the complexity of
portional to at most n2k. Either way, as long as forming the the individual steps taken during each iteration of incremen-
set of possible identities is tractable, handling positive data
is tractable. 31f b is infinite (e.g., when the number of values v a feature

may take is infinite), the use of version spaces inappropriate, since
1 0f course, this is only a useful bound on h when v is finite. boundary-set sizes must be finite.
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behavior of machine learning algorithms. CurrentAbstract experience with machine learning algorithms has
lead to a number of empirical observations about the

We present an approach to modeling the behavior of various algorithms. An average case
average case behavior of learning model can explain these observations, make
algorithms. Our motivation is to predict the predictions, and guide the development of new
expected accuracy of learning algorithns as learning algorithms.
a function of the number of training
examples. We apply this framework to a 1.1 PAC learning
purely empirical learning algorithm, (the
one-sided algorithm for pure conjunctive Valiant (1984) has proposed a model to
concepts), and to an algorithm that combines probabilistically justify the inductive leaps made by
empirical and explanation-based learning. an empirical learning program. The probably
We evaluate the average-case models by approximately correct (PAC) model indicates that a
comparing the accuracy predicted by the system has learned a concept if the system can
models to the actual accuracy obtained by guarantee with high probability that its hypothesis is
running the learning algorithms. approximately correct. Approximately correct

means that the concept will have an error no greater

1 Introduction than e (i.e., the ratio of misclassified examples to
total examples is less than c). The learning system

Most research in machine learning adheres to either is required to produce an approximately correctMosrealrh imacnexlearinad eith e concept with probability 1--. For a given class of
a theoretical or an experimental methodology concepts, the PAC model can be used to determine
(Langlcy, 1989). Some attempt to understand an upper bound on the number of training examples
learning algorithms by testing the algorithms on a required to achieve an accuracy of 1-c with
variety of problems (e.g., Fisher, 1987; Minton, rquity a.he AC aoduras led1-o wity
1987). Others perform formal mathematical analysis probability 1- . The PAC model has led to many
of algorithms to prove that a given class of concepts important insights about the capabilities of machine
is learnable from a given number of training learning algorithms. However, there is currently a
examples (e.g., Valiant, 1984; Haussler, 1987). The wide gap between the theoretical results and the
common goal of this research is to gain an practical results of runing learning algorithms on
undcrstanding the capabilities of learning test data. In particular, Buntine (1989) has argued
algorithms. However, in practice, the conclusions of that the esimiant model can produce overly-
these two approaches are quite different. conservative estimates of error and does not take
Experiments lead to findings on the average case advantage of information available in actual training
accuracy of an algorithm. Formal analyses are sets.
typically deal with distribution-free, worst-case
analyses. The number of examples required to 1.2 FAC learning
guarantee learning a concept in the worst-case do Recently, Dietterich (1989) has proposed the
not accurately reflect the number of examples frequently approximately correct (FAC) learning
required to learn an accurate concept in practice. model. This learning model addresses the question

We have begun constructicn of an average case of how frequently a learning algorithm acquires a
learning model to unify the formal mathematical and hypothesis that is approximately correct on a
the empirical approaches to understanding the training set of a given size. The frequency of
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correctness is with respect to all possible training Clearly, the second requirement presupposes
sets of the given size. information about the distribution of the training

Dietterich has run three common learning examples. Therefore, unlike the PAC model, the
programs on all 256 possible concepts of three framework we have developed is not distribution-
binary features and found that best algorithm (the free. Furthermore, to simplify computations (or
one-sided conjunctive learning algorithm, (Haussler, reduce the amount of information required by the
1987)) can frequently (i.e, for 90% of the sets of model) we will make certain independence
training examples consisting of four of the eight assumptions (e.g., the probabilities of all irrelevant
possible examples) approximately (with accuracy features occurring in training example are
greater than or equal to 87.5%) learn ten of these independent). Similarly, the third requirement
concepts. Dietterich has also calculated an upper- presupposes some information about the test
bound on the number of concepts that are FAC- examples. We will make the same simplifying
learnable. For the parameters used in the assumptions about the test examples as the training
experiments, at most 88 concepts are FAC-learnable. examples.
This implies that either the upper bound is too high, Determining conditions under which a learning
or the current generation of learning programs can algorithm changes a hypothesis requires an analysis
be improved considerably. of the operators used for creating and changing

hypotheses. In this respect, the framework is more
1.3 Mathematical models of human learning similar to the mathematical models of human and
Several psychologists have created mathematical animal learning strategies than the theoretical results
models of strategies proposed as models of human on machine learning algorithms which typically are
or animal learning (e.g., Atkinson, Bower & concerned with the relationship between the size of
Crothers, 1965; Restle, 1958). These models have the hypothesis space and the number of training
focused on average case behavior of learning examples. We will restrict our attention to learning
algorithms. There are several reasons that these algorithms that maintain a single hypothesis and
models cannot be directly applied to machine incrementally modify the hypothesis when the
learning algorithms. First, these models typically hypothesis incorrectly classifies examples.
study learning algorithms restricted to less complex 2.1 An average case model of wholist
concepts (e.g., single attribute discriminations) than
those typically used in machine learning. Second, We will first show how the framework can be
these models also address complications not present applied to the wholist algorithm (Bruner, Goodnow,
in machine learning programs since they must & Austin, 1956) a predecessor of the one-sided
account for individual differences in human learners algorithm for pure conjunctive concepts (Haussler,
caused by such factors as attention, motivation, and 1987). Although this is a relatively simple
memory limitations. Finally, the performance algorithm, to our knowledge this is the first time an
metric predicted by these models is generally the average case analysis of a machine learning
expected number of trials required to learn a concept algorithm has been shown to predict the expected
with perfect accuracy. Typically, experimental accuracy in sufficient detail that it can be compared
studies of machine algorithms report on the observed to observed accuracy obtained by running the
accuracy on learning accuracy after a given number algorithm. The goal of this analysis is to predict the
of examples. probability that a randomly drawn example will be

classified correctly by an algorithm.i The wholist
2 The Average Case Learning Model algorithm is shown in Table 1. This algorithm

incrementally processes training examples. The
We have been developing a framework for average hypothesis maintained is simply the conjunction of
case analysis of machine learning algorithms. The all features that have appeared in all positive training
framework for analyzing the expected accuracy of examples encountered. The analysis will assume
the hypothesis produced by a learning algorithm that the concept can in fact be represented as a
consists of determining: conjunction of features. We will use the following
" The conditions under which the algorithm notationindescribingte agorthm:

changes the hypothesis for a concept.
" How often these conditions occur. 1. Flann & Dietterich (1989) present an analysis
" How changing a hypothesis affects the accuracy of a component of IOE that is similar to wholist.

of a hypothesis. However, their analysis calculates the number of training
examples required to learn a hypothesis to a given
accuracy.



Average Case Analysis of Conjunctive Learning Algorithms 341

Table 1. The wioli. . gurithm

1. Initialize the hypothesis to the conjunction of all features that
describe training examples.

2. If the new example is a positive example, and the hypothesis
misclassifies the new example, then remove all features from the
hypothesis that are not present in the example.

3. Otherwise, do nothing.

• f is the j-th irrelevant feature of a training misclassified after i positive training examples is
example. A feature is irrelevant if the true given by nwhotist(f. ,i) (where nm stands for not
conjunctive definition of the concept does not misclassified):

include the feature. nm l(f. ,i = - (Pq). (1- Pqf)) [1]
0 N is the number of examples (both positive and wol j 

negative) seen so far If all irrelevant features are independent3, then
after i positive training examples, the probability

The following information is required to predict that no irrelevant feature will cause a positive test
the expected accuracy of wholist. Note that while example to be misclassified is:
this is much more information than required by the I
PAC model, this is exactly the information required I- n1mwholist (fj, i) [2)
to generate training examples to test the algorithm: " I n

Finally, in order to predict the accuracy of the
* P is the probability of drawing a positive hypothesis produced by the wholist algorithm after

training example. N training examples, it is necessary to take into
0 I is the number of irrelevant features, consideration the probability that exactly i of the N
* ) is the probability that irrelevant feature j is training examples are positive examples for each

P) value of i from 0 to N. Therefore, the accuracy of
present in a positive training example. the wholist algorithm (where accuracy is defined as

the probability that a randomly drawn positive
Note that the accuracy of this algorithm does not example will be classified correctly by an algorithm)

depend upon the number of relevant features that are can be given by:
conjoined to form the true concept definition.
Therefore, the analysis does not make use of the N 1
total number of features or the number of relevant I b(i,N,P)*I I nmwholist(fj, i)1 [3]
features. i-0 j=1.

The wholist algorithm has only one operator to where b(i,N,P) is the binomial formula:
revise a hypc .iesis. An irrelevant feature is dropped
from the hypothesis when a positive training b(i,N,P) = (N )*pi(1 p)(N.i).
example does not include the irrelevant feature. iTherefore, if i positive examples have been seen out In Figure 1, the predicted and the actual
of N total training examples, the beenabienty t accuracies of the hypothesis produced by the wholistins the probability that algorithm are plotted. The mean accuracy of one
irrelevant feature] remains hypothesis (i.e., J hundred runs of the wholist algorithm is plotted as ahas appeared in all i positive training examples) is function of the number of training examples. After
P(0), every two training examples, the accuracy of current

The hypothesis created by the wholist algorithm hypothesis was measured by classifying one hundred
misclassifies a positive test example if the positive test examples. The concept to be learned
hvothesis contains any irrelevant features that are was constructed from a set of ten features. Five of
noi included in the -test example. The wholist these features are irrelevant. The probability that a
algorithm does not misclassify negative test given irrelevant feature was present in a positive
examples (provided that the true concept definition training example ranged from 5% to 30% (i.e., 0.05
can be represented as a conjunction of the given
features). Therefore, the probability that feature j 2. If irrelevant features are not independent, then
does not cause a positive test example to be the average case learning model would also require

conditional probabilities for the irrelevant features.
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Figure 1: A comparison of the expected and actual accuracy of the wholist algorithm.
The x-axis is the number of training instances and the y-axis is the percent of test
instances correctly classified. The boxes represent the empirical means, the y-bars
the 95% confidence interval around those means and the curve is the value predicted
by Equation 3.

< PCI ) < 0.3). In this simulation, the probability will assume that the world can be represented as a
that a training example is a positive example is 40% set of binary features x1 , x2 ... x,. In this paper,
(i.e., P = 0.4). The expected accuracy of wholist variables starting with w will be used to refer to
algorithm, as given by Equation 3 (under the specific instances of worlds; variables starting with
conditions used to generate the training data) is G will be used to refer to general descriptions of a
plotted along with the results obtained by running class of worlds. We will assume that each G may
the program. be represented as a conjunction of a subset of the

In the following sections, we will illustrate how features used to describe specific instances of
the framework we have developed for average case worlds.
analysis of knowledge-free conjunctive learning Training examples are represented as specific
algonthms can be used to gain insight on concept instances of inference rules of the form3 p, (w) -4

formation in the presence of background knowledge. P2 (W). The knowledge acquired by the learning
First, we describe a performance task and three system and used by the performance system is

learning algorithms that can be used to acquire the represented as inference rules of the form p, (G)
knowledge necessary to accomplish that task. Next,
we present an average case analysis of each P2 (G). These rules may be read as "if p, is true in
algorithm. Finally, in order to evaluate the average a world G, then P2 is true in G." G represents the set
case analysis, we compare the predicted and of conditions under which p1 implies P2 . Inference
observed accuracy of the algorithms on this task. rules of this form may be learned by generlizing all

of the individual worlds in which p, implies P2 . A
2.2 Learning a domain theory. collection of such inference rules, learned from a
The learning and performance tasks to be analyzed variety of examples, may serve as the domain theory
differ from those commonly studied in machine for explanation-based learning.
leaming. The difference is necessitated by the fact In this paper, we consider the case in which
that we are interested in analyzing the use and there are two possible means to determine if a
learning of a domain theory for explanation-based
learning (Dejong & Mooney. 1986: Mitchell. 3. One possible situation in which training
Keller, & Kedar-Cabelli, 1986). Learning a examples of this kind occur is in the induction of causal
domain theory requires learning multiple concepts rules. In this case, a training of the form p (w) -+ p2, w)
(one for each rule in the domain theory). The may represent the situation in which an action p, was
performance task is to infer if a predicate, p2, is true maseres th itu in w ich a at P2 ws
in a world w given that a predicate p1 is true. We observed to occur in w and a teacher indicates that 2 isan effect of p1 .
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predicate _ is true in world w when predicate a is chaining: The wholist method can be used to
true. The first is to acquire a rule (a (GC) -4 C (GC) ) learn G. and G from foundational examples
that allows c to be inferred directly. The second is and c can be inferred from a (GA) -+ b (GA,)
to acquire two rules (a (GA) -- b (GA,) and b (Gc) and b (G,) - c (Gc). Note that this method
-4 c (GC)) and allow the performance system to ignores the performance examples. This method
chaining rules to infer b from a, and then infer c can be viewed as learning the domain theory for
from b. Note that GAC can also be represented as G explanation-based learning. However, it is
A G.. For example, a might represent striking an irrelevant to the accuracy of the results of the
object, b might represent the object breaking and c learning whether the rule a (GAC,) -4 c (G.,c)) is
might represent the owner of the object getting cached by EBL (and updated whenever the
angry. The goal of the learning is to be able to domain theory is changed) or the performance
predict when a (GAC) c (GAC) : "If a. person strikes task is solved by chaining.
an expensive fragile object, then the owner of the
object will get angry." Two other rules may help in IOSC-TM (Sarrett & Pazzani, 1989a): The
the prediction: "If a fragile object is struck, the result of learning GAC from performance
object will break" and "If an expensive object examples, and the result obtained by learning
breaks, the owner will be angry." Here, GAC refers to GAB and GB from foundational examples can be
the conditions "expensive and fragile", G, is the combined to form a composite hypothesis. This
condition "fragile" and GBC is the condition is the technique used by the integrated one-sided
" s conjunctive learning algorithm with truth"expensive". maintenance s (IOSC-TM). If a feature is n

Three distinct groups of training examples are intenan e r IOSCyTM) ei fu n
intermixed and presented incrementally to the included in either the hypothesis found
learning system: chaining or the hypothesis learned for G, it is

" (WAC) _- C (W) not included in the composite hypothesis. It is
"(W AB) c(AB) possible to zombine the result of chaining and
a() 4-- b w, ) the result of learning GAC empirically because
b (WC) -4 (WC) each hypothesis only makes one-sided errors.

where wAC, w" and w are the sets of features of The composite hypothesis formed by IOSC-TM
training examples. We will refer to the first type of Js similar to the S set of the version space
training examples as performance examples since merging algorithm (Hirsh, 1989). However,
these examples will permit the learning system to unlike version-space merging, IOSC-TM learns
learn a rule that directly enables the performance the domain theory from foundational examples.
task. We will refer to the latter two types of Unlike the previous two algorithms, IOSC-TM
examples as foundational examples because these can update its hypothesis when presented with
examples do not allow the problem to be solved performance or foundational examples.
directly but provide a foundation for inferring when
c is true.4 We will assume that G., G,,B and GBc can Table 2 shows an example of the hypothesis
be represented as pure conjunctive concepts. In this produced by each of these three algorithms when run
case, one means of learning GAC, GB, and GB is to find on the same training examples. Note that the
the maximally specific conjunction of all examples hypothesis formed by IOSC-TM contains only those
of WAC, w, and wBC, respectively, features that are in the hypothesis formed by wholist

We will consider three related learning methods on performance examples, and in the hypothesis
that can be used to acquire the knowledge for this formed by chaining together foundational rules.
perfanbe uta c e tThe analysis of the wholist algorithm presentedperformance task: in Section 2.1 will apply directly to this problem.

Since wholist does not modify its hypothesis for GA• wholist: The wholist method can be used to we rsne ihfudtoa xmls a
learn G.., from performance examples. Note that when presented with foundational examples, P can
this method ignores the foundational examples. 5. Truth maintenance implies that the composite

hypothesis is updated immediately when a foundational
example changes the hypothesis of a foundational rule.

4. Note that the classification of a training IOSC without truth maintenance waits until a
example as a performance or foundational example is performance example is misclassified before updating the
with respect to a specific performance task. composite hypothesis.
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Table 2. Hypotheses produced by the three algorithms

Training Examples
a(x,- 1,x 2- 1,x 3- 1,x 4- 1,x5- I) - cix1- 1,x 2 - 1,x 3- 1,x 4- 1,x s- 1)

a(x,- 1,x 2- O,x 3- 1,x 4- 1,x 5- 1) -4 b(x,- 1,x 2- O,x 3- 1,x 4- 1,x 5- 1)

b(x 1 = 1,x 2"- 11X3- 1,x 4, 1,x5- 0) -4 c(x,1 1,x 2- l,x 3- 1,x 4- 1,x 5- 0)

a(x,- 1,x 2- 1,x 3 - O,x 4- O,x5- 1) -4 b(x i - 1,x 2- 1,x 3- Ox 4- O,x 5 - 1)

b(x 1 - l,x 2- 1,x 3- l.x 4- O,x 5- 1) -> C(x1- 1,x 2- 1,x 3- 1,x 4- O,x 5- 1)

a(x,- 1,x 2- 1,x 3- 1,x 4- O,x 5- 0) - C(xi- 1,x2- 1,x 3- 1,x 4- O,x 5- 0)

Hypotheses
wholist: a (xi- 1,x 2- 1,x3 - 1) -4 C(x 1- 1,x 2- 1,x 3 - 1)

chaining: a(x,- 1,x5 - 1) -4 b(x,-1 1,x 5- 1)
b(xi- 1,x 2- 1,x 3- 1) -> c(xi- 1,x 2- 1,x 3- 1)

(implicit) a(x,- 1.x2,= 1,x 3- 1,Xs,- 1) - c(x 1- 1,x 2- 1,x 3- 1,x 5- 1)

IOSC-TM: a(x,- 1,x5- 1) - b(x,- 1,x5- 1)
b(x- 1,x2- 1,x3 - 1) - C (X i " 1,x 2- 1,X 3 " 1)

a(x,- 1,x 2 - 1) -> c(x 1 - 1,x 2 - 1)

be viewed as the probability that a training example training example from a (Wy) -+ C (WAC), a (WAB)
is a positive performance example and 1-P can be - b (W , and b (wC) - C (W.), respectively.
viewed as the probability that a training example is a
foundational example. Note that we are interested in
predicting the accuracy of the learning algorithms as If il positive training examples of a (W,) -

a function of the total number of examples (both b (WA,) , and i2 positive training examples of b (w :)
foundational and performance). -> e (W c) have been seen out of N total training

2.3 Average case analysis of using chaining examples, the probability that irrelevant feature j
remains in the hypothesis is:Chaining a (G ) - b (G ,) and b (Ge) - cCG%:)

requires using the wholist algorithm to learn two remainchaining(fi,i2)=
conditions (GA. and G). A positive test example 1 - ((1-PAB( )i  * (-PBc(fj)i2)) [4]
will be correctly classified (i.e., for a given WA*

determining if a (w Ad - C (W^d ) if bothG andG B Therefore, the probability that feature j does
do not contain any irrelevant feature that is not not cause a positive test example to be misclassified
present in the test example. Some new notation is is given by nmchaining(fj, i1 ,2):
necessary to express the probability that a positive
test example is classified correctly by chaining: nmchainig(f, 112 =

PAC, PAB' and PBC are the probabilities of 1- (remainchaining(fj , i1,i2) * (1 - PAC(fj))) [5]
drawing a positive training example fromda win)g~ a ivb training exandle bIf all irrelevant features are independent, thena(W^c) -c (V,,:), a ( or) - , b , b (We the probability that no irrelevant feature will cause a
--4 ,j AV,,, , I,, positive test example to be misclassified is:
only consider the case that PAC + PAB + PBC = I
1 (i.e., there are no negative training examples). 171 nmchaininifj,bii2) [6]

=I
S Ac(fj), PAB(f), and PBC(f,) are the probabilities Finally, in order to predict the accuracy of the

that irrelevant feature j is present in a positive hypothesis produced by chaining after N training
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N No

Nio N PACiPA1,PBe<+L) -nmc nfj, i1,N-(io+i1)) [71

examples, it is necessary to take into consideration remain10 sc(fj,i0 ,ii 2)=
the probability that there are exactly io positive PAC0f)i * (1-((1-PAB)fj ) * (1-PBC(f)i2)))) [8]

training examples of a C w.c) - c (w c) , iI positive Therefore, the probability that feature j does not
training examples of a (WB) - b (WA,) , and i2 cause a positive test example to be misclassified by
positive training examples of b (W.) - c (w3c) for IOSC-TM is given by nm1loSC.TM(fj1io , ii2):
each value of io, iI and i2 from 0 to N. Note that
because there are no negative training examples, i2  nmIo-SCTM(niO , i1'i2) =

is equal to N -(io, + il ). The multinomial formula is 1 - (remaintosc,1 o, i1,12) * (1 - PACQ))) [91
used to weight the value of nmcaning(fj i,i 2) by the In order to predict the accuracy of the hypothesis
probability that various values of iO, i1 and i2 occur. produced by chaining after N training examples, it is
Therefore, the accuracy of the hypothesis produced necessary to take into consideration the probability
by chaining can be given by Equation 7. that there are exactly i0 positive training examples

In Sarrett & Pazzani (1989b), we consider the of , (C) - . i positive training examples
general case in which the inference chain is of any
given length and prove the general forms of the of a (WB -+ b (W, , and i2 positive training
equations in this paper. In Section 2.5, we illustrate examples of b (w.) - c (wc) for each value of io,
how well Equation 7 models the accuracy of thehypothesis produced by the chaining algorithm. iI and 12 from 0 to N. As with chaining, i2 is

equal to N -(iO, + 1 ). Therefore, the accuracy of
2.4 Average case of analysis of IOSC-TM the hypothesis produced by IOSC-TM can be given
The IOSC-TM algorithm combines the hypothesis by Equation 10.
formed by chaining a (GA,) -4 b (G.) and b (G,,) -fo~mdbyhainngaG~) 4b(~) ad bG~) 2.5 Evaluation of the average case model
c(G,,) and the hypothesis produced by wholist

learning a (G^c) - a (GA). A positive test example In order to compare the accuracy of the hypotheses
will be incorrectly classified if it does not contain produced by the three algorithms under a variety of
an irrelevant feature that meets both of the following conditions, we substituted various values for PAC(,t),
conditions: PAB(fj), PBC(fj), PAC' PAB, and PBC into Equations
• Either G,. or GB contains the irrelevant feature. 3, 7 and 10. In addition, we ran each of the three

algorithms on data generated according to the values
of the parameters. Figure 2 shows the three

* G., contains the irrelevant feature. algorithms when PAC is 0.4, 0.2 and 0.1. In each
case, PAB, and PBC are (1 - PAC)/2. The values of

If i0 positive training examples of a (WA) - PAC(fj)' PAB(fj)' PBC() were randomly assigned for
* (WAC), 11 positive training examples of a (w ) each feature from the range (0.01 to 0.80).

(W,) ,and i2sOf b (W) The theoretical values predicted by the average
2 positive training examples ocase framework presented in this paper allow several

C (W ) have been seen out of N total training conclusions to be drawn about three algorithms.
examples, the probability that irrelevant feature j First, wholist converges to 100% accuracy more
remains in the hypoLfhesis is: quickly than chaining when there is a largerproportion of performance examples, while chaining

N N-40I iaN PAc.PA]i'P(e+ ii) * nmosc(fJio, i1,N-(io+i1)) [101

i i0J 0frl
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converges more quickly than wholist when there is a Dietterich, T. (1989). Limitations on inductive
larger proportion of foundational examples. IOSC- learning. Proceedings of the Sixth International
TM always achieves an accuracy greater than or Workshop on Machine Learning (pp. 124-128).
equal to the accuracy of chaining or wholist. Of Ithaca, NY: Morgan Kaufman.
course, similar generalizations about the behavior of DeJong, G., & Mooney, R. (1986). Explanation-
these algorithms can be drawn by inspecting the based learning: An alternate view. Machine
algorithms. However, the average-case learning Learning, 1, 145-176.
model is able to quantify the exact conditions under Fisher, D. (1987). Knowledge acquisition via
which one algorithm will produce more accurate incremental conceptual clustering. Machine
results than another. Learning, 2, 139-172.

Flann, N. & Dietterich, T. (1989). A study of
3 Conclusion explanation-based methods for inductive

learning, Machine Learning.
In this paper, we have presented a framework for Haussler, D. (1987). Bias, version spaces and
average case analysis of machine learning Valiant's learning framework. Proceedings of
algorithms. Applying the framework consists of 1) the Fourth International Workshop on Machine
understanding how an algorithm revises a hypothesis Learning, Irvine CA.
for a concept, 2) calculating the probability that a Hirsh, H. (1989). Combining empirical and
training example will be encountered that causes an analytical learning with version spaces.
inaccurate hypothesis to be wised and 3) Proceedings of the Sixth International Workshop
calculating the effect that revising a hypothesis on on Machine Learning (pp. 29-33). Ithaca, NY:
the accuracy of the hypothesis. The framework Morgan Kaufman.
requires much more information about the training Langley, P. (1989). Toward a unified science of
examples than the PAC learning model. The machine learning. Machine Learning, 3(4).
information required by the model is exactly the Mitchell, T. (1982). Generalization as search.
information required to generate artificial data to test Artificial Intelligence, 18.
learning algorithms. We have applied the Mitchell, T., Keller, R., & Kedar-Cabelli, S.,
framework to three different learning algorithms. (1986). Explanation-based learning: A unifying
We have verified through experimentation that the view. Machine Learning, 1, 47-80.
equations accurately predict the expected accuracy. Minton, S. (1988). Quantitative results concerning
Although we have currently analyzed only the utility of explanation-based learning.
algorithms for conjunctive concepts, we anticipate Proceedings of the Seventh National Conference
that the framework will scale to similar algorithms on Artificial Intelligence (pp. 564-569). St. Paul,
using more complex hypotheses. Our future plans MN: Morgan Kaufman.
include modeling more complex learning algorithms Pazzani, M. (1990). Creating a memory of causal
with more expressive concepts (e.g., k-CNF and k- relationships: An integration of empirical and
DNF) and using statistical techniques to derive the explanation-based learning methods. Lawrence
information needed for average case analysis from Erlbaum Associates: Hillsdale, NJ.
existing databases. Restle, F. (1959). A survey and classification of
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Abstract cooperating problem-solvers.
A wide variety of learning algorithms have been

ireported in the liteaiutre. However, no one algorithm is
adequate for a wide range of problems. Our approach is

This paper describes our initial implemen- to integrate several algorithms.
tation of a domain-independent Integrated Its provides a framework for integrating several
Learning System (Its), and one application, heterogenous learning agents, written in various lan-
which, through its own experience, discovers guages and executing on various platforms, that cooperate
how to control a telecommunications network. to improve problem-solving performance. It also includes
ILs provides a framework for integrating several a central controller called The Learning Coordinator
heterogeneous learning agents, in this case im- (TLc) which manages control flow and communication
plementations of inductive, search-based and among the agents, using a high-level communication
knowledge-based learning. These agents, writ- protocol. The agents provide TLC with expert advice con-
ten in various languages and executing on ceming the current problem; TLC then chooses which sug-
various platforms, cooperate to improve gestion to adopt, and performs the appropriate actions.
problem-solving performance. Is also includes The agents compete by offering potentially differing ad-
a central controller, called The Learning vice to TIC, and cooperate to overcome gaps in their in-
Coordinator (TIc), which manages control flow dividual knowledge. At intervals, the agents can inspect
and communication between the agents using a the results of the TLC's actions and use this feedback to
high-level communication protocol. The agents learn. As they learn, either autonomously or coopera-
provide TLC with expert advice. TLc chooses tively, the quality of advice given to TLC increases, lead-
which suggestion to adopt and performs the ap- ing to better performance.
propriate actions. At intervals, the agents can At present, Its contains three learning agents,
inspect the results of the TLC's actions and use NETMAN, FBi and MACLEARN, and a domain simulator
this feedback to learn, improving the value of called NETSIM. Figure 1 shows the current ILs architec-
their future advice. At present Its is being ex- ture.
tensively tested, and the initial results are The agents are heterogeneous in that they each have a
promising. different:

1. introduction 9 model of the domain

This paper describes our initial implementation of a 9 area of expertise in the domain
domain-independent, distributed Integrated Learning Sys- * learning paradigm
tern (Is). The first application of ILs determines, through
experience, how to control a telecommunications net-
work. This ongoing work addresses issues involved in
combining various learning paradigms, integrating dif-
ferent reasoning techniques, and coordinating distributed
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Figure 1: The Integrated Learning System

In addition, TLC, each agent, and the domain simulator Fbi, MACLEARN and NErMAN are discussed in more
can execute in parallel on different machines. detail in [Frawley 89, Tba 89, Silver 90] respectively.

The heterogeneous approach distinguishes Its from
Soar [Laird et al 871, which uses one learning paradigm 2.1. Inductive Learning
(chunking) for all learning tasks, and THEO [Blythe & Fi (Function-Based Induction), [Frawley 89], is an
Mitchell 891, which uses one representation framework extension of Quinlan's ID3, [Quinlan 86]. FBI learns deci-
(frames) for all learning tasks. Unlike the system sion trees from large numbers of examples.
described in [Falkenhainer & Rajamoney 88], Its can in- Its inputs include:
tegrate learning agents systems of many different types. * the function,f, to be approximated,

Section 2 briefly describes the learning paradigms and
their specific realizations as agents in s. Section 3 dis- * the set of approximators, G,
cusses the domain of experimentation, telecommunica- * the domain, D, (a database) on which f and the
tions network traffic control, and a realistic simulator members of G are defined,
called NETrsM. Section 4 describes the ILs communica-
tion protocols. Section 5 discusses the operation of TLC. * and the measure of uncertainty whose local
Section 6 describes the inter-agent cooperation im- minima are used to define the tree. The default
plemented in the present version of ILs. Section 7 dis- for this function is the conditional entropy.
cusses the possible future directions of this work. f is a finite-range function which corresponds to the goal

concept to be learned. The individual approximators in G
2. Some Learning Agents are functions which combine and generalize the attributes

This section briefly describes three learning paradigms of the database D.
and their implementations in lLs: inductive (113I), search- FBI returns a tree-structured object along with code to
based (MACLEARN) and knowledge-based (NETMAN). evaluate the tree function. As a result of a two-pass pro-
FBI and MACLEARN are written in Symbolics Lisp and run cedure, the structure contains no isomorphic subtrees.
on Symbolics Lisp Machines. NETMAN is written in Thus, branches of a node may represent subsets of values
Quintus Prolog and runs on Sun Microsystems worksta- rather than individual values. Each leaf of the object
tions. encodes the associated value off and retains pointers to
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all the database entries used in its construction. Each straightforward statistical induction, a decision tree is
non-leaf node retains pointers to its inconsistent database constructed recursively by selecting, at each level, the ap-
entries, computed as follows. First, during tree construc- proximator which minimizes an uncertainty function, u,
tion, classes of inconsistencies are identified and for each over the unresolved data. By allowing the user to specify
class those having the most-likelyf-value on the class are the selection method, FBi can override strict minimization
used to construct the tree. Then, the inconsistent data that criteria. For example, domain knowledge might dictate
was not used is passed through the nodes and branches that the approximator g should appear above the ap-
down to those non-leaf nodes having no suitable branch, proximator h in any tree in which h occurs. Or contextual
where they are recorded as inconsistent, information unrelated to the uncertainty calculation may

In addition, by adding a meta-level field to the provide weights {a, ) adjusting u to select the minimizer
database which records all trees computed over it, it is of ag,.
possible to update the trees as the database changes. Each FBi also includes a function-discovery mode which
new database entry is passed through the structure of each discovers two types of interesting functions. First, there
tree. If it is consistent with a tree's approximation to fit are classifiers defined by tree nodes which, during tree
is indexed by some leaf node of the tree; otherwise, it is construction, have replicated immediate subtrees.
indexed by the inconsistencies of some non-leaf node. Secondly, disjunctive concepts representing paths to max-

Unlike ID3 which is used to build one decision tree, imal subtrees replicated at different levels in the tree are
FBI is used to build and maintain a sequence of trees automatically defined. This extends the ongoing work in
employing different approximators or different methods the field on learning disjunctive normal form (DNF) con-
of approximation. cepts using decision trees as a concept description Ian-

* Function-based induction can iteratively refine guage, [Pagallo & Haussler 89, Pagallo 89, Matheus &
an approximation to a particular classifier in Rendall 89].
this way: First, a decision tree based on at- Often the concepts discovered in this way are useful
tributes alone is computed. Then, the tree is ex- because they reflect genuine features of the domain. In
amined by the user for intelligibility or domain other cases, the concepts discovered are artifacts caused
or statistical relevance. Some attributes may be by random patterns in the example set. Ei can ask other
removed from the set of approximators; new agents of ILS, in particular NETMAN, to assess the utility
domain and context functions may be added to of a discovered concept. This is discussed in Section 6.3.
the approximators. Then the tree is recom- 2.2. Search-based Learning
puted, re-examined, etc. MACLEARN [Iba 89, Iba 88] currently performs

* Consultation programs which utilize different best-first search (see, for example, [Nilsson 80]) in order
rulesets can be built: Various aspects of to learn macro-operators, or macros, which are useful
domain or context knowledge may be suggested combinations of operators that can be subsequently
by different experts or domain models. These treated as a single operator. Macro-learning is a form of
can be encoded into different decision trees and chunking that can improve search performance by enlarg-
the statistics of each and performance over time ing the set of operators available for the search. The
compared. availability of a good set of macros will often drastically

reduce the combinatorially explosive nature of a search
Computed decision-tree functions can be used problem.
as approximators in constructing other Macros reduce search in two general ways. The first is
decision-tree functions. to take larger steps in the search space. Since a macro

There are two ways in which FBI makes use of domain actually represents a number of primitive operators, the
and contextual knowledge in constructing approxima- application of a single macro can result in moving a
ions. First, the approximatorfunctions can appropriately greater distance through the search space. A problem that

combine attributes. For example, in network traffic con- may require hundreds of primitive steps to solve, may be
trol, counts of call attempts and call completions are solvable more quickly by only tens of applications of
recorded for all trunk groups for each five-minute period; niacro steps.
but these numerical attributes are not individually impor- The second way is to provide synergistic combinations
tant. What is important is the classification of ratios of of operators: applying a set of operators as a group may
completions to attempts to indicate over- or under- be beneficial, whereas applying any operator alone may
utilization of given trunk groups. The use of thresholds make things worse. In such a case, it may be difficult for
for certain ratios of attributes exemplifies how domain a search to discover the combination; but once it has been
knowledge directs attribute combination; the situation- discovered it is valuable to remember it in order to avoid
dependent values of thresholds used exemplify contextual having to duplicate the lengthy search in subsequent
knowledge. Second, the selection of the next best- similar situations. Thus macro learning can be viewed as
approximator can depend on domain or context. In a kind of encapsulation of experience.
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However, there is a cost associated with creating mac- classify the type of bug, and associate this type with the
ros. Macros enable larger steps through the search space, action. Note that the action may often work successfully;
but they increase the number of possible branches at each bugs may occur only in certain situations.
step. This increased branching factor will tend to slow Ideally, NETMAN would be able to accurately distin-
down the search. In order for macros to prove beneficial, guish between situations in which an action will be suc-
the advantages must more than compensate for the dis- cessful and those in which it will fail with a bug. Unfor-
advantages. Thus a macro learning program must have a tunately, the computation involved, and the stochastic na-
means of deciding which macros to keep and which to tre of the domain, make this impossible to do precisely.
discard. MAcLEARN uses various heuristic criteria to per- Instead, NmrMAN heuristically differentiates the cases by
form this filtering process. calling on another component of Its, FBi. Section 6.1

On complex problems, MACLEARN may encounter a describes this interaction.
combinatorial explosion as the search space of possible
operators becomes too large. In such cases, MAcLEARN 3. The Problem-Solving and Learning Tasks
becomes begged down in the search and may be unable to Consider a system or process characterized by a time-
find a satisfactory solution. Other agents within Is can dependent internal state, S, whose quality or merit at any
provide assistance to MACLEARN by constraining the given time is described by an evaluation function e with
search and indicating which part of the search space values in the interval [0,1]. The system responds with a
should be examined. This is discussed further in Section time lag to service demands and to whatever control has
6.2. been imposed on it. The system goal is to operate with its

2.3. Knowledge-Based Learning evaluation at or near 1. In complex systems, subject to
widely varying demand and the possibility of subsystemNETMAN, [Silver 90], is The angxample a knowledge- failure, this can be difficult. At certain discrete times, t1,

intensive learning system. The algorithm used is based on an external controller imposes one of N controls,
explanation sed learning (EL), [DJong & Mooney A AN, in order to increase the value of e(t) at sub-
86, Mitchell et al 86], modified to work with an imperfect o
domain theory, [Silver 86, Silver 88]. sequent times. One way to measure the effectiveness -of

NETMAN starts with a large amount of domain the choice of a control at time tt is to compare the states
knowledge, expressed as rules. However, the knowledge just before and sometime after the control action. For
need be neither complete nor totally accurate. As a result, example, with e=e(S(t)) and e'=e(S(t,+A)), a simple
NETMAN can make mistakes. (Human experts suffer function such as f(e,e')f= (e'-e)I(1-e) may suffice. The
from the same limitation, of course.) In EBL terms, the number of control options, N, is one measure of the com-
domain theory is incomplete and computationally intract- plexity of system control.
able, and so NETMAN uses a heuristic approximation. The problem-solving role of a controlling agent is to

NETMAN learns four major types of information from observe e(S(t)) or S(t) over time and, at times of its own
experience: choosing, to actuate new choices of control. In the ab-

1. Stored caches: NETMAN stores as a macro the sence of an adequate model of the system, it may not be
sequence of rule firings that led to advice that possible to assess how well a problem-solver is doing.
worked. But, by presenting the same or similar situations to two

competing controllers, it is possible to determine which is
2. Support List: The support list indicates how more effective. The learning role of a controlling agent is

successful or unsuccessful a particular action to improve based on experience; that is, the self-adapted
proved to be. Those that have proved valuable agent is to be more effective than the agent in its original
in the past are more likely to be used in the state.
future. 3.1. Application Domain: Network Traffic Control

3. Possible Bugs-. When an action fails to The dynamic system control problem used as the basis
achieve the expected effect, NETMAN can for Its experimentation is the control of traffic in a
classify the cause and severity of this failure. circuit-switched telephone network. Network state is
This information is stored and will affect fu- defined by a considerable volume of data regarding call
ture use of the action. placement and switch and trunk-group usage provided on

4. Plans: A plan consists of a sequence of actions a minute-by-minute basis. The overall network evalua-Plans ha panronss sequee ofh ations ex tion function used here is the percentage of attempted
that have proved useful, together with the ex- calls that are successfully completed, averaged over the
pected effect of each action. most recent five-minute interval. Generally, human net-

When actions have unexpected effects, NETMAN at- work traffic managers strive to keep this value above 99%
tempts to explain the cause of the unpredicted behavior, but there are many types of situations in which a con-
This analysis allows NETMAN to discover that sometimes siderable percentage of calls fail and intervention is re-
an action will fail due to a bug. NETMAN is able to quired.
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The task is difficult, partly because of the huge amount responds to this message by examining the
of data produced and its time-varying nature. There is current state and deciding what actions would
some reliance on preplans; standard procedures for pre- be best for improving this state. A vote (in the
dictable occurrences, such as Mother's Day, which is the range 1-5) accompanies each recommen-
busiest calling day of the year, or for special copt sts that dation, indicating how beneficial the agent
radio stations occasionally offer ("We will give two free predicts this advice is likely to be. If the agent
tickets for tomorrow's show to the first ten callers with is unable to come up with advice that im-
the correct answer..."). However, unpredictable proves the situation, it may respond with the
problems arise, and they cause tbe major difficulty. One reply UNKNOWN.
example is the partial or total failure of a network element
(a trunk group or a switch) which may cause some un- 3Te tI mesage i s adeqe forea
avoidable denial of service to some users; however, effec- agent to provide its opinion of advice offered
tive traffic management can greatly improve the situation, by other agents. The specific pieces of advice
for example, by rerouting traffic around the failed ele- other agents have proposed are passed along
ment. as part of this message. The response to this

Many other Artificial Intelligence techniques have request is a set of votes (again in the range
been applied tc Network Traffic Management, including 1-5) reflecting the value of each piece of ad-
Case-Based Reasoning [Kopeikina et al 88], Distributed vice as viewed by the responding agent. A
Al [Adler et al 89, Brandau & Weihmayer 89] and tradi- vote of UNKNOWN is given for those pieces of
tional Expert Systems (e.g. [Kosieniak el al 88]). These advice that an agent is not able to meaning-
approaches suffer from the inflexibility of all non- fully critique.
learning programs: an inability to learn from experience 4. The DATA-AVAILABLE message is used to
and thereby to improve their control of the network. notify agents which of the last suggested sets

3.2. The Simulator of actions were taken and that a sufficient

The performance module for ILS experiments is a net- period of time has passed since they were

work simulator called NETSiM, [Frawley el al 88]. taken to allow domain data to reflect those ac-

NTSIM conducts a fine-grained simulation of the call tions. In response to this message, agents can

placement process in a network of end-offices and tandem gather feedback from the domain in order to
switches and implements a set of controls applicable to learn.I Finally, they send back an ack-

switches and trunk groups. One property of this domain nowledgment that they have finished process-
simulation is its complexity. In ongoing experiments on a ing the current data.

ten-switch, sixteen-trunk network there are always at least 5. The RECORD message is sent to agents which
3000 individual "legal moves". Moreover, in many maintain their own databases of past cases.
cases it is reasonable to impose several controls simul- One aget asks another to record additional
taneously, increasing the number of allowable control op- information about a given case for later recall
tions considerably. or processing. For example, this primitive is

used by NETMAN to select special cases for
4. The ILS Protocol processing by FBI. if the message recipient

ILs is completely distributed. Within IIs, agents inter- does not have a recording facility, it returns
act via TCP/IP streams using a communication protocol UNKNOWN.
consisting of the six message (request) types enumerated
below. Any agent may access any other agent using Its 6. The CIASSIFY message is a request for an
language primitives or any other calls understood by the agent to classify the current state of the exter-
target agent. nal domain with regard to a particular predi-

1. The INITIALIZE message is a request for cate used in a previous RECORD message. For

an agent to i,-iialize itself and set up com- examtli f ETMAN uses this message to ask

munication with other agents. This message FBI to classify the current state using a tree

includes information specifying the current constructed from states that have been

host machine for each of the other agents. 7i he RECORDed.
respunse to this message is simply an ack-
nowledgment that system and communication
initialization is complete.

2. The ADVISE message is a request for advice
on what to do in the current state of the exter-
nal domain to be controlled. An agent

1Thc technique used to gather data from the domain is agent-specific.
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5. The Learning Coordinator tent; an agent should expect that actions it scores highly
In its current state, the ILs relies on a Learning Coor- will perform better than those actions to which it gives a

dinator (TLc) to manage the control flow between the lower score.
agents and the simulated domain. The basic loop, MACLERN calculates the vote using an internal
repeated every five simulated minutes, is as follows: simplified simulator, called FLOSIM. It compares the

simulated outcome with the current network state, giving
.Trlass the twhagent reatrns at of- a very high vote if the action appears to greatly improvetrol the network. Each agent returns a fist of the situation, and a somewhat lower vote if the action

possible actions, and associates with each ac- promises only a small improvement.
tion a vole, a number between 1 and 5, indicat- FBI calculates its vote using its database of previous
ing the agent's perception of the value of that examples. If the proposed action has greatly helped
action. similar situations in the past, it receives a very high vote,

2. Thc then asks the agents to critique the otherwise a somewhat lower vote. An example consists
proposals of the other agents. Each agent of descriptions of an initial network state, a set of actions,
returns a vote for each proposal. and the network state that results from taking those ac-

tions and running the network for an additional period of
3. Now Tic has a list of proposed actions, and simulated time. Two preferred subsets are maintained,

each action has, at present, a set of up to three one of examples whose rankings are very high, and one
votes associated with it. TLc has to choose for examples whose rankings are high. Learned decision
between these proposals. There are several trees defined over these subsets map an initial state to a
possible techniques that can be used for this set of actions: the advice provided is either a very high set
selection process, some of which are described of actions, a high set, or none. FI's vote depends on
below. As currently implemented, TLC success ratios of similar actions in the database.
averages the votes for each proposal and ex- NETMAN bases its vote partly on the basis of past ex-
ecutes the action with the highest average perience. It also uses its domain theory, taking into ac-
score. count the effect of controls. For example, an action

receives credit if it contains controls that move traffic4. Five simulated minutes later new switch statis- from overflowing trunks to non-overflowing ones.
tics are produced. The agents inspect these NETMAN calculates the vote for a proposal by combining
faiurcs the on feack, aoing the m u tessor the vote based on past experience (if available) with thefailure of the chosen actieii, allowing them to vote based on domain knowledge.
learn appropriately to affect their future
problem-solving performance. 5.2. Critiquing Suggestions of Others

The following sections discuss the individual steps in In general, an agent critiques a proposal using the same
more detail, using NErsim as the domain simulator. mechanism used to produce a vote. Thus MACLEARN

5.1. Proposing Controls uses FLOSIM to simulate the effect of the proposed con-
trols, FBI uses a decision tree, computed over all ex-

The agents individually obtain network statistics amples, mapping pairs of initial states and actions into
directly from NEsIM via TCP/IP streams. Each agent rankings to evaluate the expected effect of a proposed
examines the statistics and attempts to produce an ordered action, and NErMAN uses a domain model and previous
list of actions that the agent believes will improve the experience to estimate the effectiveness of the proposal.
network state. An action may remove some controls al- NETMAN also performs a series of "sanity checks" on
ready in place and/or impose some new controls. the proposal. For example, rerouting traffic to a trunk that

Alternatively, an agent can suggest taking no action, if is currently non-operational is a bad mistake, and a
it believes that the current state of the network is satis- proposal containing such a reroute will receive a poor
factory, or it can indicate that it does not know what to do. score.
In the last case, no further processing is performed. In some cases an agent may indicate that it has no

No agent will propose actions that appear to make the opinion on a proposal. This can happen if the agent has
situation worse. If an agent cannot find an action that will no knowledge or experience concerning a particular con-
improve a bad network state, it will indicate that it does trol or set of controls. Such critiques are discarded.
not know what to do.

Each agent must also calculate a vote for each 5.3. Choosing between the Proposals
proposed action; in other words, determine how much it As indicated above, currently IIs chooses the action
believes in the action that it is proposing. In the current with the highest average score. Other alternatives in-
implementation, each agent calculates the vote in a dif- clude:
ferent way, described below. The architecture does not * Choose the action with the highest raw score; in
require that the agents have a uniform semantics for other words ignore the effects of critiquing.
voting. However, each agent should be internally consis-
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" Choose the action that is highly scored by more 6. Inter-agent Cooperation
than half of the agents. Section 5.2 described one level of cooperation between

" Choose the action proposed by the agent that the agents: the ability to critique the actions of each other.
has proved most reliable in the past. This section further describes our ongoing work on some

of the ways in which the various agents interact to im-
* Weight the votes of an agent in proportion to its prove the performance of individual agents. In the current

past performance. system, only the first mechanism is implemented; the
These strategies are currently being evaluated, others will be added shortly.

The last two suggestions above require that TLc keep 6.1. Concept Formation
track of the performance of each agent, and thus itself
learn to choose among the various proposals. This can be Ideally, NETMAN would be able to distinguish ac-
done with varying degrees of sophistication. The simplest curately between situations in which an action will be
method is to increase the perceived reliability of an agent successful and those in which it fails in a certain way.
when its choice is selected and causes improvement, and However, the complexity and stochastic nature of the
to decrease the perceived reliability, if its action makes domain make this an unrealistic target. Instead, NETMAN
the network worse. heuristiczlly differentiates the cases by calling on FBI.

One problem with this approach is that TLc cannot FI is given two classes of examples: in one class are
know whether a successful action was the best of all of all the examples where the failure mode occurred, in the
the suggested actions; this is inherent in every scheme other are the cases where the action worked. FBI is used
that does not perform a total search. Thus an agent may to produce a function that heuristically classifies network
be rewarded when the untried suggestion of another agent states as likely to suffer from that failure mode or not. If
would have caused greater improvement. Another dif- NETMAN is considering performing the action, it asks the
ficulty with this method is that the agents are learning, so inductive learing program for its classification. If the
that an agent that originally provided poor advice may current state is classified as likely to fail, and the failure
now produce effective suggestions. One way of correct- mode has proved sufficiently severe, NETMAN does not
ing this problem is to discount earlier performance, giving propose the action. In effect, the classification step is
more weight to recent experience. added as a precondition to the treatment rule that proposes

Neveifleless, empirically the simple technique appears the action.
promising. It can be extended to the critiquing process as 6.2. Reducing the Search Space
well; if an agent gave a low score to an action that was in As mentioned previously, MACLEARN can be over-
fact successful, Thc can decrease its perceived reliability whelmed by the combinatorial explo.ion on complex net-
and similarly in the other cases. works. This problem could alleviated by giving

All of the techniques described above result in TLc MACLEARN constrained search problems. In a future ver-
selecting one of the proposed actions. A more sophis- sion of ILs, the constraints would come from FBI or
ticated approach would be to form new advice by combin- NETMAN detecting important features of the current net-
ing the proposals of individual agents. Various combina- work state. The search could be constrained in various
tion techniques could be used. For example, a purely ways:
syntactic method might use union or intersection opera-
tions to generate the new advice. Alternatively, a more * Reduced operator sets: MACLEARN is told to
knowledge-based approach might detect that two of the consider only certain types of controls.
proposals treat independent separable problems, and so * Constrained areas of application: MACLEARN is
could be usefully combined. told to consider placing controls on only the

5.4. Obtaining Feedback specified network elements.
One interesting feature of the Its architecture is that * New starting state: MACLEARN is told to as-

some agents can learn even when another agent's action is sume that certain controls must be present.
the one that is chosen. In the case of FBI, the mechanism
is particularly simple; the whole cycle is just another ex- 6.3. Assessing Discovered Concepts
ample, consisting of a before state, an action and an after As described in Section 2.1, FBI can automatically dis-
state. NETMAN is able to learn if the action chosen is cover potentially interesting concepts that are combina-
sufficiently similar (according to a complex metric) to an tions of other existing functions. Often the concepts dis-
action it proposed. covered in this way are useful because they reflect

At present, MACLEARN does not make use of the feed- genuine features of the domain. In other cases, the con-
back. cepts discovered are artifacts caused by random patterns

in the example set.
A knowledge-based agent, such as NETMAN, could be

used to heuristically classify a concept as useful or not
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useful. When Fb3 proposes a new concept, it could ask work in Distri'uted Artificial Intelligence, [Brandau &
NurMAN if there is any domain knowledge that combines Weihmayer 89].
the functions contained in the concept If NETMAN did The intent is ultimately to develop a domain
have such domain knowledge, the concept would prob- independent ILs.
ably be a genuine one. If not, the concept may be an
artifact, although perhaps NErMAN is missing some
domain knowledge. Many other members of GTE Laboratories, including

Oliver Selfridge, Alvah Davis, Mark Adler, Alan Lem-
7. Conclusions and Further Work mon, Ralph Worrest, Rich Brandau and Ludmila

Its is a framework for integrating several distributed Kopeikina provided the project with useful information

heterogeneous learning agents that cooperate to improve concerning the network traffic control domain, and have

problem-solving performance. The agents learn both in- provided interesting discussions in machine learning and

dependently and cooperatively. Each agent has been associated fields like case-based reasoning. Tom Fawcett

tested independently using telecommunications traffic built NErsm and contributed many valuable ideas to the

control as a domain, and each has demonstrated that it can project. June Pierce drew the figure and helped in the

learn by interacting with that domain. At present Its is preparation of the paper. Comments from Chris Matheus,

being extensively tested using the same domain. One Marlene Kliman, Rich Sutton, Chuck Anderson and two

focus of the current research is the relative utility of anonymous referees greatly improved the presentation of

various TLc selection strategies. Simple strategies appear the paper.
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ABSTRACT

The paper presents an integrated
framework, namely IRI, for inducing constructcd 114--an incremental ID3;
the inference rules from examples. Utgoff(1988) built ID5---a more elaborate
Achieving this requires considering the incremental ID3; Cendrowska(1987)'s PRISM is
generality, inducibility, incrementality, able to obtain a set of the simple classification
uncertainty and hierarchy of expert rules instead of a decision tree; Quinlan (1987)
rules. Our approach is a mutual into. also simplifies decision tree into a set of modular
gration of empirical and analytical production rules. However, the rules or trees in-
techniques to avoid shortcomings of duced by them hardly capture the characteristics
them when applied individually. It also of expert rules used in making inferences. The
incororates some interesting ideas or paper is totally devotcd to solving this problem.
algorithms t6 achieve these goals. Pri- We begin our approach by examining character-mary experimental results are encour- istics of human inference rules. A learningaging and more work is required. framework is then presented to integrate similari-

1. Introduction ty-based and explanation-based approaches toI. Inrodutioninduce rules.
Quinlan's(1983,1986) ID3 is an interesting

algorithm which induces a decision tree from ex- 2. Exemplary Domain
amples. Each example is depicted by several at- We give an exemplary problem excerpted
tributes and belongs to a class. The task is to de- from Cendrowska(1987). An adult spectacle
rive a logical description of each class. The signif- wearer wants to purchase her first pair of contact
icance of the problem varies with the different lenses. In optician's point of view, this is a
appearances of the description. For instance, if three-category classification problem. His deci-
each class represents a decision and each attri- sion will be one of:
bute an aspect of the situation, the description
may be interpreted as a decision rule; if each class @1: the patient should be fitted with hard con-
corresponds to a kind of disease and attribute a tact lenses,
symptom, the description may be interpreted as a @2: the patient should be fitted with soft contact
diagnosis rulec. In- other words, solving the prob- @:teptetsol efte ihsf otc1em could greatly contribute to wieigte lenses,

wideningstheknoldgeaty cqu ontrbtteec to w inducing @3: the patient should not be fitted with contactknowledge acquisition bottlcncck by inuig lenses.
rules automatically.

A lot of improvements have been done since In reaching his decision he must consider one or
I1)3. For instance, Schlimmcr & Fisher (1986) more of four factors:
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a: the age of the patient ID3s decision tree:
1. young, 2. pre-presbyopic, 3. prcsbyopic

b: her spectacle prescription
1. myope, 2. hypermetrope S

c: whether she is astigmatic
1. no, 2. yes ---

d: her tear production rate d 1 Id2I

1. reduced, 2. normal @3 C . . . c2

Table I shows the optician's decision for _ __ __
each combination of the four factors. However, b I I b 2 1 b 1 1 b 2
the optician just uses his rule-based experience _ @2 @1 -___ __...

instead ofcarrying such a table around with him, a2 a3 all a2 I a3l

either on his person or in his head. @2 @2 @3 @ @3 @3

TABLE 1. decision table for fitting contact lens

PRISM's rules:
Value of Value of

attribute decision attribute decision 1. c2 & d2 & bl = = > @1
a b c d @a b c d @ 2. al&c2&d2= =>O1

3. cl &d2& b2= = >@2
4. cl &d2&al= = > @2

I 11 3 1 2 21 3 5. cl&d2&a2==>@2
1 1 1 2 2 1 2 2 1 1 6. dl==>@3
1 1 2 1 3 2 1 1 1 3 7. a3&bl&cl==>(3
1 1 22 1 2 1 1 2 2 8. b2&c2&a2==>@3
1 2 1 1 3 2 1 2 1 3 9. b2&c2&a3==>O,3
1212 2 2122 1
2 2 1 1 3 3 1 2 1 3 Fig. l. The output ofID3 and PRISM
2212 2 3122 1
2 2 2 1 3 3 2 1 1 3 3. Characteristics of inference rules
2 2 2 2 3 3 2 1 2 2 In spite of such an improvement, PRISM, in
3 1 1 1 3 3 2 2 1 3 its essence, is a classification system and requires
3 1 1 2 3 3 2 2 2 3 providing all the necessary attributes prior to de-

cision making. We still find the differcnces be-
twccn PRISM's rules and expert rules(or infcr-

Based on Table 1 as the training set, ID3 ence rules). These include:
will obtain a decision tree and PRISM will pro-
duce a set of rules(Fig.1). The obvious improve- A. Hierarchy. The inference rules arc being
ment by PRISM is that its rules arc similar to the linked together to form an inference link. The
ones the optician may use. Its fundamental im- intermediate conclusion may be a suggestion
provement lies on its eliminating redundance. of having a tear production test, when the pa-
For example, if the patient is a presbyope with tient is hypermetrope and astigmatic. In other
high hypermetropia and astigmatism(i.e., words, human expert does not have all neces-
a3&b2&c2), the optician would know immediate- sary information ahead of decision making.
ly that she was not suitable for contact lens weir. Tic must reason what should be done when
PRISM can reach this conclusion by using rule 9. meeting with incomplete information. This is
However, I1D3 needs to know her tear produc- one of important reasons for rule hierarchy.
tion (value of d) in order to make decision. This Another reason is that thlie exist some im-
test is normally carried out with a lot of time and portant intermediate concepts or decisions.
fee. It would be quite understandable if the pa- This also contributes to forming an inference
tient becomes upset or angry on finding the test link in order to reach the final conclusion.
is unnecessary. The consequence could be more
serious if the attribute involves surgery. B. Theory Dependency. Rules may be derived
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from a single example with aid of domain will invoke its analytical component EBL to cx-
knowledge. Theory plays a central role in jus- plain the example. When explanation result is
tifying derived rules. inconsistent, incorrect or incomplete, empirical

components will be invoked incrementally to
C. Incrementality. The human knowledge is update the rules generated before. The update is

accumulative. When new expericnce(an ex- guided by making full use of explanation results
ample in our case) comes up, human expert which determine which rules are to be modified.
can refine the old knowledge base. The prob. This procedure will be repeated until a satisfacto-
lem in our case is how to modify the generated ry explanation is achieved or the new example is
rule base to include the random new found contradict with an old one. As a result, the
examples. updated rules are able to cover new example as

well as old ones. At this moment we see that
D. Generality. An extensive generalization is incrementality is achieved by adopting EBL

done in deriving rules. One essential generali- techniques, and also that a mutual integration is
zation is the introduction of the 'variables done by an iterative interaction between empiri-
from objects. This explains the predictive cal and analytical components.
power of human knowledge.

BATCH: Generating classification rules with
E. Uncertainty. Uncertainty is typical of human CLASS;

knowledge. People frequently do not know if Establishing a primary rule hierarchy with
an example belongs to a class surely. Instead, EPH;
they prefer to make assertions in a plausible Generalizing rules with GR;
way. Refining hierarchy with ERH;

INCREMENTAL: Explaining new examples
4. An Integrated Approach: IRI. with analytical component EBL;

In order to include the above improvements, Triggering empirical components toupdate
we create a new approach of integrating similari- rules in terms of explanationresults as bellow;
ty-based(SBL) and explanation-based switch (result.type)
methods(EBL), namely, IRI. { case perfect-explanation:

outputing successful explanation informa-
4. 1. Integration Issues tion;

Integrating SBL and EBL, or preferably making explanation-based generalization
empirical and analytical learning, is considered with EBG;
to be feasible to avoid shortcomings of them break;
when applied individually. A lot of researchers case incorrect-explanation:
are working on different integration modifying rules and hierarchy with
models(Lebowitz, 1986; Danyluk, 1987; Incremental CLASS and EPH;
Kcdar-Cabelli, 1987; Pazzani, 1988). A striking regeneralizing rules with Incremental GR;
similarity shared by these models is that one Refining hierarchy with Incremental ERH;
form of learning is invoked first and the results break;
are integrated by the other. This one-way case inconsistent-explanation:
interaction is not the way man acquires know- same as above but with different arguments;
ledge and is not expected to be case incomplete-explanation:
cfficient(Swaminathan, 1989). This fallacy is stu- rcgcneralizing rules with Incremental GR;
died and tackled by Swaminathan(1989). How- refining hierarchy with Incremental ERH;
ever, his model works on concept formation. break;
New points must be considered when trying to case counter-example:
derive inference rules usable in KBSs. Let us go outputing the old example inconsistent with
into details of IRl(see Fig. 2). the new one;

IRI has two entries which correspond to break;
t,o running versions: incremental or in batch. }
Initially, no rules but a large set of examples exist repeating above explanation and modifica-
and IRl will be invoked in batch to trigger cm- tion until a successful explanation or a
pirical components. A set of inference rules will counter-example;
be derived and the system is ready to explain new
examples. Each time a new example gets in, IRI
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Fig.2 IRI's flowchart in C-like language VALUE),

4.2. Representation Issues which is the right way of representing an asser-
An example in IRI is a conjunctive combi- tion for examples in IRI.

nation of assertions about objects. The assertion At the end of rule formation, certainty of an
is the most primitive semantic unit and can be assertion is again separated away. That is, the
generally rcprcscntcd as: certainty about rule is explicitly represented in

IRI and this is consistent with human cognition.
(OBJECT, ATTRIBUTE, VALUE, CER- In fact, at the generalization step(see Section

TAINTY), 4.3.3) of IRI, an effort is made to remove cer-
tainty(or called credit) from rules. A numerical

where OBJECT is a specific instance of a rule will be generated to computc the credit of a

concept. For example, "John is surely 24 years conclusion from credits of conditions. So, a rule

old' is represented as: is a logical combination of assertion, which, is
represented in predicate logic.

(John, Age, 24, surely), IRI also has represented a concept frame-
work hierarchically. This is to describe the gener-

where John is a specific instance of man. This alization and specialization relation between
representation makes it possible to form varia- concepts. Also any object must belong to a spe-
bles from a set of objects. However, this basic cific concept in order to form a predicate as in
representation is not enough to deal with Step ic of Section 4.3.3.
uncertainty. So, we explicitly represent In the following section of the paper, exam-

uncertainty and appropriately taking it into ac- ples are still written as an attribute-value pair to
count in forming a rule. The uncertainty is simplify writing.
basically of two kinds: fact and rule. We deal
with the factual uncertainty by creating new val- 4.3. Empirical Components
uations for attributes. The rule uncertainty is A group of new algorithms are created in
semantically identical to the uncertainty of its IRI to perform empirical tasks. They make IRI
conclusions. The uncertainty of attributes and distinguished from other empirical as well as in-
conclusions are unified into the assertion tegrated learning systems. Two features are
uncertainty. Human experts tend to deal with shared by IRI's empirical components. First,
uncertainty through qualitative symbols, or they arc designed to operate both incrementally

specifically linguistic words. Precisely, their des- and in batch, depending arguments supplied. In
cription of assertion uncertainty is discrete. So, the case of incremental running, arguments supp-
we can represent uncertainty by segmenting the lied must be able to determine the scope of rules

quantitative description into qualitative one. For to be modified. Second, any comparison or corn-
example, if the decision is about the weather, the putation must be done with credit. The examples
basic classifications arc clear, cloudy, rain. We belonging to the same class must have the same
have: credit. Now, let us outline them briefly.

the weather is 4.3.1. Generating Classification Rules with
I. clear 2. cloudy 3. rain. CLASS

The procedure CLASS is similar to PRISM.
When we are not sure it will rain, a number, cal- The difference lies in their processing the equal
led credit, will be associated with rain. We first priority of two or more attribute-value pairs.

quantify it into maybe, mostly, certainly. The PRISM constructs its rules by selecting an attri-

new values are added in to replace "rain', i.e., bute-value pair one by one. The selecting se-
quence determines the simplicity of the rules. The

3a. maybe rain selecting standard is to compute the priority for

3b. mostly rain each attribute-value pair (Cendrowska, 1987).

3c. certainly rain. The eqa! priority for two or more pairs happens
sometimes. IR1 adopts a thorough search which

In this way, the above basic representation is will guarantee the simplicity of the rules.
transformed into a 3-tuple:

4.3.2. Establishing a Primary H1ierarchy With
(OBJECT ATTRIBUTE EXTENDED EPII
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We associate a number, called cost, with rule is first applied. For instance, 1, 2, 3, 7, 8
each selected attribute which is usually difficult is turned intO 1..3, 7..8 or 1..8 according to a
or costly to be valuated and is callcd as threshold of how much generalization can be
undetermined attribute. The number, ranging done. Specifically for integer selector, some
from 1 to 100, indicates the availability of the at- "conceptual abstracti-on' rules are applied.
tribute. We will use a simple example to illustrate For instance, 2, 4, 8, 16 is turned into square
the procedure ERI-. Assume such a rule: of an integer n. 4, 7, 10, 13 is turned into

3n+l.
a2&b3&d2&e4= = >@I

lb.To structured selectors, the 'climbing the
If the cost or d and e is respectively 20 and 30, we generalization hierarchy" rule is applied. For
will decompose the rule into: instance, bl, b2, b34, b21 is turned into b,

where bl, b2, b34 and b21 arc the specific
a2 & b3 = = > TEST(d) cases of the structure b.
TFEST(d) & a2 .& b3 & d2 = = > TEST(e)
TEST(e).& a2 & b3 & d2 & c4 ==> @1, c. To any objects, the "predicate formation'

rule is applied. A set of objects belonging to
where TEST means an action of imple- the same concept and sharing the same

menting a test to valuate the corresponding at- preconditions arc merged into a variable ap-
tribute. In this way we establish a hierarchy: test- pearing in a predicate. The predicate is usual-
ing d, testing e and making decision. Assume d in ly corresponding to an attribute.
Table I is an undetermined attribute, EPH may
generate a few additional rules such as: Id. To any selectors, the "Augmenting selectors'

rule is applied: the enumerative forms of sev-
c2- & bI = = > test(d) eral selectors are combined into a relational
al &c2= = > test(d) form among them. For example, i= 1, 2, 5, 7,
cl & b2 = = > test(d) 12 and b = 3, 4, 7, 9, 14 is turned into a = b-2.
cl & al = = > test(d) The rule can be generally stated as searching
cl & a2 = = > test(d). for numerical regularity from data of the va-

riables. This problem was exhaustively inves-
4.3.3. Generalizing Rules With GR tigated by W u(1988).

Generalization was exhaustively investigated
in AQI I by Michalski and Stepp(1983). We bor- le. After steps Ia, lb and 1c, the "dropping the
row their approach' with some modifications to condition" rule is applied to all selectors: A
fit our case. For instance, seeds are selector is removed if this does not exceed the
predetermined and it is unnecessary to select generalization threshold.
seeds. The resulting procedure, namely GR, is
characterized as bellow: If. To all classification rules, the "merging into a

general common form" rule is applied. This is
Step 1. Stars are constructed, done on the basis of a belief that different

In our case, a star G(@i) is defined as a set of classification rules should have some symmet-
all maximally general complexes (a logical des- rical forms. If two rules are not symmetrical,
cription of a class) covering all the examples of the specific one should be changed into the
class @i and not covering other examples in more general form in order to make them
the training set. The construction begins with symmetrical. This substep is of some value for
the rule obtained through above steps. The refining hierarchy.
rules are generalized as much as possible by
GEN operators until they cover the other ex- 1g. To all rules, credit computation rules arc gen-
amples. GEN operators partly come from erated. Explicitly representing credits of at-
AQI 1 and partly are created by the authors. tribute-pairs in rules will lead to too much
The resulting stars are not needed to be re- specific rules. We try to eliminate credits
duced as done in AQI 1 in order to cover as from rules and generate special rules to com-
much as possible from an incomplete training pute credits of conclusions from credits of
set. conditions. This just like the numerical dis-

covcry from a set of discrete data. Here, we
Ia. To linear selectors, the "closing the interval ' use a simplified Reduction (Wu, 1988) to fin-
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ish the task. al &bl va3 & b2= = >1
a4= = >T2

Step 2. Stars arc optimized. I1 & cl & dl = = > @1
TI &ec3= = > @2

An optimizcd classification is built by selecting 12 & c2 & d3 > @2.
and modifying complexes from stars to make
them mutually disjoint by Droccdure NID as in Step 3. Split the combined rules. The purpose is
AQI 1. to simplify the rules into:

Step 3. A Primary Termination Criterion PTC is al & bl = = >11
evaluated. a3 & b2 = = > I1

This criterion is based on AQlI with a4= = >12
some modification of the classification I1 &el & dl =>@I
quality evaluation function LEF. The I1 &c3= = >@2
biggest difference lics in IRI's neglect of 12 & c2 & d3 = > @2.
the sparseness--- a mcasurcmnt of the
difference between the input training set Step 4. The Hierarchy Termination Criterion
and the examples that the rules cover. HTC is evaluated. If the hierarchy quality is not
This is because we want the induced rules satisfied, go back to Step 2 to consider other
as instructive as possible to deal with the common sub-expressions until the quality is no
more new cases. longer improved. The quality, being computed

4.3.4. Refining Hierarchy With ERH through HTC, is determined by four factors:
Refining the primary rule hierarchy ob- 4a. Simplicity of a single rule. The long rule (in-

tained in Step 3.3 is finished by abstracting simi. volving many selectors) is usually considered
lar selectors in all rules. A combination of some as a poor one and needs decomposition by cs-
common selectors are grouped together to form tablishing intermediate conccpts(nodcs). On
an intermediate node in the hierarchy. This node the other hand, too short rules are not wel-
is usually corrcsponded to a concept in the do. comed either.
main. Thus, we encourage domain experts to
point out the important intermediate concepts to 4b. The number of possible valuations of the in-
help form a refined hierarchy. Besides, IRI also troduced concept. The less valuations will
supports an automated formation of the refined make the rules for classifying the new con-
hierarchy. Let us follow an example. Suppose the ccpt are relatively simple and thus of great
initial subset of the rules are as: significance.

al &bl &cl &dl= = >@1 4c. The number of the levels of the hierarchy.
a3 &b2&cl &dl = >@I The new concepts are encouraged to form
al & bl & c3 = = > @2 other new concepts. The number must also be
a3 & b2 & c3 = = > @2 proportional to the number of the rules. This
a4 & c2 & d3 = = > @2. is because we want a tree whose branches are

comparable to its depth. In a graphical term,refining is done in a four-step procedure the tree should be neither too 'wide' nor too
ERH(Establishing Refined Hierarchy): "deepI

Step 1. Merge rules into a disjoint form. The 4d. The number of the total rules. rhe less rules
above subset are combined into: are extremely encouraged.

(al & bl v a3 & b2) & cl & dl = > @ 4.4. Analytical Issues
(al & bl v a3 & b2) & c3 = > @2 Let us go back to Fig. 2. Empirical compo.
a4 & c2 & d3 = = > @2. nents of IRI first generate a set of inference rules

which are also to act as the domain theory forStep 2. Replace the common sub-expression explanation-based learning. When a new exam-
with a new concept introduced. In this example, ple comes in, the rules involving variables are in-
the new concept I is defined as a boolean combi- yoked to explain the example. The explanation is
nation of a and b. That, is: also viewed as problem solving and explanation
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result is the solution to the example. generated the desired results described in the last
According to the explanation result, differ- section. When given a subset of training exam-

ent strategies are adopted. The analytical corn- ples, Incremental IRI also generated the desired
poncnt, i.e., explanation-bascd generalization, results as other examples input in. An interesting
only happens when having a perfect phenomenon* is that the rules can be derived
explanation(or a workable solution to the exam- without inputing example No. 17, 18. IRI's GR
ple problem). New domain rules are to be goner- module succeeded in updating its rules to include
ated by generalizing the explanation structure. Rule No.7 as in Fig. 1. No variables were gencr-
Mitchell ct ai(1986) presented a standard expla- atcd for rules and analytical learning was not
nation-based generalization technique: modified vcrificd in this experiment.
goal regression. We first implemented their mod- The second experiment intended to verify
el without much modification and named it as IRI in a complex real-world context. We chose
MEBG(Mitcheil's EBG). hepatitis diagnosis as a working domain, partly

However, as DeJong and Mooney(1986) because its epidemic sometimes leads to a disas-
pointed out, Mitchell's EBG is just one part of ter and partly because it is typical of intermediate
what explanation-based learning means. They concepts or testing an unknown attribute. An
specifically emphasize structural generalization, appropriate rule hierarch sharing many
In fact DeJong(1988) has a more systematic view commonalities with doctor's diagnosis rule is
on what kinds of generalization can be done for generated from a set of medical cases(exemplary
EBL. Structural generalization involves changing patients with diagnosis) and refined from
the internal structure of the explanation. This ac- accumulative new cases. More interesting results
tion is more open(not well guided or constrained) appeared in its analytical learning components.
and its result is of greater significance. So, we al- After MEBG was applied, it was ironically found
so implemented our second analytical compo- that new rules generated by MEBG are just ones
nent DMSG(DeJong and Mooney's Structural putting the intermediate conclusions together. In
Generalization). other words, new rules have no hierarchy for the

Our primary working domain is the final diagnosis. That MEBG just goes back to
hepatitis diagnosis. The hepatitis comprises Type PRISM's classification rule, with variables
A and Type B. We originally hoped that rules for added. In our context, this is not welcome.
two types could be learned from each other. That Fortunately, we found that DMSG is quite use-
is, DMSG is, in some sense, an analogical learn- Ful. It successfully generated a few rules for Type
ing. In fact, Ellman(1989) has argued that EBL A hepatitis diagnosis from explaining Type B
can be viewed as analogical learning. This em- hepatitis diagnosis rules.
phasis makes its learning less blind and relatively A point should be made about this experi-
easy. Tn Lao, the cuirrent version or TR1 imnic- mci' t We ;ri-nally aimd to use enipirical com-
ments Carbonell(1983)'s transformational analo- ponents to set up the domain theory to escape
gy. Of course, we are also ready to have more EBL's strong dependence on a perfect domain
complicated explanttion-based generalizations, theory. We had hoped only inputting a set of
such as derivational analogy(Carbonell, 1986), training instances, probally with a conceptual
number generalization and temporal gencraliza- framework. However, the domain theory gener-
tion(DeJong, 1988). ated by IRI's empirical components are not

enough to play a role of justifying-the new rules
5. Experiments from making an analogy with the old one. The

To have a flexible architecture, each corn- justification needs a support from the medical
ponent of IRI was implemented as an indepen- theory. So, we also embedded sonic basic mcdi-
dent module and can be run in batch(on all rules cal theoretical knowledge into IRI to have an
and classes) or incrementally(on selected rules explanation-based analogy.
and classes). Components can be arbitrarily
combined to accomplish the designed task. Two 6. Concluding Remarks

.,n.. .. ,, ... a, s., .. A i, ...... ,.an The papetr odu*" es. n intgra,- fra.me
incremental IRI. This flexible architecture also work of inducing expert rules from a large set of
facilitates debugging greatly because each examples and refining rules from accumulative
module stores its output into a file which reveals examples. Its greatest feature is a mutual integra-
intermediate results to developers and users. ion of empirical and analytical learning tech-

Our first experiment is the problem stated niqucs. Its learning behavior is very similar to
above. Given a training set as in Table 1, IRI that a human being acquires knowledge.
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Facts(examples) are collected and analyzed into REFERENCES
a theory(rules) which is then updated or vcrificd
by n-w facts gradually(incremcntally). Also its Carbonell, J.G.(1983). Learning by
outpu,. (rule) is also similar to expert rule in a Analogy: formulating and generalizing plans
number of dimensions. Last, a new group of from past experience. in: Michalski, R.S.,
learning algorithms arc presented to accomplish Carbonell, J.G. Mitchell, T.M.(ds), Machine
thcsc oals. All of these efrorts make it close to Learning: an artificial approach, vol 2.Morgan
automated rule acquisition tor KBSs. Kaufmann.

However, when stepping to a practical rule Carbonell, J.G.(1986). Derivational Analo-learning system, we inevitably find some obsta- gy: a theory of reconstructive problem solving
cles. The most serious one is that empirical as andexperience. expertise acqisition. In:
well as analytical learning, especially gcneraliza. Michalski, R.S., Carbonell, J.G. Mitchell,
tion, needs theoretical guidance. This theory is a T.M.(eds), Machine Learning: an artificial ap-
theory about rule generation, or precisely proach, vol2. Morgan Kaufmann.
meta-theory. In the incremental cased IRI's em- Ccndrowska, J.(1987). PRISM: An
pirical components are directed by its explana- Algorithm for Inducing Modular Rules. Int. J.
tion results. However, this is just an indication of Man-Machine Studies, Vol.27, pp.3 4 9 - 3 7 0 .
where the refining should be made, not of how Danyluk, A.P.(1987). The Use of Explana-
the refining is done. The same problem also hap. tions for Similarity-Based Learning. IJCA.-87.
pens to its useful analytical component DMSG, Milan, Italy:Morgan Kaufmann.
which also needs to be directed on how structural DeJong, G.F.(1988). Some Thoughts on
generalization is done. Currently, DMSG only The Present and Future of Explanation-based
conducts a simple structural mapping. More Learning. ECAI-88.Munich, FRG: Pitman Pub-
complex generalizations still stand away from a lishing.
practical approach. For man, the theory corre- DeJong, G.F. Mooney, R.(1986). Explana-
sponds to his general knowledge, or precisely tion-based Learning: an alternative view. Ma-
common sense knowledge or world knowledge. chine Learning.Vol 1, No. 2, pp.145-176.
To our dismay, incorporating common sense in- Ellman, T.(1989). Explanation-based
to machine has been and will continue puzzling Learning: a survey of programs and perspectives.
AT researchers. ACM Computing Survey.Vol 21, No. 2,

If, one day, we fortunately find some ways pp.163-221.
of common sense reasoning. We still cannot cs- Kcdar-Cabelli, S.(1987). Formulating Con-
cape a dilemma: where and how the common ccpts According to Purpose. AAAI-87.Seattle,
sense knowledge comes from. We use an integra- WA:Morgan Kaufmann.
tion of S L and E1L in order to escape EBL's Lebowitz, M.(1986). Integrated Learning:
dependence on existing domain theory, but we contro!ling explanation. Cognitive Science,Vol.
ironically fall into a trap where an ekisting corn- 10, No. 2, pp. 219-240.
mon sense theory is required. Mitchcl],T,M.,Keller, R., & Kedar-Cabelli,

More practically, we feel a demand of mak- S. (1986). Explanation-based Generalization: a
ing more experiments to verify this complicated unifying view. Machine Learning,Vol.l, No.1,
framework. We are planning to use data which pp. 47-80.
have been used by other learning systems to have Pazzani, M.(1988). Integrated Learning with
a direct comparison. We also think of extending Incorrect anf Incomplete Theories. ICML-88.
IR l's explanation-based generalization to gen- Ann Arbor, MI:Morgan Kaufmann.
crate more significant rules. In one word to Quinlan, J.R.(1983). Learning Efficient
summarize our approach, much has been done Classification Procedures and Their Application
and more is left to future. to Chess End Games. In Michalski, R.S. ct

al(Eds.) Machine Learning: an artificial intelli-
gence approach. Morgan Kaufmann.
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Abstract conform to the needs of the particular user who must

Natural language interfaces have fallen short of endure the performance degradations.

their ga tl of providing full freedom of expression Solving this dilemma requires that we be able to choose

in human.computer interactions largely because the right sublanguage for each user. Since such a choice

significant increases in the coverage of the cannot be made a priori, we must rely on the interface to

grammar are usually accompanied by intolerable accommodate the user's idiolect automatically. In the next

decreases in system performance. We demonstrate section we introduce a model of language learning able to

a method for overcoming this barrier called acquire an idiosyncratic grammar through repeated

adaptive parsing, a technique in which the system experience with - user. In Sections 3 and 4 we discuss a

accommodates the user by dynamically growing its particular implementation of the model called CHAMP. In
grammar to acquire her preferred forms of Section 5 we demonstrate that the system's recognition
expression and recognize them directly in the capability and response ime asymptotically approach
future. The specific learning method in an near-optimal performance given any stable inherent
implemented adaptive parser is discussed in detail ambiguity in the user's grammar.

and shown to be adequate to acquire eight 2. The Model
idiosyncratic grammars with good coverage and The process of adaptive parsing is presented in Figure
good performance. 1. Part (a) shows four user utterances (ul-u4) the first of

1. Introduction which lies within the language recognized by the current
The philosophy behind the design of natural language kernel grammar (K) and the remainder of which do not.

interfaces is to permit the user the full power and ease of To say that ul is grammatical, or non.deviant with respect
her usual forms of expression to accomplish a task. A to K, means that there is a set of grammaticr! forms in K
pragmatic consideration at odds with this philosophy is that map the utterance ;, n appropriate meaning structure
that we can neither write down a full grammar for English directly. Analogously, u2 through u4 are ungrammatical,
nor anticipate all ungrammatical or idiomatic utterances or deviant with respect to K, because there are no such
that may occur in sponaneously generated input. As a sets of forms. Thus, a static interface with restricted
result, the fundamental decision hi most interface designs sublanguage L(K) will accept ul but reject u2, u3, and u4.
is the choice of a restricted subset of English to constitute Part (b) demonstrates the search for a meaning structure
the recognizable grammar. for deviant input. When an utterances lies outside of K, we

In choosing a sublanguage, an interface designer is extend failed parse paths by applying a general recovery

faced with a dilemma. A small grammar with minimal action to a deviation with respect to a grammatical form.

ambiguity has the advantages of fast processing and single There are four types of recovery action corresponding to
interpretations for most accepted utterances, but the the four types of deviation for which they compensate:
disadvantages of poor coverage and brittleness (accepting, insertion, deletion, substitution, ind transposition. Note
for example, "Schedule a meeting at 5 pm" but not "Add that the set is complete--every utterance can be mapped

a 5 pm meeting to my schedule" or even "Schedule into a set of grammatical forms by zero or more

meeting 5 pm"). As the size of the sublanguage grows, applications of these actions.

coverage is increased but processing time and the number As an example corresponding to Figure l(b), consider

of inteipretations produced for each utterance tend to grow u2 = "Arrange a meeting 5 pm" and a grammar K in
as well. Further, these negative factors increase without which postnominal cases must be marked by valid

any guarantee that the extensions made to the grammar prepositions and "arrange" is unknown. A parse using K
alone (Deviation-level 0, or simply, Level 0) will reject
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(a) Utterances partitioned (b) Utterances partitioned by (c) Utterances partitiored by
by membership in L(K). deviance with respect to K. deviance with respect to K'.

U U U

C) 4  u2 0 Dei0o-lvl2 u

L(K) = language recognized 0 Deviation-level 0 L(K') = language recognized
by kernel grammar K C Deviation-level 1 by adapted kernel K'40Deviation-level 2

ul-u4 = user utterances 0 deviation-levels > 2
Figure 1: Adaptive Parsing. In response to u2, an utterance outside of L(K), the search for a meaning is extended

beyond L(K) in a least-deviant-first manner. Understanding u2 results in adding new forms to K, creating the
adapted kernel K'. Since the new forms recognize generalizations of the deviations in u2, other utterances

in the user's language space may be less deviant with respect to K' than they were with respect to K.

u2. By extending the parse to allow one recovery action between coverage and performance is to any particular
we may either interpret "arrange" as a substitute for a individual's advantage--additional forms may contribute
recognizable verb, or account for the deletion of the to ambiguity in the search space without corresponding to
postnominal marker, but not both on the same path. Thus, the user's preferred forms of expression. In an adaptive
the parse will fail at Level I as well. Allowing two environment the trade-off still exists; adaptation may
recovery actions along a path, however, we find a bring ambiguity into the current kernel. But if the
mapping from the forms in K to a meaning structure for individual tends to rely on previously accepted forms of
u2. expression such increases may still be advantageous. In

As the example indicates, we extend the search in a prior work we demonstrated that although users differ
least-deviant-first manner, exploring grammatical significantly from each other in their preferred forms of

interpretations first. Then, if no meaning is found, paths expression, with frequent use they show regular,

containing a single recovery action are considered, then self-bounded linguistic behavior-a tendency to rely cn

two recovery actions, and so on. The use of a general, those forms that have worked in the past [6) [7]. This
composable method of recovery applicable at any point in behavioral regularity means that once accepted, an

the input distinguishes error recovery in our model from idiosyncratic form is likely to be reused. The more often it

previous relaxation techniques that restricted recovery to is reused, the more advantageous adaptation becomes; by

specific transformations on specific constituents in the modifying the grammar to recognize a deviant form

grammar (2] [5] [9] [11]. directly, subsequent encounters with that deviation will

Another way in which our model differs from previous not require error recovery. In addition, future sentences

techniques is that deviations do not remain deviations, that share the learned deviation will be interpretable at

Figure l(c) represents the adaptation process. During lower deviation-levels, requiring less search.

adaptation the current kernel is augmented with new Figure 1 shows adaptation's bootstrapping effect

grammatical components that capture the general form of graphically. Assume an implementation of th- model with
the deviations described by a meaning structure and its a limit on search of two deviations (some limit is i..led
recovery actions. The ability to learn more than one new to enforce reasonable system response and preclude

grammar cmponent from an utterance, ais well .s the nonsensical interpretations). Also assume that each of u2,

ability to learn both lexical definitions and syntactic u3, and u4 uses "add" as its verb. Part (b) shows that u4

forms, distinguishes our method of adaptation from is interpretable at Level 1 but that u3 would be outside
previous methods that could learn only a single L(K) even with error recovery. Once u2 is brought into
component and, in general, only a single type of linguistic L(K), however, the deviances of u3 and u4 are defined in
knowledge [1] [3] [4] [81 [10] [12]. relation to the adapted kernel K': u4 is no longer deviant

If we arbitrarily choose a sublanguage for a non- (having been brought into L(K') with u2) and u3 is now
adaptive interface there is no guarantee that the trade-off reachable through recovery. Thus, in an adaptive interface
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all three utterances are accepted without rephrasing, and or interval but not both) and a date, in either order. HRO is

only u2 and u3 require search beyond Level 0. In a system the kernel form that recognizes the marked hour

with error recovery alone, u2, u3, and u4 would require (m.hourform) called for in step 701 of ACTI. HRO

extended search (to accept u2 and u4 and reject u3), and requires as contiguous constituents a preposition
u3 would require rephrasing. In a static interface with (hourmarker) and an unmarked hour.

restricted sublanguage L(K), each of u2, u3, and u4 would Figure 2 shows a portion of the least-deviant-first parse
be rejected, requiring additional search for at least one for "Arrange a meeting 5 pm." For clarity, we include

rephrasing per utterance. only those constituents that are part of the final parse tree.
The bottom of the figure shows the first step in parsing:

3.e CHAMP desc d A ave h ne bedd i segmenting the tokens in the input according to the class

The model described above has been embedded in a information attached to the words and phrases in the
working interface named CHAMP (CHAMeleonic Parser) lexicon. Thus, "pm" is mapped to nightword while

which is implemented in COMMON LISP on an IBM RT. In "arrange" is mapped to the special class unknown. A

addition to learning idiosyncratic grammars, CHAMP's word or phrase may belong to more than one class; a

task is to aid a user in maintaining a schedule of events
and assist in arranging airline reservations for events that unqe len ate fo a ingAfter segmentation, the bottom-up parsing algorithm is
require travel. The number of general actions and object run at Level 0. In our example, most of the work done at

types in the system is fairly small (about fifty), although this level consists of assigning leaf nodes to strategy steps

the number of specific objects, such as particular names that call for a member of the leaf's class. The only

and locations, is unconstrained. A full description of constituent constructed at this time is an unmarked hour; it

CHAMP can be found in [6]. is created by binding the number "5" to step 4 and the

The system uses a bottom-up, semantically and nightword "pm" to step 9 in HRI.

pragmatically constrained, least-deviant-first parsing Since no complete parse could be constructed at Level

algorithm. CHAMP performs deviation detection and 0, CHAMP continues the search by allowing a single
recovery in terms of the four general recovery classes deviation along any path in the tree. In our example,

(insertion, deletion, substitution, and transposition), tolerating a single grammaticality causes a series of

allowing at most two deviations in an utterance. events. First, a marked hour is constructed via HRO by
Deviations are detected with respect to syntacticforms and binding the previously built unmarked hour to step 112
lexemes in the current grammar. A form is a declarative and allowing a deletion deviation of the required, missing

structure specifying the requirements for assigning a step I11. A deletion annotation records the recovery.

segment of the utterance to a grammatical category. Next, the marked hour is attached to the meetingword to
To understand CHAMP's parsing algorithm, let us create a group-gathering via GG. The group-gathering is

again consider the sentence "Arrange a meeting 5 pm." then attached to the indeiarker to create an mgio-g fr s
Simplified versions of two forms used in understanding via IGG1. This constituent may serve as the direct object

the sentence can be seen below: of an add action (step 708 in ACr1). For the parse to

ACTI isa addform HRO isa m-hourform succeed with only one deviation, however, ACTI's other
strategy: l II hourmarker required step (704) must be satisfied with a known

701 m-hourform 112 hourform
702 m-intervalform required: 111 112 member of the class addword.
703 m-dateform Since no known addword occurs in the input, a
704 addword complete parse tree cannot be constructed and CHAMP708 m-i-ggform

Si AA InQ must continue at Level 2. Since two deviations are now

unordered: 701 702 703 permitted, the system may combine the indefinitely

exclusive: 701702 marked group-gathering with the unknown lexeme

The first form, ACTI, recognizes references to adding an "arrange" to form a complete add action. A substitution

entry to the calendar. ACTI requires that the input contain annotation records the recovery.

at least two contiguous constituents: a verb in the class The meaning structure produced by the parser is called

addword and an indefinitely marked group-gathering (in- an annotated parse tree, or APT. As seen in Figure 2, an

i-ggform). The form allows the verb to be preceded by APT contains each of the following types of information

prepositional phrases describing a time slot (by start hour (the adaptation context): the particular grammatical forms
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*ROOT*
Deviation.level 2 ACT: addform

step 7041 \ ste
substitute addword stp 708

IGGI: m-i-8gform

step 403
GG: ggform

Deviation-level I \step 315

deletestep 111

step 112

Deviation-level 0 HRI: h Lirform
step 402 step 309 step 4 \ 'step 9

Segment unknown indefmarker meetingword number nightword
Input Arrange a meeting 5 Inn

Figure 2: The annotated parse tree (APT) constructed for "Arrange a meeting 5 pm."

used to recognize the constituents, the order in which the The figures reveal that CHAMP learns discriminations

constituents appeared in the sentence, and the recovery based on the presence, absence, or position of categories

actions used to modify one or more of the forms. Every in its kernel grammar. Since none of the adaptations

annotated parse tree must meet the pragmatic constraints introduces new constituents into a derived form, however,
represented by the contents of the calendar and airline some portions of the user's natural language may be out of

databases (in our example, the five p.m. slot for the reach. Consider the following sentences taken from one

current day must be empty). In addition, an APT for a user's first session with CHAMP:
deviant utterance must have its projected effect on the s20: change june 11 ny to pgh from flight 82 to flight 265
calendar confirmed by the user (in our example, the user s21: change from flight 82 to flight 265 on june 11 ny to pgh

s22: change flight 82 to flight 265 on june 11
would be shown the new calendar entry and asked if it

should be added to the schedule). Once the meaning has This user's first two attempts to perform the task require

been established, deviation annotations must be converted learning that is beyond the scope of CHAMP's adaptation

into new grammatical constituents through adaptation. 1  mechanism. The problematic segment is "from flight 82"
which the parser tries to explin as a source in the change

4. Adaptation and Generalization in CHAMP action's source-target pair because of the marker "from."
The purpose of adaptation is to bring a deviant form No kernel form permits a flight object in the s3urce (only

into the grammar by deriving new grammatical flight attributes such as location), and the system provides

components from the adaptation context that will parse the no way to introduce the possibility into the language.
deviation directly in future utterances. The particular set of Thus, both s20 and s21 are rejected. S22, which does not
new components that are added to the grammar depends contain the misleading marker, is parsed by a kernel form.

upon which deviations are present in the utterance. As Note that the limitation here is in CHAMP--the model

shown in Figures 3 and 4, CHAMP learns new lexical places no restrictions on inserted or substituted
definitions in response to substitution and insertion constituents.
deviations, and new syntactic forms in cases of deletion In adapting to an identified deviation, we want to

and transposition. construct a set of new garaarical components with two
properties. First, they must be accessible during future
parses to understand this sentence and others like it
directly. Second, the new components must not add

ICHAMP produces all parses at a deviation.level. If different APTs unduly to the cost of understanding sentences in which
correspond to different effects, then identifying the intended effect may they ultimately play no role. In short, the main issue in
aW disambiguate the parse. If a number of APrs all correspond to the
correct cffect (because of true structural ambiguity in the grammar), then adaptive parsing, as in most kinds of learning, is the issue
all are passed onto adaptation where new grammatical constituents are of generalization: capturing the correct conditions on
created as competitors. A competition is resolved by a future utterance
that requires some constituents but not others. usage of the deviation.
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Substitution

* Adaptation: a new lexical definition is added to the grammar for the unknown word or phrase as a member
of the word class that required the substitution. Example: "Arrange a meeting at 5 pm" where "arrange"is
unknown results in the addition of "arrange" to the lexical class addword.

* Generalization: occurs through class references in the grammar. Everywhere the word class was previously
sought, the new lexeme is recognized.

* Learning: permits substitutions of words and phrases only. Extends the set of indices for discriminations
already present in the grammar through the word class. Loses potential discriminaons based urAn the
tokens themselves, or the co-occurrence of the tokens or class with other classes or deviations present in the
adaptation context.

* Search: reduces the deviation-level required to understand future occurrences of the lexeme. If the lexeme
was already defined in the lexicon, the new aefinition increases the amount of lexical ambiguity in the
system. This may create additional search paths for utterances that contain the lexeme, but has no affect on
the search space for utterances that do not contain it.

Insertion

" Adaptation: a new lexical definition is added to the grammar for the unknown word or phrase as a member
of the special class insertword. Example: "Please cancel flight #451" adds "please" to insertword.

" Generalization: occurs throughout the grammar. The new lexeme is allowed to occur without deviation
anywhere in subsequent utterances.

*Learning: assumes the lexeme carries no meaning. Permits insertion of words and phrases only. Loses
potential discriminations based upon the co-occurrence of the tokens with other classes or deviations present
in the adaptation context.

* Search: same as for substitution.
Figure 3: Summary of adaptation to substitutions and insertions.

With respect to accessibility, Figures 3 and 4 show that as alternatives to entries already in the lexicon. 2 The cost
a derived component that recognizes a new way of of the ambiguity during search depends initially upon the
referring to a class of constituents is "inherited upward" number of additional forms indexed by the new definition.
through the grammar. In other words, the new component The degree to which the ambiguity propagates through the
can be used by all forms that call for constituents of that search space depends upon what other constraining
class. The main advantage to using class inheritance for information is provided by the utterance.
generalization is that it provides a simple, uniform Deletion adaptations may introduce structural
mechanism. The disadvantage is undergeneralization; ambiguity into the grammar. Let us reconsider the case of
learning across established boundaries in the grammar m.i-ggforms and m-d-ggforms. In the kernel there is only
requires discrete episodes. Consider, as an example, that one member of each class, DGG1 and IGG1. Both forms
the kernel distinguishes group-gatherings marked by require a marker and a subconstituent from the class
indefinite articles from those marked by definite articles ggforms. The critical difference between the forms is the
by assigning the former to the class m-i-ggforms (which marker class; as long as each form requires a different
can be part of an add action) and the latter to m-d. marker, both forms cannot succeed at the same deviation-
ggforms (which cannot). The first time a user drops an level. If the user drops both definite and indefinite articles,
article from her utterance, she does so in one context or however, the system will derive forms omitting each
the other., CHAMP learns a new instance of one of the marker, both DGG1' and IGGI' will require only one
classes, but not of both. subconstituent, an unmarked group-gathering. Viewed

With respect to cost, two factors are relevant: differently, any unmarked group-gathering object will
overgeneralization and ambiguity. Although inheritance succeed at Level 0 in the adapted grammar as a member of
upward can overgeneralize the correct conditions on both classes. Again, the cost of the ambiguity during
usage, bottom-up parsing algorithms tend to compensate search depends initially upon the number of additional
for this fairly well. Ambiguity is more problematic. As forms indexed by the incorrect class assignment. The
Figure 3 reveals, substitution and insertion adaptations '
may introduce lexical ambiguity if the new definitions act 2

1n CHAMP, it is impossible to introduce a new lexical definition for a

word or phrase that is already defined without employing extra.linguistic
conventions. The lexical extension problem is discussed in [6].
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degree to which the cost propagates depends upon the Of course, the cost of parsing some utterances that were in
other constituents in the sentence. the grammar prior to the adaptation will have increased,

Transpositions may introduce ambiguity if the critical but three factors make the trade-off worthwhile. First,
difference between the parent and the derived form is in since adaptations reflect preferred forms of expression,
an ordering relation on constituents not present in the utterances relying on the adaptations are likely to
utterance. Consider the example in Figure 4. ACTI and reappear; the more often an adaptation is reused the more
ACTI' differ by the ordering relation imposed on favorable the trade-off becomes. Second, adaptation
addword and m-dateform. Thus, if no date appears in an brings more of the user's language into the grammar,
utterance recognizable by ACT1, the utterance will also be resulting in fewer rejected parses over time. Since
recognizable by ACTI'. Because of an optimization in the rejecting a sentence requires a search through Level 2 plus
implementation, this sort of adaptation only introduces the search associated with understanding any subsequent
ambiguity at non-zero deviation-levels, although the rephrasings, any action that prevents rejections must
ambiguity always propagates through the search space. reduce search overall. Finally, since the frequent user's

It is important to note that even though each type of language is self-bounded, whatever increase in ambiguity
adaptation may increase the amount of ambiguity in the results from adaptation must be bounded as well.
current grammar, the future search space for utterances 5 Analysis of the Utility of Adaptation
containing the deviation is always significantly smaller
than it would have been had we not adapted. The reason is The purpose of this section is to provide a sense of the

simple: any ambiguous paths at Level 0 were also part of overall utility of adaptation and generalization by

the much larger search space at the higher deviation-level. answering two questions for CHAMP's performance on
users's spontaneously generated input. First, what is the

Deletion
* Adaptation: a new form is added to the grammar. It is derived from the form in which the deviation

occurred and inherits all the information present in its parent that does not relate to the deleted step.
Example: "Arrange a meeting 5 pm" results in the creation of HRO' derived from HRO. HRO' is also a
member of the class m-hourforms but its strategy and required lists do not contain hourmarker.

* Generalization: occurs through class references in the grammar. The derived form may be used anywhere
the parent form is used to recognize a constituent. Deletions and tanspositions within a single constituent
are preserved as co-occuring.

* Learning: permits future discriminations based on the presence or absence of a class. Permits
discriminations based upon some co-occurrences of deviations.

* Search: reduces the deviation-level required to understand future utterances containing the deletion. May
introduce structural ambiguity into the grammar if the deleted step represents the sole difference between
two grammatical categories.

Transpciition

* Adaptation: a new form is added to the grammar that explicitly captures the new ordering of steps. The new
form inherits all the information present in the parent that does not relate to the ordering of the transposed
step. The ordering relations on the transposed step depend on the steps surrounding it after transposition.
Example: "Schedule on June 4 a meeting with Alice" results in the creation of ACTI' from ACT1. ACTI'
has the strategy (m-hourform m-intervalform addword m-dateform m-i-ggform) where only the hour and
time interval are unordered.

* Generalization: occurs through class references in the grammar. The derived form may be used anywhere
the parent fwrm ic imsed t% rPrecgnize a cntitent. T n a. S --ndol deleonsithin single ,enstitu..

are preserved as co-occuring.
* Learning: permits discriminations based on ordering. Permits discriminations based upon some co-

occurrences of deviations,
* Search: reduces the deviation-level required to understand future utterances that reflect the new ordering. If

the transposed step is not required, the adaptation may introduce ambiguity into the search space at non-zero
deviation-levels whenever the transposed step is not needed to understand the utterance.

Figure 4: Summary of adaptation to deletions and transpositions.
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User 1 User 2 User 3 User 4 User User 10

G 18/127 34/144 9/138 25/130 20/212 19/173
kew-A! (14%) (24%) (7%) (19%) (9%) (11%)

G 115/127 127/144 112/138 118/130 192/212 148/173
final (91%) (88%) (81%) (91%) (91%) (86%)

Figure 5: The effectiveness of learning as measured by the differences in the number of
utterances understood by the kernel and by the user's final grammar.

effectiveness of learning? That is, how much actual To carry the analysis further, we measure the utility of
improvement in understanding the user's .anguage comes each learning episode by computing the average number
from adaptation? Second, what is the cost of learning? of sentences brought into the grammar each time a deviant
That is, what effect do adaptation and generalization have utterance is interpreted. These values (3.3, 2.7, 2.3, 3.7,
on the level of ambiguity in the grammar? 5.7, and 5.6) represent a kind of "bootstrapping constant"

The data used during evaluation came from two that reflects the way in which CHAMP's particular

sources. In early experiments, Users 1, 2, 3, 4, 5, and 7 implementation of adaptation captures within-user
interacted with a simulated adaptive interface based on the consistency. An alternative implementation would
model described in Section 2 (Users 6 and 8 were in a probably produce very different values. Consider, for
non-adaptive control condition). Of the 657 utterances example, an interface using a more conservative approach
collected from these users, 85 were chosen from Users 1 to substitutions by creating a new class for the substituted
and 2 to guide in the design of CHAMP. Users 9 and 10 word and a new form requiring that class (unlike CHAMP,
participated in subsequent, on-line experiments with such a system permits discriminations based on the tokens
CHAMP, producing an additional 385 test utterances. In themselves). The tendent;y of this approach to
both experiments the user's task was to look at a pictorial unde;generalize is likely to appear as a decrease in the
representation of a change to the calendar and use the utility of each learning episode: the user's final grammar
system to effect that change in the on-line schedule. Since might result in fewer acceptances, or in the same number
Users 5 and 7 did not complete all nine experimental of acceptances but at the cost of requiring more instances
sessions, we consider here only results for the six users of adaptation. Thus, the values themselves are not as
who did.3  important as the fact that our ability to compute them

What is the effectiveness of learning in CHAMP? To provides a metric for comparing design choices.
answer this question we contrast for each user the number The second question we posed was: what is the cost of
of her sentences accepted by the original kernel and the adaptation? As CHAMP brings more of the user's
number accepted by her final grammar--any increase is language into the grammar it increases the likelihood that

due to learning. Figure 5 shows that the increase is it will understand her future utterances. But is the increase

significant for each user and that CHAMP's performance in understanding, as measured by acceptances, negated by
on data collected during the simulation experiments did a larger increase in the cost of understanding, as measured
not differ significantly from the system's performance on by search? We know that the user's language is self-

data from the on-line experiments. On the average, the bounded, but it may still be quite ambiguous. The
kernel accepts only 16% of a user's utterances while her question, then, is not whether we can prevent the rise in

own derived grammar accepts 88%. search stemming from inherent ambiguity in the user's
idiolect, but whether the system as a whole suffers
disproportionately as ambiguity increases.

We measure the rise in ambiguity in an adapted
3Because of differences between the model and the implementation grammar in two ways. First, holding the test sentences

some relatively minor preprocessing of utterances from the simulation
experiment was done prior to evaluation. In addition, extra-granmnatical constant, we compare the average number of parse states
markers were introduced to compensate for the problem of lexical considered by successive grammars during search at Level
extension in both groups (see previous footnote). For a full description of
the experiments, a list of the test utterances (with modifications 0. As the amount of ambiguity in the grammar increases
indicated), and a number of other evaluation results, see [6]. through the adaptations of each session, so will the
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User Number of utterances Average number of Average number of
accepted w/o deviation states to accept parse trees/utterance
G(O) G(9) G(O) G(9) G(O) G(9)

Ul 18 115 19.3 37.6 1.1 1.5
U2 34 123 21.9 59.8 1.1 1.6
U3 9 112 18.0 43.3 1.0 2.0
U4 25 118 21.0 40.7 1.1 1.5

U9 20 192 13.0 80.9 1.1 2.6
U10 19 148 40.4 45.8 1.1 1.7

Figure 6: Change in the cost of parsing non-deviant utterances as a function of grammar growth.

average amount of search required to accept an utterance a function of the increase in the language accepted. Since
at Level 0. Second, we examine the average number of the grammar itself is bounded by the user's natural
APTs produced for each sentence accepted at Level 0. behavior, the increase in response time is bounded as well.
This value reflects a rise in ambiguity that is partly Even with the kinds of increases in search seen for these
independent of the increase in search because of the way users, response times were usually under ten seconds.
APTs share substructure. A rise in search need not give The near-monotonic increase in the size of the search
rise to additional parse trees. Similarly, additional APTs goes hand-in-hand with a near-monotonic increase in the
may indicate only a modest increase in search. From the average number of APTs produced for each accepted
user's point of view increased search corresponds to utterance. Where is the ambiguity coming from? The users
decreased response time while a rise in the number of do introduce some lexical ambiguity into their
parses corresponds to a rise in the number of interactions idiosyncratic grammars, but in CHAMP's parser lexical
required for resolution of her intended meaning. ambiguity contributes primarily to small, local increases in

Figure 6 summarizes the relevant measures for each the size of the search space. Examination of the parse trees
user by showing the values for the kernel grammar (G(0)) produced with successive grammars for the same sentence
and for her adapted grammar at the end of session nine showed that most of the increase in ambiguity comes from
(G(9)). For four of the six users, the increase in the adaptation to deletion deviations. As the user's language
number of parse states examined is proportionally far less becomes increasingly terse, the system builds forms in
than the increase in the number of sentences understood. which the content words that correspond to critical
By the end of the ninth session, the search for User 1 has differences between strategies are deleted. As a result,
expanded by a factor of two but the number of her there is an increase in the number of constituents that are
sentences that are now non-deviant has expanded by a satisfied by each segment; often the increase propagates to
factor of six. User 3's trade-off is even more favorable: the root nodes themselves. User 9 is a case in point: her
twelve times as many sentences are accepted by the final grammar included derived forms omitting almost every
grammar as by the kernel, at a cost of only two and a half content word in the kernel. Specifically, by the end of
times the search. User 4 gains almost five times as many session three she had dropped most markers, three of the
sentences at slightly less than twice the search. The trade- four verbs, and two of the four group-gathering head
off is most favorable for User 10 who gains almost eight nouns. As a result, almost every sentence she typed in the
times as many accepted sentences with virtually no last seven sessions created at least two APTs. On the last
increase in search. User 2 has the most balanced case: a day the simple sentence, "Dinner June 24 with Allen,"
factor of 3.5 increase in accepted utterances and a factor of created twelve parse trees at Level 0.
three increase in search. The largest increase in search 6. Summary and Future Work
occurs for User 9 (about a factor of six) but the ten-fold I. Sumary a Fu te oIn total, CHAMP has been tested on 1042 utterances
increase in the number of her sentences accepted still most of which represent unmodified spontaneous input by
places her within the general trade-off ratios seen among frequent users whose job includes calendar scheduling asthe others. part of its duties. We found no qualitative differencesIf increase in search corresponds to increase in response between CHAMP's performance for utterances gathered
time, what do these values tell us? In short, response times by simulation of the model and the system's performance
will get slower over all but will not grow exponentially as for utterances produced during on-line interactions. We
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did find that acceptance of user utterances relied effort to provide users with full freedom of expression in
significantly on adaptation. On average, the kernel computer interactions.
grammar accepted 7% to 24% of each users utterances, Acknowledgments: The clarity and content of this
while her final grammar accepted 81% to 91%. We also paper were improved by the comments of Angela
found two areas of system performance that could be Kennedy Hickman, Richard Lewis, Thad Polk, and two
improved, anonymous reviewers.
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may represent the correct or most useful generalization of 4. Kaplan, S. J., Cooperative Responsesfrom a Portable
Natural Language Data Base Query System, PhD

the utterance's structure. It is unclear whether the existing dissertation, University of Pennsylvania, 1979.
competition mechanism is adequate to eventually 5. Kwasny, S. C., and Sondheimer, N. K.,
determine the most useful form. If not, what heuristics "Ungrammaticality and Extra-grammaticality in
might we use to decide? Natural Language Understanding Systems," 17th

Second, although CHAMP's adaptations resulted in Annual Meeting of the Association for Computational
eon aldestou riseinamguity'snea adaptnLinguistics, 1979.

only a modest rise in ambiguity in each adapted grammar, 6. Lehman, J. Fain, Adaptive Parsing: Self-extending
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differences and adaptation to deletion deviations. Kernel User's Language, A Step Towards Automated

Creation of User Models," in User Modelling informs were designed to contain critical differences with Dialog Systems, Wahlster, W., and Kobsa, A., eds.,
respect to each other because such differences help to Springer-Verlag, 1989.
constrain search. Yet, whenever adaptation eliminates a 8. Miller, P. L., "An Adaptive Natural Language System
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to track critical differences explicitly and create a new Intelligence, 1975.
9. Minton, S. N., Hayes, P. J., Fain, J. E., "Controlling
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replace existing categories, and when do you simply 10. Salveter, S. C., "On the Existence of Primitive
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Regardless of the improvements offered above, of Computational Linguisitics, Vol. 6, No. 2, 1980.
evaluation of the system clearly shows that adaptation is a
robust learning method. CHAMP was able to learn eight
very different grammars, corresponding to very different
linguistic styles, with a single general mechanism. We
believe this represents a significant step forward in the
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Abstract new rule with an instruction, followed by a set of exam-
pies which illustrate the rule taught in the instruction.

We present a machine learning program, Why does this seem to be the optimal format for such
called ANT, which learns the gramsystem is simi- a text, or at least the most common format?
second wlanguage.undiiutatoytheasystemoiscsiry-In this paper, we will address this question from the
lar to what is found in a typical introductory standpoint of a machine learning theory. We present
foreign language text; that is, a mixture fin- our theory of learning from instructions (which in-
structions describing grammar rules, and cx- elude examples), which has been implemented in ANT.
amples illustrating these rules. We compare We then discuss why, from a functional or processing
ANT's learning to two alternatives: learn- standpoint, learning from this sort of input is more ef-
ing from only instructions, and learning from fective than either obvious alternative, learning from a
only examples. We discuss why, from a rune- set of examples, or learning from instructions without
tionalor processing standpoint, learning from any examples. In building ANT, we have discovered
a mixed input is more effective than either several reasons why, computationally, it is helpful for

pirical comarison of our algorithm's perfor- our program to be given instructions along with ex-

piance on input containing both instructions amples in order to learn new grammar rules.
anexamples vs. performance of the sys To provide further evidence in support of our the-and wory, we present an empirical comparison of three types

ten when given instructions only or examples of learning: ANT's approach, which uses both exam-
only. The results of the comparison support pies and instructions; a version of ANT which learns
our hypotheses as to the utility of mixed - from instructions only; and a version which learns from
put. examples only. In terms of both efficiency and correct-

ness, the original version's performance is superior to
1 Introduction the performance of the two alternatives.

This paper describes a program called ANT (Acqui- 2 An example of ANT's performance
sition using Native-language Transfer), which learns
the grammar of a second language. ANT sLccessfull1 To explain how ANT learns, we begin by presenting an
learns approximately 85% of the grammar rules pre- example lesson. While there are differences in ANT's
sented in a typical first-year German textbook. Input processing depending oii what type of rule it is learn-
to the system is similar to what is found in a typi- ing, this example illustrates the main points of how
cal introductory text. The system modifies its English ANT works. The example lesson is the following.
grammar rules accordingly, so that they correspond to
the grammar of German. ANT can then "understand" In German, verbs come at the end of relative
German sentences, clauses.

Most all foreign language texts follow the same for- Examples:
mat when presenting a new grammatical construction. Der Erdfcrkel, der Ameisen oft frif3t,
When one looks into a typical text, one does not find liift langsamn

of instructions whihttlid i ho ats fe ejats
constructions of the second language. Nor does one runs slowly)'
find simply a list of example sentences which illus-
trate the foreign language's grammar. Texts almoit 'ANT does not receive an English translation as part of
always contain inmtructions and examples integratd its iiipuit. The literal English translation is provided here
together. The general format is the introduction of a for the benefit of the reader.
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Der Mann, der mir Biicher gibt, of constituent. In addition, we could not in general
wohnt in Paris. guarantee that the search would find the correct verb,
(the man who me books gives as there coulh be (and in fact there are) several occur-
lives in Paris) rences of VG and CONJ-V within relative clauses.3

ANT's grammar rules are written in) a unification- llowever, because ANT is provided with examples in

style-formnat (Shieber, 1986), as discussed in (Lytinen addition to instructions, ANT lets the examples guide

and-Moon, 1988; Moon and Lytinen, 1989). However, it to the rules wich must be changed. ANT does

for the purposes of this paper, we can assume that this by parsing the examples. During the parse, ANT
they are context-free rules. is forced to use the rules which must be modified for

Before receiving this input, ANT assumes that its German. Thus, the potentially large search through
English relative clause (110) rules apply to German. 2  the grammar is avoided.
Two of these rules are the following: iGetting back to our example, because the rule ANT

is learning is an ordering rule, ANT relaxes the order-
(1) R0 -- RP VG NP ing constraints in its relative clause rules when parsing
(2) RC -- RP VG NP NP the examples, meaning that it will be able to parse a

Some of ANT's rules for VG's (verb group) and sentence whose relative clause word ordering does not
(conjugated verb) are given below: conform to English grammar.4 Let us consider the firstCONJ-V (example:

(3) VG - CONJ-V ADV Der Erdferkel, der Ameisen oft fril3t, liuft
(4) VG , CONJ-V langsan
(5) VG CONJ-V INP (the aardvark who ants often eats runs

slowly)
(6) CONJ-V - AUX ANT parses this example, arriving at the pac tree
(7) CONJ-V -MODAL-AUX in Figure 1. Once the example is parsed, it is clear
(8) CONJ-V - V that the verb "friBt" (cats) is the verb in the rela-

ANT produces the following representation when it tive clause. Now ANT has identified the constituent
reads the instruction: that must move: "frifit" is the CONJ-V within the VG

within the RC. This information tells ANT that the
ORDER category VG must be modified, at least when VG's

CONSTITUENT CONJV appear in relative clauses. This leads ANT to mod-
OCCURS-IN : ARC ify rule I from before to construct the following new
POSITION :LAST grammar rules:

This means for ANT that the rule to be learned has (9) grC -- mP NP VOMP CONJ-V

to do with ordering, specifically with the position of (10) RC -1 f1P NP CONJ-V

the-conjugated verb in the relative clause.

Modifying ANT's English relative clause rules to Notice that the category VG has been eliminated
conform to German is not a straightforward mat- from these rules. This is because the rules for VG must
ter. This is because the context-free rules for reli- stay the same, since verb groups occur in other rules
tive clauses (RC) do not even mention verbs. The besides RC rules. In RC rules, VG is replaced by the
constituent VG appears in them, but simply moving conjucated verb (CONJ-V) along with a new category,
the VG to the end of each RC rule would not be the called VCOMP, the vestiges of the VG category. The
correct modification, since the verb is not always the rules for VCOMP are as follows:
last constituent in a VG. Thus, ANT cannot simply (11) VCOMP -- ADV
change its RC rules. Otier relevanit rules, such s the (12) VCOMP INF
rules for what makes up a VG, potentially uiust also Two RC rules (9 and 10) are generated because
be changed. V is otioal.

This is where examples come into play in the learii- VcOMPsis ot one
ing process. Without examples, ANT would have to Processing of the second example helps ANT modify
search through its grammar for possible appearances relative clause rule 2 in a similar way, creating the
of verbs within relative clauses. In the worst case, this folowig final set of rules.

could mean searching the entire grammar, since a verb (13) RC -- RP VCOMP NP CONJ-V
could in theory appear inside of any constituent of a (14) RC , RP NP CONJ-V

0RC, and RC's could possibly contain every other kind______________ for examljle, relative clauses contain NP's, which can
2This is analogous to a well-known phenomenon in I,- contain other relative clauses, which contain verbs.

man second language learning, known as native language 4The way in which ANT's unification grammar rules
transfer, in which learners typically selectively transfer pal- are written is essential to ANT's ability to parse sentences
terns from the native language to the second language which do not conform to its grammar, and is beyond the
(Selinker, 1969). scope of this paper.
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to be made to the original rules. Often the instruc-
tion clearly indicates how general the new rules should
be. In our relative clause example, the instruction told
the system that any modifications to the category VG

Sshould only affect relative clauses. Without this in-
formation, ANT would have had no way of knowing

- whether all verb groups are different in German than
they are in English, or perhaps some other subclass
of VG's, such as only verb groups followed by a single

coNIN cNP. Many such hypotheses would be consistent with
Is the examples that ANT received.

tIPm NP VCOMP COWbV 3.2 The role of examples
Ma jXk who M While instructions are critical to ANT's performance,

the examples presented along with the instructions
ants oan e', also play a crucial role in the system's learning pro-

cess. In particular, examples play the following three
roles:

Figure 1: Parse of the aardvark example * identify relevant previous knowledge
* form new rules

(15) RO --4 ItP VOOMP NP NP GONJ-V * fill in details not mentioned in instructions
(16) R0 -R* RP NP NP CONJ-V The first role above was illustrated in the example in

section 2. Rather than search its grammar to identify
3 Why ANT needs instructions and relative clause rules which had to be changed, ANT

examples relied on examples to point the way to previous rules.
The examples identified the location of the verb in the

We have seen an example of how ANT processes input relative clause and thus gave the system the knowledge
to learn a-new grammar rule. The input consists of it needed to be able to relate R0 to CONJ-V.
a mixture-of instructions and examples. Now let us New rules to be learned are often formed as part of
summarize the roles that the two parts of the input the parse of the example. After the parse is complete,
play in the learning process. part of the parse tree is an instantiation of the new

grammar rule. Thus, ANT can extract the new rule
3.1 The role of instructions directly from the parse of the example. However, the
When ANT learns a new rule, there are three distinct instantiation is often more specific than the new rule
roles played-by the instruction portion of the input. ought to be. The information from the instruction is

used to determine how general the new rule can be
* alter expectations of input made.
* focus attention on part of the example that illus- The third role is not illustrated by our relative clause

trates the new information example. However, often it is the case that instructions

* determine ow gfound in textbooks do not completely specify the rule
to be learned. In these cases, examples must fill in the

The actual formation of new rules takes place dur- details left out of the instruction. Because of the way
ing the processing of examples. However, the way in that ANT extracts rules from example parses, this is
which examples are processed is greatly influenced by a natural by-product of ANT's learning process.
the instruction. First, ANT's ability to parse German
examples is-facilitated by the instruction, because it 4 Learning from only instructions or
tells the system something about the differences to only examples
be expected in the examples. In our relative clause
rule, the iAstruction told the by3btu that it.h rd ur- It seems intuitive that learning should be easier if the
der constraints might be violated within example rel- learner is provided with both instructions and exam-
ative clauses. This enabled ANT to parse these exam- pies than with either alone. ANT's learning process
pies even though they did not conform to its (English) suggests possible reasons for this. In learning from
grammar. instructions without examples, ANT would have diffi-

The instruction also improves the formation of new talties witl, the following tasks:
rules. From the information in the instruction, the sys-
tem can focus attention on the important part of the • identifying relevant previous knowledge
example, and thus can more quickly find the change(s) * relating terms to constituents
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9 inferring details not mentioned in the instruction * parsing examples

As we saw in the relative clause example, with- * identifying relevant features
out examples to guide the search for relevant, English
grammar rules, finding these rules could potentially be * generalizing new rulcs
very costly. In the worst case, finding relevant rules As we stated before, the instiuction tells ANT in
could mean inspecting the entire grammar. Determin- what ways the examples will deviate from English
ing the correct relevant rules may uot cvcn be possible gralmnar. Without this information, it is often possi-
if there are several alternatives from which to choose ble to arrive at the wrong parse of an example. With-

Another difficulty is that ANT's internal representa- out the correct structural analysis, ANT cannot induce
tion of grammatical categories may not exactly match the correct German grammar rules.
the terminology used in the instructions. For example: Even if the correct structural analysis is arrived at

In German statements, the verb must be the for an example, there may be other problems. The
second constituent. number of possible features on which to base an hy-

Ionstitutes pothesis is very large. Without instructions, ANT can-It is not clear from this instruction wvhat ontues not know whether the point of the example is to show

a "constituent." W ithout extensive further explana- not kn, w ord ord e m i to show

tion, there are several possible interpretations of this case agreement, a word order modification, a novel

instruction. For example, it is not clear from this in- German construction for which there is no equivalent
strutio wht te Grma eqivaentof In he ark English construction, and so on. Thus, we would ex-

struction what the German equivalent of"In the park pect the learning process to be much slower if instruc-
the man slept" would be. There are several possibili- tions were not included in the input.
ties (using English words instead of German): Finally, even if the correct features are identified,

In slept the park the man. there is the issue of how general the new rule is. Ex-
In slept the man the park. amples alone cannot always convey the correct con-
In the park slept the man. ditions for the application of a rule. For example, in
The man slept in the park. German there is a rule that the verb must be the sec-

ond constituent in a statement. Suppose the system

The third choice above is the correct one, but deter- processes some examples of statements. It is plausible

mining this requires knowing what constitutes a con- that the system (or a person) could realize the gen-

stituent. Does a preposition alone qualify, or an entire eralization to be made is that the verb is second, but

prepositional phrase? Also, what is the ordering of the not know whether this applies to all verbs (like those

constituents after the verb? Without further explana- in clauses), to only the main verb in the sentence, to

tion as to what the term "constituent" refers to, ANT verbs in questions, and so on.

cannot deduce what the correct German rule is.
Finally, even if terminology is not a problem, often 5 An empirical comparison

instructions simply do not contain all the necessary
information to infer the correct German grammar rule. In order to demonstrate empirically that learning from

For example: instructions and examples is easier than learning from
instructions only or examples only, we implemented

In German, the verb "haben" used with the versions of ANT which learn from instructions only
adverb "gem" means "to like." and from examples only. We then compared perfor-

Many German textbooks leave out the details of this mance of these versions on a small subsLt of the rules
rule, such as where the object of "haben" should ap- that original ANT learns.
pear in the sentence (after the verb but before "gem").
This is more restrictive than general rules for place- 5.1 Instructions-only ANT
ment of adverbs in German. The comparison between original ANT and the version

There is an obvious solution to the problem that in- which learned from instructions only focused on the
structions leave out details: one might simply insist amount of searching through the grammar that was
that instructions be written so as to include details necessary in instructions-only ANT. This search was
that are often left out. However, in designing a learn- not necessary at all in original ANT, since processing
ing system, it is desirable for that system to be iii- examples yielded the relevant English rules as a by-
structed in a way that is natural for people. Judging product of parsing.
from language textbooks, instructors find it most nat- Given knowledge of how to find an embedded con-
ural to leave out some information from instructioins, stituent by searching the grammar, instructions-only
relying on examples to enable the reader to infer the ANT was given five reordering instructions to learn.
details of tile rule. These instructions were tile following:

For ANT, learning from examples without instruc-
tions would also be problematic. In particular, the (1) In a statement, the verb is in second po-
following tasks would be more difficult: sition.
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Instruction Rules searched Items searched We tried to be as generous as possible to the examples-
only approach with these assumptions, greatly simpli-

1 5 7 fying the task at times so as to be sure not to bias the
2 23 15 comparison in favor of the instructions-and-examples
3 2 3 approach.
4 5 8 One assumption we made was that transfer from the
5 10 12 native language would be useful in the examples-only

approach. Intuitively, it seems that learning should
Figure 2: Performance of Instructions-only ANT proceed faster if the system started with its knowledge

of English rather than from scratch. Also, there is
much evidence that people at least selectively transfer

(2) When a dependent clause begins a sen- native language information to the learning of a second
tence, the verb of the independent clause im- language. (Selinker, 1969; Kellerman, 1987; Anderson,
mediately follows the dependent clause. 1983; Gass, 1980)
(3) In a relative clause the verb comes at. the Another simplification we made was that only rulesend. having to do with deviations from English word order

(4) In a dependent clause the verb comes at would be learned. This meant the system had many
the end. fewer possible features to consider in the input exam-
(5) When a modal auxiliary occurs in a state- pies when hypothesizing new rules; for example, it did
ment, the infinitie comes at the end. not need to be concerned with agreement, case, etc.

Next, part of the input to the examples-only version
The instructions were randomly chosen from the set of the system was the parse of each of the examples.

of reordering instructions that original ANT learns. This greatly simplified the task of hypothesizing new
Instructions-only ANT's task was to find the relevant rules, since the system did not need to guess at which
English rule which would be affected by the instruc- constituents should be grouped together. The learning
tion, and then change that rule. task, then, was to infer how general the rule should be

ANT stopped its search as soon as it found any in- which was illustrated by the set of examples and their
stance of the constituent it was looking for. For exam- parses. Finally, an assumption was made about the
pIe, in the relative clause rule, ANT stopped as soon conditions for a new rule: it was assumed that the
as it found any conjugated verb (CON J-V) within a presence of a constituent, rather than its position or
relative clause. This sometimes led to the incorrect some other feature, would be the only conditions un-
selection of English rules to be modified. der which a new rule was required. For example, a rule

Figure 2 shows the results for the five instructions, such as "if the direct object is a personal pronoun, then
The number of rules examined is given, as well as the it precedes the indirect object" could not be learned
number of constituents, arrived at by summing the under this assumption, since its condition does not de-
number of distinct consituents on the right hand side of pend simply on the presence of a direct object, but on
each context-free rule that was searched. The average additional features of this constituent.
number of rules search is 9, about 20% of the size of To learn from examples only, ANT performed the
the entire grammar. following analyses on the input it was given:

Recall that the search terminated as soon as any in-
stance of the desired constituent was found. Unfortu- 1. find all differences between the form of the rules
nately, the wrong instance was found first for 3 of the used in the parse and the original English rules
5 instructions. This suggests that the search should 2. find all descriptions possible of the ordering that
continue even after finding the desired constituent, Lo occurs in the parse tree
see if other instances of the constituent can be found. 3. find all possible conditions, derivable from the
The result would be a much more extensive search current example, under which the rule to be
In addition, it is not clear how instructions-only ANT learned might be restricted, then find the intersec-
would be able to decide which instance of the con- tion of all the conditions for all examples analyzed
stituent should be modified, thus far

5.2 Examples-only ANT 4. enumerate ite descriptions which are in the inter-

In designing the examples-only version of ANT, maty section of all differences noted thus far for the set
assumptions had to be made along the way, as there of examples and which are in the intersection of
were no examples-only second language acquisition all descriptions found in (2).
systems which we could directly compare to ANT ' These four steps are described below.

'One possible candidate for comparison was RINA
(Zernik and Dyer, 1987), but this system learned mainly
idiomatic expressions rather than basic grammattical con than the traditional examples-only paradigm of many ma-
structions, and received more feedback from the teacher chine learning programs.
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Finding differences assumption that the only conditions that can apply
To process the examples, ANT analyzes the parse are those that involve ',he presence of a constituent in

trees for the examples (which it is given as part of its a particular category. Thus the system would be able
input), one at a time. The system looks at each nodc to determine the condition in a rule to be learned like
in the tree, in search of a grammar rule whose right- "When a modal auxiliary occurs in a sentence, the in-
hand-side enumerates its children iii the correct order. finitive comes at the end," but it would not be able
Ifsuch a rule cannot be found, then ANT looks for a to detect the condition in "When a dependent clause
rule which has the same constituents but not in the begins a sentence, the verb of the independent clause
correct order. For example, let us assume the English follows the dependent clause."
rules for STMT are the following: Finding features common to all examples

(17) STMT PP NP VG NP After it is done processing an example, ANT com-
(18) STMT NP VG NP bines the information from that example with the cu-

Now say that an example is presented, such as: mulative data gathered from examples thus far. It
Im Park spielen die IKinder ulh3ball, finds the intersection of differences found in the gram-
In tePark splay die Kideren soer) mar and computes the union of that set with the in-
(In the park play the children soccer) tersection of what is found in all examples. In other

Since the construction of this example is PP VG words, ANT arrives at hypotheses for what the gen-
NP NP, ANT first looks for a rule which matches this eralization of the rule might be both from what is-in
construction, STMT - PP VG NP NP. Since no such common with al previous examples and from what al-
rule can be found, ANT picks STIMT-+ PP NP VG terations of the original grammar were evident in the
NP as the closest English rule. It then enumerates the examples. The goal is to derive a minirhal set of liy-
differences between the rule and the ordering in the potheses, usually one, for what the-general lesson-is,
parse tree. where the general lesson is basic illy equivalent to the

instruction in the instructions and examples version.
Finding the list of features Along with this generalization, the system should de-

Next ANT needs to find all of the features, in terms tect any relevant conditions.
of ordering, that exist in the tree, so that the common
features across all examples are remembered. ANT 5.3 Results
not only should extract the features in its examples The exampleb-only algorithm was run on five sets of
that show differences with the original rules. It also examples, and its performance was compared to the-

should extract the features common in all examples, performance xa-stmructo v e
performance of the examples-and-instructions version

saving those as candidates for the generalization it is of ANT on these rules. In the examples-only imple-
trying to make. For example, when ANT works witht
tie instruction about the verb coming second in the i entation, the correct rule was learned for four of tie
sentence, it may first receive an example that uses the five sets, while one set of examples resulted in an- in-
rule20 below: correct generalization. The reason for this incorrect

generalization is discussed below. Moreover, ANT was
(19) STMT -- PP NP VG NP much slower at inducing the new grammar rule when
(20) STMT - NP VG NP using only examples. On average, the examples-only

In this case, ANT will not be able to detect any con- version required an average of 4.0 examples per rule

stituent ordering changes, since the original rule has learned, while an average of only 1.6 examples were

the same constituent ordering as the example. llow- required in the instructions-and-examples approach.

ever, all features of the example are potential candi- Figure 3 compares the number of examples required

dates for generalization, depending on differences he- to learn each rule for the two algorithms.

tween English rules and subsequent examples in Lhe The rules used in the comparison were:

example set. Say the next example in the set utilized (1) The verb is the second constitlent in a
rule 19 above. This time the ordering would he differ- sentence.
ent, since the VG in the example would be second. One (2) The verb comes at the end of the relative
of ANT's hypotheses for generalization then would be clause.
that the VG is second in STMT. In order to verify (3) The verb comes at the end of a dependent
that this feature is significant, and hence still a candi- clause.
date for the generalization it should make, ANT must (4) When a dependent clause begins a sen-
know if this particular feature occurred in all previous tence, the verb of the sentence follows the
examples. dependent clause.

Finding conditions (5) When a modal auxiliary occurs in a sen-

The system must be capable of learning the condi- tence, the infinitive comes at the end.

tions under which the changes that it learns apply. The Rule number five was not correctly learned from ex-
range of possible conditons has been simplified by our amples only, in fact, given the assumptions that we
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pects of grammar, or depend on other features, posi-
Enamp,,. On,? VS. ntcn, and ExamP, , 0 tion of a constituent, case, or other features. Relaxing

,[,,,n, E a Elsonly these assumptions would mean that the space of possi-
*able hypotheses to consider in deriving a rule would be

vastly larger in either appraoch. This, in turn, would
4- increase the amount of grammar search or the num-

Number of 31 ber of examples required to derive a new rule. In the
examples examples-and-instructions version of ANT, however,

2these restrictions were not imposed. Thus, the effi-
ciency comparison presented here is most likely biased

It [against the examples-and-instructions approach.
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Abstract information, worst-case complexity model, in contrast
to Valiant's probabilistic-information, probabilistic-

A (string) pattern is a non-null string over complexity, distribution-free model [Va84]. Some re-
an alphabet and a set of variables. A pat- suits on learning pattern languages in Valiant's model
tern language is the set of all string : obtained can be derived as consequences of our results through
by substituting non-null constant strings for the work of Blumer et al. [BEIIW89.
variables in a pattern. We investigate learn-
ing pattern languages in three new direc- Learning of patterns was introduced by Ar-
tions. First we prove that to decide whether glin fAn0]. She gave a polynomial-time algorithm
there is a string pattern consistent with given (in fact, a nondeterministic log-space algorithm) forpositive and negative samples is NP-hard. finding the longest one-variable pattern from sample
Ths itis ano pnatie leis larle strings (or, from positive examples only). Following
Thus it is not olynoisti e learnable un- the principle of Occam's razor [BElt\W87, the longest
less liP = Nml. pattern will guarantee that the solution is fittest inthe sense that no other suitable pattern language is a
Then we discuss extensions of examples and proper subset of it. For n > 2, the problem of finding
string patterns: incomplete examples and the longest two-variable pattern from positive exam-
tree patterns. We prove that to decide pies is left, open. Ko and tlua [KH187] showed that a
whether there is a com ot k-variable string straight forward generalization of Angluin's algorithm

piattern for give incomplete positive exam- for the two-variable case does not work in polynomial
pies is NP-complete for aiiy fixed integer k > time unless P = NP. It suggests that this problem
2. WAre give polynoinial-tinie algorithms to may be NP-complete. For the case where the number
find common k-variable tree patterns for non- of variables is not fixed, even the simple membership
associative, non-commnutative constant trees problem for pattern languages (i.e. given a pattern _p
for any fixed integer k > 1. We also prove and a constant string s, determine whether s E L(p))
that to decide whether there is a common k- is known to be NP-complete [An80].
variable tree pattern for associative, comn- We attack this problem in three new directions.
tative constant trees is P-complete for any First, we consider the problem of learning patterns
fixed integer k > 2. from both positive and negative examples. More

precisely, the new problem FCP of finding common

1 Introduction patterns from both positive and negative examples is:
given two sets S and T of constant strings, decide

A (string) pattern p is a non-null string over a con- whether there exists a pattern p consistent with S and
stant alphabet E and a set X of variables. The T, i.e., S C L(7) and T C L(p).
pattern language L(p) defined by a pattern p is the We explain this problem by a possible applica-
set of all strings over EP which can be obtained by tion. Molecular biologists gather some sequences of
substituting non-null constant strings for variables nucleotides of sonic segment of DNA which i3 corre-
in p, for example, L(10-=01) = {10 00 01. 10 11 01, sponding to some kind of disease. Some sequences
10000001, 10010101, 10101001, 10111101,..). 11 are from normal people and some arc from patients.

this paper ve are concerned with learning pat- Then they try to find (learn) a genetic pattern which
terns and certain generalized patterns from exam- cnepanti hnmnn hr r w itr

pies Ou moel f larnng s bsedoiifli exct- can explain this phenomenon. There are two inter-
pies. Our model of learning is based on ;hme exact- prctations of gathered data. The first one is that

'The work of these two authors was supported iii pmrt a sequence of nucleotides is normal if it can be ob-
by NSF grant CCR-880]575. tained from a genetic pattern by substituting some2Current affiliation: IBM. nucleotides for some specific positions, otherwise it is
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abnormal. In this case positive examples are those incomplete samples.
normal sequences and negative examples are those ab- We say a string s' E r is consistent with a string
normal sequences. For example, if the genetic pattern sEAGXCaXAT is learned from normal sequences AGTC- s-(u?) (assuming ? € )ifljs'j = jsj and for ev-
TATand Gis Aaane d abom normal sequences AGC- ery i, s'(i) = s(i) whenever s(i) 5?, where s(i) denotes
VAT and AGGCGA, nthe ith character in s. Let p be a pattern. A stringGCAAT and AGTCAAT, then AGACCAT is anl ab-GCAA audAGTAATthenAGACAT s anab- s E (Eu{?})+ is au incomplete positive example for p if
normal sequence of nucleotides which may cause a - there exsts an s' E S such that s' is consistent with
ease, where {A, C, G, T} are four types of nucleotides. ad s' E L(p). The question here is to deterineTue secondl one is that ani abnormal sequnce of whether incomplete examples make learning more dif-

nucleotides Ihs some specific sub-sequences of nu- ficult. Our result supports an affirmative answer: for
leotides. In tis case, tie positive examples are those any fixed k > 2, the problem of finding the longest

abnormal sequences and negative examples are those k-variable pattern from incomplete positive examples
normal sequences. A sequence is abnormal if it can is NP-complete (while, as discussed above, the cor-
obtained from the learned genetic pattern. This is be- responding problem using complete positive examples
cause the specific disease sub-sequences will appear as is still not known to be NP-complete). owever, the

sub-sequences of the learned genetic pattern. For ex- 1-variable case of the problem remains open (while,
ample, the genetic pattern AGxATyC is learned from the 1-variable case of complete ositive examples is

abnormal sequences AGCATTC and AGAATGC, and polynoial e s ov ob le An80m).

normal sequences ACTTCAC and AGCAGGO, then polynomial-time solvable fAn8OJ).

AGTATGC is an abnormal sequence. Our problem The third approach is to generalize the string pat-
corresponds to this learning procedure, where nu- terns to two-dimensional trct patthrns and adding the
cleotides correspond to E. For the first interpretation commutattwity property to the concept of patterns.
of data, the specific positions of the genetic pattern The idea of tree patterns comes from the area of term
correspond to the variables of our pattern. For the rewriting of theorem proving IBKN851 [VRS9]. A func-
second interpretation, th, specific sub-stequen es cur- tion f which corresponds to an, internal node of a
respond to const,tut sub-btrings of our patterns. With tr-e is commutative if f(a, b) f- f(b, a), where a and
this tool, scientists can tell whether an unborin baby b are two subtrees of node f. A function g is asso-
has a risk of sone kind of disease through a genetic ciatie if g(a,g(b, c)) - g(g(a, b), c). A tree pattern
examination, is a tree with function symbols associated with inter-

nal nodes and constants or variables on leaves. A tree
We show that the problem FOP is NP-hard when the pattern generates constant trees (trees with no van-

number of variables in p is not fixed. An interesting ate) bynsubt n constant trees oreach vari
conseqluence of this result is, from the general result ables) by substituting constant trees for each variable.

of Blumer et al., that learning patterns in Valiant's The membership problem for tree patterns is to deter-

probabilistic learning model cannot be done in poly- mine, for a given tree pattern t and a constant tree s,

nomial time unless RP = NP. Kearns and Pitt [KP89] whether s can be derived from t by a substitution. This

also considered learning pattern languages in this di- problem is called term matching in the area of teri

rection. They gave a polynomial-time algorithum for rewriting. Efficient algorithms have been developed

learning k-variable pattern languages, for any fixed for several variations of this problem (e.g. IBKN85]).

k , 1, under arbitrar. pioduct distribution. flow- A string pattern can be viewed as a depth- 1 tree lat
ever, their algorithim utputb a set of simpler patterns tern having the associativity property. Thus, removing
with k or less variables instead of one single k-variable the associativity property from a tree pattern would
pattern. Thus, the prccise coimple.,ity uf lkarting k- potentially simplify the learning problem, and adding
variable patterns from positive and negative examples the commutativity property would make it more dif-
and outputting a single k-%ariable pattern is still left ficult. Our results support this intuition. We show
open for any fixtd k 1 1. This problem falls into the that learning a tree pattern without the assodativity
complexity class NP since the membershil prob)leui of and conimutativity properties can be done in polyno-
k-variable patterni is in P for any fixed k -_ 1. Re- mial time no matter whether the number of variables
cently, Schapire !Sc89] also) show.d that pattt rn lan- is fixed or not. On the other hand, Nve show that if
guages are not hrnablt in Valiant's learuiiig model if a tree pattern is allowed to have the assuciativity and
P/iply /_. NP/puly. llovvever, lie allows empty-string commnutativity properties, then the learning problem
substitution of variables. This model is diffmnt frum is NI'-coniplete for the two-variable case.
our,, that prohibits empty-string substitution. It ap- The above PP-completeness results (incomplete
pears that this slight difference does affect the coin- examples and tree patterns) seen diflicult to be
phexity of tho learnng problem, strengthed to the one-variable case. Intuitively, the

The second approach is to learn pattms from in- one-variable patterns do not hav omplex structures
complett example.s. This problen can atlso ,apply to for reduction proofs of NP-hardnkss. Its complexity
the above gencti , pattern problems. It is not unusual is, intuitively, closer to th original two variablt string
that experiment data are not perfect. Thhe may miss patterni learning problem of cumplett positivt exam-
some parts of genetic sequences and thus we may have pies.
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2 Preliminaries length greater than an input parameter r, because we

Let ES' be a finite alphabet and X disjoint from T only need to check that the shortest string of the set
is of length r' > r and use IZ2" .. x, as the solution.be a countable set. Then V denotes the set of lowever, if we also use the number of variables as a

all finite (constant) strings over r, and V- = Ee -
parameter, the problem becomnes NP-coniplete.

{empty string}. Elements in 1' are called constants.
Elements in X are called variables. Let sI s 2 denote Theorem 3.1 The following problem is NP-complete:
the concatenation of two strings s1 and s2, and s'" the given a finite set S C '_+ and two integers n and t,
concatenation of in s's. Let IISII denote the number of determine whether there is an n-variable pattern p of
elements in set S. length > t such that S C L(p).

A (string) pattern is a non-null string over L' X. This is proved by a simple reduction from the meniber-
Let IpI denote the length of pattern p, for example, ship problem without bounds on Nariables. We omit
IzOzlOyyl = 7. A pattern p is called k-variable if it here.
there are no more than k distinct variables occurring
in p. A pattern p is called k-occurrence if each vari- 3.2 Positive and Negative Examples
able in p occurs at most k times. Assume that p is In this section, we consider the problem of finding pat-
an n-variable pattern with variables xl,.. , x,. Then terns (not necessarily longest) from positive and neg-

,., s,1/a,] denotes the string obtained from ative examples. The main result of this section is that
p by substituting s, for each occurrence of x, in p, without bounds on the pattern length and the number
i - 1, 2, ... , n. The language L(p) is defined to be of variables, we can prove that the question of deter-

= L(p) = .{P[SI/., s 2/ 2,.., suu] mining whether there is a pattern consistent with given
si E r,+, 1 < i < n}. positive and negative examples is NP-hard.

Theorem 3.2 The following problem is NP-hard:N o t e t h a t i f s E L ( p ) , t h e n Is l L_ 1p l. S i n c e w e c a n g i e t w f n t e s s S a d ' o s r n s , e l i i e
check whether two patterns are the same up to variable giten two finite sets S and T of strings, determinerest of this paper we neglect the naming whether there is a pattern p which is consistent with Sdifference of patterns and T, in the sense that S C L(p) and T C L(p).

The following two propositions are from [AnSO]. Proof. We reduce the 3SAT problem [G79] to this
The fist one states sonie properties of pattern lan- problem. Let U .- {u,, u2, ... , , } be the set of vari-
guages. The second one, as we said before, shows that ables and C : {C1, C2, .. , Cm} be an arbitrary instance
the membership problem of pattern languages is NP_ of 3SAT. We need to construct two sets S and T such
complete. that C is satisfiable if and only if there is a pattern p

Proposition 2.1 The class of pattern languages is i- consistent with S and T. We first consider the restric-

comparable with the class of regular languages and ivwth tive case that a consistent pattern must have length
the class of contezt-free languages. The class of pat- > 3n.
tern languages is not closed under any of these oper- Construct the following positive examples si's and
ations: union, complementation, intersection, Kicene s, s, and negative examples tj's, 0 < i < n and 1 <
plus, homomorphism, or inverse homomorphism. It is j < n:

closed under concatenation and reversal. So = r1r2... P,

Proposition 2.2 The membership problem for pat- where rk = 111, 1 < k < n;
tern languages is NP-complete, i.e., the following prob- so = rir 2 . . .r,,

lem is NP-complete: given a pattern p and a string where P; = 000, 1 < k <
s E E+, decide whether s C- L(p).

si = ri2 ... r,,,

3 Learning Patterns from Positive where ri = 000, rk = 111, 1 < k < nt and k t i;

and Negative Examples s. = 1 r2 ...
3.1 Positive Examples Only where ri = 1100,rk = 111, 1 < k < n and k i;

Angluin [An80] gave a polynomial-timne algorithm to tj = r 1r 2 .
.
. .r,

find the longest one-variable pattern for a set of strings where rj = 101, rk = 111, 1 < k- < and k j.
(positive examples), while the complexity of the two-
variable case is left open (cf. [K1187]). For the problem Let S = U%,o{s,, s',} and T" U 1;'=I{t,}. Assume
of deciding whether there exists a pattern (not ncces- p = PIP2 ... p,, p, I z 3, 1 < i < n, is a pattern of
sarily longest) for positive examples only, we shuuld length 3n %hich is consistent with S and T". From
have a parameter of pattern length, otheraise patirn positive examplts so and s,, we know that p, contains
.r would be a suitable solution for imost casts. Without 3 variables (to t ostants) and variables in p, do not
restriction on the number of variables of target pat- occur in the other p,'s if i / j. From the negati,c
terns, we can easily find, in deterministic log so,ice, example t,, tht. middle variable of p, is equal to the
a conimnon pattern for a set of strings with pattern first or the last one of p,. By s,, p, needs to match
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1100, 100, or 110 to obtain s, so p, cannot be ,.. is consistent with positive and negative examples re-
Thus pi = xixiyi.or xiyjyi. mains open.

For each clause c, = {1,,, 1, ,1 in C, 1 < i < m, Valiant [Va84I discussed a probabilistic learning
we add t as a negative example to guarantee that at model. In his model, examples, when requested, are
least one literal in c, is assigned to true, i.e., not all provided according to some fixed, but unknown prob-
of them can be assigned to false. For 1 . < in, we ability distribution. Learning algorithms are required
define to output an approximate concept using polynomial

t= rir2 -' number of examples in polynomial time. Blumer et
I  al. [BEIIW89] showed a general result that the polyno-

where minal learnability of a concept under Valiant's learning
100 if lij = uk,j = 1,2, 3 model can be reduced to the consistency problem of

r7 = 110 if Iii = Z&k, j = 1, 2, 3 the concept. That is to say, the approximate learning
111 otherwise, of Valiant is equivalent to the worst-case learning if

Let the VC-diniension of the domain grows polynonially
with respect to some size measure of the domain. In

T1 = T" U (U7= {t }). pattern languages, if we take the length of a pattern

Now we want to show that a truth assignment r as the natural size measure, then its VC-dimuension
satisfies C if and only if there is a p consistent with grows linearly by a simple counting argument. As a
our examples S and T'. For the forward direction, we consequence of this result, we have
define pi ;- .'xiy, if r(u,) z- true and pi z xjy,y, if Corollary 3.3 Pattern languages are not polynomial-
r(uj)= false for 1 < i < n. We can easily verify time learnable under Valiant's learning model unless
that p = PIP2 ... p, is consistent with S and T'. In RP = NP, where RP is the class of problems which can
particular, for each cause c,, if uk occurs in c, and be solved by randomized polynomial-time algorithms.
r(uk) = true, then pk = Xk xky., but t = rjr2",,r.
with rk = 100, and so t, L(p); similarly, if i~k occurs 4 Learning Patterns from Incomplete
in e and r(uk) false, then pk = Xhkyyk and rk in Examples
t is 110, and t L(p).

For the backward direction, if there exists a pattern In this section we consider generalized examples, i.e.,
P = PP2 p . , of length 3n consistent with S and T', incomplete examples, for patterns. With this general-
we define r(uj) - true if pi = .j ijyj and false if ization, we can prove that learning the longest two-
pi = xiyjyi. Then for each clause ci = b1} variable pattern from incomplete positive examples
1 < i < i, the negative example t guarantees that is NP-complete. However, the 1-variable case of the
one of pi,, 1 < j < 3, makes r(li) = tri. problem remains open.

Last, we need to prove that no patterns of length Assume ? E. We say a string s' E E+ is con-
< 3n can be consistent with S and T. We add the sistent with a string s C (E U {?})+ if Is'l = Isl and
following strings to T: for every i, s'(i) = s(i) if s(i) - ?, where s(i) denotes

S: 1 < < 3n- 1}, the ith character in s. A string s E (D U {?})+ is an
incomplete positive example for a pattern p if there ex-

i.e., let ists an s' E E+ such that s' is consistent with s and

T = 2" U {11 : 1 < i < 3n - 1}. s' E L(p). We first observe that the complexity of the
membership problem for incomplete examples and k-

If some shorter pattern q is consistent with S and T, variable patterns remains the samev as that of complete
then all its positions must be variables since so and examples for any fixed k > 1.
s'O are positive examples. Since the length of q is less Theorenm 4.1 For tny fixed k- > 1, there is a
than 3n, 11q1 can be obtained as a positive example by polynomal-time algorithm for the following problem:
substituting string 1 for every variable. This contra- given an incomplete example s and a k-variable pattern
diets our negative examples. 0 p, decide whether s is an incomplete positive example
Remark. Note that by Proposition 2.2. the above of p
problem is not known to be in NP. We showed that
the complexity of this problem is complete for V with Prof: (Sketch) Let Isi = n. Assume the number
respect to log-space many-one reduction, where 2E is of occurrences of xi in p is ni, I < i < k and the
the class of languages recognized by nondeterministic number of constants in p iasno. Let s be the possible
oracle Turing machines in polynomial time relative to susttuio fo h te
oracle sets in NP, i.e., the second level of the polyno- example. We have
inial time hierarchy. It will be reported in a subsequent n0 + n1lsml ns 2 1 + [ -k I- n.
paper [TK90]. We consider all possible Isil's, 1 < i < k, which satisfy

The above proof does not seen applicable to the the above equation. There are at niost itk of them.
case when the number of variablt, is fixed. Thus, the Each solution determints the positions uf the substi-
problem of finding a k-variable pattcrn, k ' 1, which tution strings in s, as well as conistant syimbols in s.
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For each of them, we first check whether the corre- f 1 if bi[j,k = t,m = ik,k = 1,2,3
sponding constant symbols of p and s are consistent. r,,3 (i) = 0 if bi [j, k] = f, in ik, k 12, 3
If it is so, we then check, for each zi, whether its cor- ? otherwise.
responding substrings in s are consistent, i.e., 0 and 1 For exanple, assume 7t = 6 and C2 = X1 V 4 VFo, then
does not appear at the same corresponding position.
For example, 0?100 and 0?110 are not consistent and r 2,1 = 1??0?0,
701?0 and ?0?10 are consistent. 0 r2,2 = 1??0?1,

Now we show our result on incomplete positive ex- r2,3 = 1??1?0,
amlples. r2,4 = 1??1?1,
Theorem 4.2 The following problem is NP-complete: r2,s = 0??0?0,
givcn a finite set S of incomplete positive examples and ,'2,6 = 0??0?1,
an integer t, determinc whether there is a two-variable r2 ,7 = 0??0?0.

string pattern p of length > t such that each s E S is We define s =
an incomplete positive example for p. 0 #$n+1 #i, j#$n../r+,21 "'Ynlri,30 $' 1 #ri, 4

Proof: This problem is in NP since a nondetermin- # 871+l#r,,5;#$n I' Y r,,6#$n+'#r.,7#$"+ 1 #0.
istic Turing machine can guess a two-variable pattern It can be checked that a pattern p matches s
p and, for each s E S, guess a consistent example s' only when a, - ha matches with sone Vij, 1 <
and verify that s' and s are consistent and s' E L(p) j nl 7 (and x matches OA... #rij1 and y matches
in polynom ial tim e. J # 7 ( - m a T h s sa m ple S = y S2 tS hes

We reduce the 3SAT problem to this problem. Let (+ 1 #.. #0). Thus sample S = {sen2, s.} U
U = {a1 , u2 .... ,u,} be the set of variables and (U%_{sl}) satisfies our requirement.
C = {c c2, ..- c,} be an arbitrary instance of 3SAT. Note. The substring #$?+t# of every example canWaritar nsac e of be replaced by 10"+11 without changing the proof. So,Without loss of generality, we assume each variable ui,

1 < i < n, or its negation j, occurs at least once in I1111 = 2 is sufficient for this proof. 0

some clause C., 1 < j < in. First, we use two ex- Through an easy extension of the above proof, we
anples and the length bound to form a tableau for a can show that the NP-completeness result holds for

truth assignment for C. Define the cases k > 3.

S, = 0# "+ I $?? ... +? #s$n 1A Corollary 4.3 For any k > 2, the following prob-
lem is NP-complete: given a finite set S of incomplete

and positive examples and an integer t, determine whetherthere is a k-variable string pattern p of length > t such

S2 = 1 #$+'# ??... ?# $ 1,0. that each s E S is an, incomplete example for p.
?1

With length bound t = 3n + 8 and examples sl and 5 Tree Patterns
S2, any 2-variable pattern p must have the structure:

p= .#S ,+'#aa 2 ... a,,$,,+AILy, In this section, we generalize one-dimensional string
patterns to two-dimensional tree patterns. Let 17 be a

where x and y are variables and i C {0, 1, U, Y ) #, } countable set disjoint from E and X. Elements in F
Let are called function symbols. A tree pattern is a non-

s3 = 00 ... $f0 "+l# ?? .?$" # 00 0 null rooted directed tree, where its vertices are labeled
,,+1 ,,+1 and edges are ordered. The internal vertices of a tree

then it can force every ai, I < i < n, be a constant. pattern are labeled by function symbols whose direct
Thus, the center part a, . a, of p may be viewed as a subtrees are their arguments. The external vertices
truth assignment for C. That is, i',(ui) = trite if and (leaves) are labeled by constants or variables. flie set
only if ai = . L(t) defined by tree pattern t is the set of ail cunstant

F such that trees obtained by substituting non-null constant treesif ea la e satise cnstht st is an incomplete for variables occurring in i. For each tree t, we letif an assignment 7l, satisfies ci then s i sa in o p ee I b th um rofv tcs of rep t en .. At -
example for p. Thus, {c1 , ... cr,, is satisfiable if and ep be the number of vertices of tree patterr .A' an
only if there is a pattern p for all s , 1 < i <. m. For example, i in Figuie 1 is a two-variable tree pattern.each clalse c = {l4,,l }, lb = u, or -,, there tj and t 2 are two constant trees. t3 = t[tl/a, t 2 /X 2 ]

are seven truth assignments on variables ui,, ui,, lris is an element in set L(t) by substituting t1 for x, and
which satisfy c (e.g., x1 V 72 V x3 can be satisfied by t 2 for X2.
ttt, Itf, tft, tIff, ftt, fft and ffi, where t nieans true and An internal vertex labeled by f is called associative
f means false). Let them be if fA(a, fA(b,c)) = fj(fA(a,b),c) and called commu-

tative if fc(a,b) = fc(b,a), where subscripts A and
bi[j, 1] bi[j, 2) bi[j, 3], 1 <, j < 7, 0 of f denote the associativity and commutativity

where b,[j, k] {It, f}, 1 < j < 7, 1 ' k < 3. For each properties. A vertex could be associative, cofniu-
c,, we define 7 substrings r,,,, each of lcngth a (recall tative, both, or neither, aourding to its associated
that s(m) is the mth character of string s): function symbol. A bubtree with associative vertices
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fA(a, fA(b,c)) can be flattened to fL(a,b,c). A con-
stant tree or tree pattern is normalized if every sub-
tree is flattened, i.e., two associative vertices with the
same function symbol have no direct parent-child re-
lationship. For example, tree t in Figure 1 is nor-
malized and tree t3 is not. Tree t3 can be flattened
as f(gA(hc(0, 1), 1, 0), 1). In the following, trees or
tree patterns are all in the normalized form. String
patterns can be viewed as depth-1 tree patterns with
associativity property on the root.

\\O 5.1 Termi Matchiing aid Tice Patternts

The term matching (or membership) problem is, given
a tree pattern t and a constant tree s, to decide
whether s E L(t). Restrictions may be put on tree
patterns t, when considering term matching. Some
standard restrictions are the number of occurrences of
each variable, the number of variables, and the proper-
ties of associativity and commutativity (e.g. AC term

G0 matching).
Term matching is one of fundamental problems

t = f(gA(he(0,1),z2), 1) in the area of term rewriting. The problem has
been widely studied with respect to trees with-
out associative or commutative properties, as well
as one- and two-occurrence AC trees. The non-

9AC term matching problem has very efficient algo-
' rithim [DKM84] [l)KS86]. The one-occurrence AC

term matching problem has been proved polynomial-

t= 1 time solvable [BKN85] and the two-occurrence prob-
lem (even with only associativity or comnmutativity re-
striction) has been proved NP-complete [VR891. In-

t2 = gA(1, 0) deed from our comment about the relation between
string patterns and associative tree patterns, the NP-
completeness of the two-occurrence associative term
matching problem also follows from a generalization of(D Angluin's NP-completeness result on the membership
problem for string patterns (Proposition 2.2). We can
also consider k-variable membership problems in string

7- and tree patterns. For string patterns, the k-variable
membership problem for any k > 1 is in NL (nonde-
terministic log-space), while the complexity of the k-
variable AC term matching problem is still unknown

0 for any k > 1. The less restrictive versions of the k-0 variable associative (or commutative) term matching
problem is provable in NL for any k > 1. This further
justifies that tree patterns with additional restrictions

are a natural generalization of string patterns.

5.2 Positive Results
t- f(gA (hc (O, 1),gA(1,0)), 1) A non-associative, non-comnutative tree i6 a tree

such that all its internal vertices are labeled by
Figure 1. Constant Trccs and Tree Patterns non-associative, nuil comnmntativc function s)nmbols.

The positions of two subtrees of a vertex of a non-
associative, non-conmutative tree can not be ex-
changed because they are ordered. The mazimum t bee
pattern problem is solvable in polynomial time with re-
spect to this type of trees. We give, in Figure 2, a pro-
cedure MAx-TjtrE-PAr'I'EItN which takes as input a
set of non-associative, non-conunutative constant trees
and outputs a maximum common tree pattern.
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procedure MAx-TREF,-PA'rTERN(7X J,., T,) of variables to < k.
b~egiln Thecoreii 5.2 For any k > 1, there is a polynomnial-
1. t + empty tree; time algorithm to find the mazimumi k-variablc tree

(t Trace all trees Tit 1 < i < r, in intoider pattern for a finite set of non- associative, non-
simultaneously *) com n itatlive constant trees.

2. whiile there are unvisited vertices do
3. Visit next unvisited vertex; 5.3 Negative Results
4. if any two of current vertices For AC trees, the miaxi~nini tree p~attern problem is

are differenit NP-comiplete, eveni if the number of variables is fixed
5. thenil if current subtree oft 1 , 1 < i < r, is to two. However, the compllexity of the one-variable

equal to subtrec pointed by p',,. case is still unknown.
6. thiei set the corresp~ondling vertex Tlieoremi 5.3 The following problem is NP-complete:

7. elseolet to beanevvribean e given (I finite set S of associative, commutative con-poins lte ,, 1e a e va iabl adto stant trees and an integer r', determine whether therepoite p,, , <i <rtothe is a two-variable tree pattern t of size > r such that
corresponding subtree rooted S~ C L(t).
by current vertex of Tj;

8. Set the corresponding vertex Proof. (Sketch) We reduce ONrE-iN-THIREE 3SAT
of t to Xl; with no negated literals [0379] to this p~roblemu. Let

9. else set the corresponding vertex of t to U = {Il- 112, ... , ut,} be the set of variables and
the symbol of current vertices; e {c 1 C2 1 ... 3 Cm, I be a set of clauses each contain-

10. if the current vertex of t is set to a variable ing three variables. We say that C is satisfiable if
11. thel.n mark all vertices in current subtrecs as and onily if there ,.xists a truth assignment such that

visited; exact onle variable of each clause is assigned to true.
end; Without loss of generality, assumne each variable ui,

12. returrn(t); 1 < i < it or its negation, occurs at least once in
eiid. some cj. I < j K tit. Let 7' = 27t + 4. For each clause

e= {Ui, , Zui, 1uj', I < i < mn, we generate

Figure 2: Finding Common Tree Patterns S, =fAmC(t[il, i2, is], 1[i 2, i3 , ii],t[i3. il, i2])

where tjj, k, I] is a depth-I tree with root 'hAC and

We overlap all input trees Tit T'2, - - , T1. and substi- 2n - 3 leaves: {g,,,(0),g ... (1) : m j, k, l}} U
tuite variables for unmiatchied corresponding subtrees. {gi(1),g9k(0), 91(0)}.- We also defineC
If two substituted subtrees are equal in every tree Ti SO = f 0(t 1, t 2 , 13),
1 < i < r, then they are replaced by the samec vani- where 1), 1, 2, 3, is a deptht-i tree with a root ILAC
able. This procedure will. terminate since unvisited and 27t, evs g7 ,0,g(): n~i
vertices decrease by at least one for every iteration A-Ilevs:.(0)}. .(): tt< t

of the whiile loop. The tree pattern t we get is the LeIi oU U 1{~) W an oprv ta
largest. If it is not, i.e., there exists a tree pattern isst1=I~ ~ ri n nyi hrei nascaie

t'sch t a u 1 7~ ~i) a d t~ heIt commutative tree hpattern t of size r' = 2n+4 such that
least one branch bV (pathi from the root to a leaf) of S C L(t). For the( forwvard direction, we canl see that
tree p~attern I' is longer than the corresp~onding branch tree pattern
bt of tree p)attern t. If the end (leaf) of branch b is a
variable, then at least two Ti's corresponding positions f~mc(h~mc(gi (al), .. . ,g,, (a,,), x), y),
are cifierent. However, the branch bV is longer and so is suitable, where X Uand y are variablhes and a, z-1 if
miust have a function symbol at this position. Thus ?-(Ili) = trite.
one of T 's cannot be contained in L(t'). If the end of For the backward (directionl, a two-variable tree pat-
brantch bt is a constant, thien all corresponding branches terit t hlose L(t) contains S cannot be of the foritm.
of' I f's are shorter than branch Y'. All T.'s are not in Ac( IAC..),b
L(P'). Thus, the size of tree pattern t is inaximiun for fi(im~~,hm(..,b
all T,'s. It is not too hard to verify that the p)rocedlure for any variable b or a tree bt routed with hAG; oth-
MAx-TitEE-PATTERN runs in polynomial time. erwise I miust contain at least three variables because

Theoremn 5.1 There is a polynorm al- time algorithm each suhtree hIAC of so has a different function symbol
that finds~ tie niaxmim tree pattern for a findme sct of 1). Therefore, the only suitable tree patterns of size
n on- associative, non-commutative constant trees. > n+' r fth olwn om

For any fixed k > 1, we canl also find the mnaximumn fAc, (hAc(gl (a 1), . ,g,, (a,,), x), y),
k-%ariable tree pattern by first constructing the naxi where u, (- {0, 11 for I _ - n. Sinice each variable
inuin tree pattcrni from the above procedure and then 'i, app'...tr5 at least on'.' ini soin klate k.., example S)
simply tising exhiaustiv e search to reduce the number guarautk es that only one sb.trec of hAG. is ruted by
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gi. We define r(u,) = true if the argument a, of g, is [GS881 WN.I. Casarch, C.11. Smnith, Learning via
1. 0 qucries, 1'roc. 29th IEEE Symposium ont Poun-

The above proof can be extended to the cae k > 3. dations of Compunter Scieticc pp.] 3 0-13 7, 1988.

Corolary5.4A~orart k >2, te fllowng rob [1 I(LIW881 D. flaussler, M. Hearns, N. Littlestonc, Ni.k.
CorPolary e gi4veo a fini2,te follo songiptovle Warinuth, Equivalcnct: of models for )olyflo-

is N-coplee: ive a init se S f asocatie, ini learnability, Proc. 1st I'orkshop on Corn-
comntiLtive constant trees and ant integer r, deter- pulational Learning Theory, pp.42-55, Morgan
inine whether there is a k-varialel tree pattern t of Iatufmnann, San Mateo, CA, 1988.

size~ rsuchtha S £L~t. [(1187] K. 1(o, C. Jina, A note on the two-variahic

pattcrn-Iinding problem, J. of Computer anid
6 Conclusions System Sciences 34(l):75-86, 1987.

We have investigatedl pattern learning problems iii (1089] M. Kearns, L. Pitt, A polynomnial-time algo-

three new directions. Recently, we characterize the rithmn for learning k-variable pattern languages

P jrecise complexity of the problem FCP to be V) fromn exaiplcs, Proc. 2nd Workshop on Comz-
copet.Mnypobesmentioned in our paper r- putational Learning Theory, pp1.57-70, Morgan

caompee. Ma robltem re-e Kaufmann, San Mateo, CA, 1989.

mai) o peany Wied resat the hfnd le. -a p t [Ma9I A. Marron, Learning Pattern Languages fro mt

(1) or ay fxed > , fid loges k-vriale Jat-Examnples and froni Queries, Ph.D. Trhesis, Uni-
terns for positive examples. versity of Houston, 1989.

(2) For any fixed k > 1, find k-variable p~attern., for 'jSc89] R. Schapire, Pattern languages are not learn-
positive arid negative examples. able, manuscript, 1989.

(3) Find longest one-variable patterns for incompllete [TI(901 W. Tzeng, K. Ho, Finding commion p~atterns is

positive examples. complete for the second level of the polynomial

(4) Find one-variable AC tree patterns f'or positive and timec hierarchy, manuscript, 1990.

negative constant trees. [Vas84J L.G. Valiant, A theory of the learnable, Com-
mnunication of ACM 27(11):1134-1142, 1984.
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Abstract model. The second section contains a k-ary percep-
tron learning algorithm (derived from the binary per-

Analog neural networks of limited precision ceptron learning algorithm) and its convergence proof.
are essentially k-ary neural networks. That The third section contains a k-ary winnow algorithm
is, their processors classify the input space (derived from Littlestone's winnow algorithm (Little-
into k regions using k - 1 parallel hyper- stone, 1987, 1989)) and its mistake bound proof.
planes by computing k-ary weighted multilin-
ar threshold functions. The ability of k-ary 2 A General Framework for Learning
ieural networks to learn k-ary weighted mul-
tilinear threshold functions is examined. The Let k E N, and Zk = 10,..., k - 1}. A k-ary neural
well known perceptron learning algorithm is architecture is a k-ary neural network with the weights,
generalized to a k-ary perceptron algorithm thresholds and initial activation levels left unspecified.
with guaranteed convergence property. Lit- That is, it is a 4-tuple A = (k, V. 1, 0), where:
tlestone's winnow algorithm is superior to the k E N i3 the number of logic levels,
perceptron learning algorithm when the ra-
tio of the sum of the weights to the threshold V is a finite set of processors, or gates,
value of the function being learned is small. I C V is a set of input processors,
A k-ary winnow algorithm with a mistake 0 C V is a set of output processors.
bound which depends on this value and the A(a,w,h) denotes the kary neural network
ratio between the largest and smallest thresh- ( a, w, h) d he a r
olds is presented. (k, V, 1,0, a, w, h), where

a : V - I --+ Zk is a set of initial activation levels,

1 Introduction w: V x V --* R is a weight assignment,
h : V --* Rk- 1 is a threshold assignment.

In (Obradovic & Parberry, 1990) it was shown that The processors of a k-ary neural network are rela-
analog neural networks of limited precision are essen- tively limited in computing power. Processor v E Vtially k-ary neural networks (that is, their processors has k - 1 thresholds hi(v),,.h.-. , ), and if its
classify R n into k regions using k - 1 parallel hy- ""

perplanes) and their computing power was examined, weighted input sum is between hi(v) and hi+i(v) it
Here, we investigate their learning power. One of the has i for output.

results from that reference was that there is no canoni-

cal set of threshold values for a k-ary perceptron when Z k Zk. Let Fkn denote the set of all n-input
k > 3, although they exist for binary and ternary k-ary functions. Define 9 : Rln+k- I --+ Fkn by
neural networks. This indicates that learning algo- e)(w n,..., w, hl,..., hk-1) :R - Zk, where
rithms for k-ary neural networks which modify only E®n(wl,...,wnhj,...,hk-i)(n1,...,xn) = i
the weights are not neceswary convergent. Here we

show that matters can be h.proved by learning both
the thresholds and the weights. A preliminary version if h: < E wini < hi+,.

of the results from this paper appear in (Obradovic &
Parberry, 1989). Here and throughout this paper, we will assume that

The main body of this paper is divided into three hi :5 h 2 _< ... < hk-l, and for convenience define
sections. The first section sketches definitions of h0 = -oo and hk = oo. The set of k-ary weighted
the k-ary neural network model and learning in that multilinear threshold functions is the union, over all

n E N, of the range of ek. Each processor of a k-ary
*On leave from the Mathematical Institute, Belgrade, neural network can compute a k-ary weighted nmulti-

Yugoslavia. linear threshold function of its inputs.
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Let A = (Ai,A 2 ,...) and f = (fl,f2,...) where
A. = (k, V,, 0,O.) is a neural architecture with procedure perceptron(n)
11111 = n, and fn : Rn -) Zk. A learning algorithm for i:= 1 to n do wi := 0;
for f on A is a relativized algorithm L with an ora- repeat
cle for f which on input n outputs a series of distinct for each X = (Xi, ... , X,) E Znj do
initial activation, weight, and threshold assignments p:= en(w1,... , w,,
(ao, wo, ho), (ahwihi),..., (at,wt,ht) such that the if f(X) :0p
neural network Mn = An(at, wt, ht) computes fn. We then perceptron.update(x, p);
will consider learning algorithms for k-ary weighted Output (wi,... ,w,)
multilinear threshold functions on neural circuits (that until f(z) = EO(w,..., w,, O)(X)
is, layered neural networks without feedback). for all x E Zn.

Resources of interest include those of Mn, and those

of L. The former include the size (number of proces- procedure perceptronupdate(x,p)
sors), depth (number of layers), and weight (sum of all if f(x) > p then sign 1
the weights) of the circuit. The latter include the la- else sign := -1;
tency and-the mistake bound, defined as follows. The for i 1 to n do w = wi + sign, zi;

latency of learning algorithm is the worst case run-
ning time-between the output of one set of assignments
and the next. We will measure unit-cost latency, that Figure 1: The Perceptron Learning Algorithm.
is, we will-assume that L is implemented on a digi-
tal computer with word-size large enough that each
elementary -arithmetic and logic operation can be im- Proof: See, for example, (Duda & Hart, 1973),- (Min-
plemented in constant tOmc. The mistake bound is the sky & Papert, 1969), (Nilsson, 1962) or (Novikoff,
worst case total number of distinct assignments out- 1962). 0
put.

If f is a k-ary weighted multilinear threshold func- The initial weights can be set to any value in- the
tion, we say that (w,,...,wnt,...,tk-) E Rn+k-1 for-loop on line 1 in Figure 1. The members of-Zn

is a representation of f iff can be used in any order in the for-loop on line 3,
provided every member is used an infinite number of

f = (w1,.. w tl,...,tk-), times in the algorithm. Also, the value added -to- wi

Note that each k-ary weighted multilinear thresh- in the for-loop of perceptron.update procedure can be
old funcion has many representations. We will con- multiplied by some constant cj E R+ at the jth call of

sider the problem of learning k-ary weighted multilin- that procedure provided
ear threshold functions, and for the most part be con- m
cerned with learning them on the minimal architecture lim E ci = 00
consisting of a single k-ary processor. That is, we will M-.oo
be learning a representation for a k-ary weighted mul-
tilinear threshold function f, given only an oracle for and m
f. All of our learning algorithms will be expressed in E ci2
a high-level pseudocode. Initial activation lovels will
always be zero. lim '= -.

We will consider two new resources, called the height m-co (E C ) 2

and width of a representation, which give some indi-
cation of the relationships between the weights and Fu
the thresholds, and between the thresholds themselves Furtherr -e, the algorithm will learn any weighted
(respectively), to be defined later. linear t' old function whose domain is some-finite

subset r, . We will make use of this fact later. The
3 A k-ary Perceptron Learning Rule latency o, the algorithm is clearly linear in n. The

worst-case mistake bound appears no better than ex-
The perceptron learning problem is the problem of ponential in n.

ie,,r,1g , c li,, hncart"Ircso, LuCLo o The minirnai architCturc or 'carninpu .. : .. .
a binary neural network consisting of a single proces- weighted multilinear threshold functions is a single k-
sor (called a perceptron for historical reasons). There ary weighted multilinear threshold gate with n inputs,
is a well-known algorithm for the perceptron learning which we will call a k-ary perceptron. It was shown in
problem which uses the so-called perceptron learning (Obradovic & Parberry, 1990) that there is no canoni-
rule to derive successive weights. The algorithm is cal set of threshold values for a k-ary perceptron when
described in Figure 1. k > 3. This suggests that the thresholds must be

learned in addition to the weights.
Theorem 3.1 (The Perceptron Convergence Theo- Even if the threshold values are known in advance,
rem) The perceptron learning algorithm for learning many obvious extensions to the perceptron learning
n-input binary weighted linear threshold functions de- rule (such as that shown in Figure 2) which modify
scribed in Figure 1 terminates, only the weights' do not necessary terminate for all
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procedure thresholdperceptron(n, k, t, ... ,t k-1 ) procedure multiperceptron(n, k)
for i:= 1 to n do wi := 0; for i:= 1 to n do wi := 0;
repeat for i:= 1 to k - 1 do t4 := 0;

for each z E Zn do repeat
P := en(Wi, ...,i wn, ti,...- -, tk-1)(Z) for each Z = (z,... ,Xn) E Zi do
if fAX) 9 p p :ef(w . , , ,

then thresholdperceptron-update(, p); if f(x) # p
Output (wi,..., w) then multiperceptron.update(, p);

until f(x) = en(wl,..., I,,..., tk-1)(X) Output (wl,..., wn, t1,..., tk-1)
for all x E Zn. until f(X) = e0(wl,.. )

for all X E Zn.
procedure thresholdperceptron-update(X, p)

if f(m) > p then sign := 1 procedure multiperceptron-update(r,p)
else sign := -1; if f(A) > p

for i:= 1 to n dowi :=wi+sign*x; thentp+1 :=tp+1-1; sign := 1
else tp := tp + 1; sign := -1;

for i:= 1 to n do wi := wi + sign *x;

Figure 2: A Trial k-ary Perceptron Learning Algo-
rithm for Known Thresholds.

Figure 3: The k-ary Perceptron Learning Algorithm.
choices of ordering of sample inputs in line 4. For
example, suppose k = 2 and n = 2 (similar exam- Lemma 3.2 f= E)(w,. .,,wn,t,.. ,t4-) iff
ples can be found for arbitrary n and k using the "'
same principles). Consider f = ()(4, 3,7,8). Sup- 2 (wL,...,Wn,-tl,...,--tk1,0) is the orthogo-

pose we use the algorithm described in Figure 2 to find nal slice function for f.
weights W1, W2 such that O(wiw2,7,8) = f. After
considering points (2, 0) and (2, 2), we have weights Proof: Follows in ediately from the definition of the
(wI, W2) = (4,2). All points-are correctly classified us- orthogonal slice function 0
ing these weights except for the point (1, 1). Thus
there is no change to the weights until point (1, 1) Theorem 3.3 (The k-ary Perceptron Convergence
is considered, at which time the new weights become Theorem) The k-ary perceptron learning algorithm for
(5,3). Once again, all points are correctly classified learning n-input k-ary weighted multilinear threshold
using these weights except for the point (1, 1). Thus functions described in Figure 3 terminates.
there is no change to the weights until point (1, 1) is
reconsidered, at which time the new weights are again Proof: (Sketch) The learning algorithm, instead of
(4,2). Thus the weights cycle between (4,2) and (5,3) learning f, learns the orthogonal slice function for f
without ever reaching an acceptable solution. Matters using the binary perceptron learning algorithm shown
are not improved by making obvious changes to Figure in Figure 1. The orthogonal slice function for f is guar-
2, for example, instead of adding a multiple of xi in anteed to exist by (the "only-if" part of) Lemma 3.2.
the for loop of thresholdperceptron-update procedure, Once the orthogonal slice function has been learned, f
substituting one if xi > 0 and zero otherwise. can be reconstructed using (the "if" part of) Lemma

However, matters can be improved by learning both 3.2. The algorithm is guaranteed to terminate by the
the thresholds and the weights. Perceptron Convergence Theorem. It is clear that the

It can be shown from first principles that the k-ary algorithm realizes Figure 3. 0
perceptron learning algorithm described in Figure 3
terminates. Termination can more easily be proved as The latency of the k-ary perceptron learning algo-
a corollary of the Perceptron Convergence Theorem as rithm is O(n), and the mistake bound is no worse than
follows, for the binary perceptron learning algorithm on n + k

inputs.
Definition. If f is an n-input k-ary weighted multi- A second candidate architecture for learning k-ary
linear threshold function, the orthogonal slice function weighted multilinear threshold functions consists of
-for f is a binary weighted linear threshold function g "og k] binary perceptrons, the ith of which learns the
such that for all z E Zn and all i E Zk, ith bit of the output value, together with a single k-Si gary weighted multilinear threshold gates with expo-

f(X.) >_ i g(Z, y(i)) = 1, nentially increasing weights which converts the binary
where y: {1,..., k - 1} __+ {0, 1 }k - I is defined by output of these gates into the corresponding member

of Zk. Unfortunately this cannot work because the lasty(i) = (Yj,.. .,Yk-:) with Y"" 1 iffj = i.binary perceptron is expected to learn the least signif-
icant bit of the k-ary output, which is not necessarily
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4 A k-ary Winnow Algorithm

procedure uetperceptron(n, k) A representation (w,..., Wn , t 1,..itk-1) E Rn+k- 1
for i: 1 to k - 1 do of a k-ary weighted multilinear threshold function is

for j := 1 to n do wij := 0; positive iff wi >_ 0 for all 1 < i < n. A k-ary weighted
repeat multilinear threshold function is positive iff it has a

for each x = (x, x,) E Zn do positive representation.
for each i E Zk do neuron.update(x, i) A positive representation (Wi,..., wn, t, tk-

Output (w1,1,...,w k-1,n) has separation A E R+, 0 < A < 1, if for all x =
until (f(x) >_ i) * (~(W2,. ., wi,n, 0)(X) = 1) (zl,..., n) E Z", and all i E Zk, i < k - 1,

for allxEZZ and 1<i<k-1.

procedure neuron.update(x, i) f(a) < i iff E w j < (1 - A)t+ 1 .

p := en(woi, , 0)(x); j1

if (f(x) > i) and (p = 0) then sign := 1 The width of a representation
else if (f(x) < i) and (p = 1)

then sign := -1 (wi ,.. .,wn, ti ,..., tk-1)
else sign := 0;else ndw :=i sign,:0;is the ratio tk-1/ti. Note that all representations of a

for j= 1 to n do wjj := i + sign * x; binary weighted linear threshold function have width

one. A k-ary weighted multilinear threshold function
has width (at most) d iff it has a representation of

Figure 4: The k-ary Perceptron Learning Algorithm width d.
for a Depth 2 Circuit. The height of a representation

(wi i,...,) Wn, t 11...,,tk- 1)

of width d is the ratio
a binary weighted threshold function. n Iwij 1

A third candidate architecture for learning k-ary
weighted multilinear threshold functions consists of a
depth 2 circuit of size k. The first layer consists of k- 1 A k-ary weighted multilinear threshold function has
binary perceptrons, each connected to all of the inputs, height (at most) h iff it has a representation of height
The second layer consists of a single k-ary perceptron, h. A k-ary weighted multilinear threshold function is
connected to all of the gates in the first layer. The (A, h, d)-separable if it has a positive representation of
thresholds of the first layer are all zero. The thresh- separation A > 0, height h, and width d. Since all
olds of the k-ary perceptron are 1,2, . . ., k - 1. The binary weighted linear threshold functions have width
weights of the connections from the first layer to the 1, we will write (A, h)-separable when k = 2.
second are all one. The weights of the connections When learning weighted linear threshold functions,
from the inputs to the first layer will be learned, we can without loss of generality restrict ourselves to

o the to the learning positive ones. If we need to learn a weighted
Let wj denote weight from the input ohe linear threshold function with negative weights, we can

ith gate on the first layer, where 1 < i < k - 1 and substitute a positive function of the same height, and
1 < j < n. Suppose we are to learn a k-ary weighted perform a minimal amount of pre-processing of the
multilinear threshold function f. The first level essen- inputs:
tially computes the orthogonal slice function for f, and
the second level converts this to a value from Zk. More
precisely, the ith gate on the first level, 1 < i < k - 1, Lemma 4.1 For each representation (vi,...,Vn,t)
will output one on input x iff f(x) > i. This implies of height h there exists a positive representation
that exactly f(x) of the gates in the first layer will be (w ... , wn, r) of height h and a function g : Zn --+ Z"

active. The output gate sums the number of active of the form 9( , e it e X ) = (N,".". .y" ) where for

gates in the-first layer. e i y=zx or yf=or, such that
for all x: E Z2

It is clear-that by performing the binary perceptron
learning rule in parallel for all k - 1 gates in the first f(2) = Wn(w1,..., Wn, r)(g(x))

layer, the network will learn arbitrary k-ary weighted
multilinear threshold functions. The learning algo- Pruof: We make use of an elementary technique due
rithm is described in Figure 4. It has a latency of to (Muroga, 1971) (see also Theorem 4.5.2 of (Par-
O(nk). Its mistake bound may be better than that of berry, 1990)). Suppose
Figure 3 in practice since it learns arbitrary separat- f = (vj,...,v",t)
ing hyperplanes, rather than parallel ones. However, 2

the worst case mistake bound remains apparently ex- Then
ponential, wi"-vil for 1 <i<n,
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and n

r = t + ( I - v)/2, procedure winnow(n, a)
for i := I to n do wi := .;

and yi = 0.5 + (xi - O.5)vj/ vi 1. The new represen- repeat

tation has height at most h since its denominator is for each 2 = (z1,...,zn)E Z do
larger than that of the original representation, whilst P := e'(w1,...,w, n)(n);
its numerator is the same. 0 if f(A) 0 p

then winnow-update(x, p, a);
The threshold value in a positive representation is Output (w1 ,... , wn, n)

not important. until f(s) = Gn(wi,...,wn,t)(z)
for all x E Z2.

Lemma 4.2 For each positive representation (v1 , procedure winnow.update(a,p,a)
.,v,,t) of height h and separation A with t > 0, if f() > p then 6 := a

and all r E R+, there is a positive representation else ) := 1/;
(wi,..., wn, r) of height h and separation \ such that for i =1 ton do wi := w/ b;;

on vl.. ., t) = enw,.,w., r).

Proof. Set wi = vir/t for 1 <i < i. 0 Figure 5: The Winnow Learning Algorithm.

Littlestone (1987, 1989) proposed a learning algo-
rithm, called the winnow algorithm (see Figure 5) functions, the winnow learning algorithm makes only
for learning n-input binary, positive, (A, h)-separable polynomially many mistakes. If A and h are constant,
functions on a single n-input perceptron. The algo- only O(log n) mistakes are made.
rithm takes as parameter a constant a, and learns a In the light of Lemma 4.1, the definition of (A, h)-
positive representation with threshold value n (such separability can be extended-to non-positive weighted
a representation exists, by Lemma 4.2). The latency linear threshold functions as follows. A representation
of the binary winnow algorithm is clearly linear in n. (wj,..., w,,t) has separation A E R+, 0 < A < 1, if
The mistake bound is given by the following theorem. for all x = (xi,..., x,) E Z,

Theorem 4.3 If a = 0.5A + 1, then the number of f(X) < 0 iff
mistakes made by the winnow algorithm in Figure 5 n
learning an n-input, positive, (A, h)-separable weighted , I wj I xj < (1 .- A)(t + E (I wj I -wi)/2).
linear threshold function is at most j=1 j=1

14 log n ) 8 Hence we have:

S
2  A h 2 + .Corollary 4.4 Any n-input (A, h)-separable weighted

linear threshold function can be learned on a neural
Proof: See (Littlestone, 1987). 0 circuit of depth 2 and size at most n with latency O(n)

and mistake bound
Later we will use the fact (Littlestone, 1989) that a'14eound

the winnow algorithm will learn any n-input, positive, (14 log n 8
(A,h)-separable weighted linear threshold function ,)
whose domain is some finite subset of {{0} U [6, ]}n. Proof The result is an immediate consequence of
In that case, the mistake bound from Theorem 4.1 de- Lemma 4.1 and Theorem 4.3. 0
pends on log(n/6) instead of logn.

The mistake bound is a significant improvement over We extended the winnow algorithm to k-ary
the binary perceptron learning algorithm fom weighted weighted multilinear threshold functions. The k-ary
linear threshold functions with large separation and wighte larth esoldafunctin.T k-ary
small height. in contrast, the best known mistake up- Q I
per bound for the perceptron learning algorithm (see, tive, (A, h, d) separable function on a single k-ary per-
for example, Duda & Hart, 1973) is polynomial in the ceptron with n inputs is described in Figure 6.
weight of the best representation (if it is sufficiently The latency of the algorithm is O(n + k). To prove
large). It is known (see, for example, Muroga, 1971; the mistake bound we will use a new slice function
Parberry, 1990) that there are weighted linear thresh: which preserves positiveness.
old functions for which the weight of the best rep- Definition. If f is an n-input k-ary weighted multi-
resentation is at least exponential in n, and it can itiold fuisn t uary wige uti-
be deduced that there are functions with exponential linear threshold function, the unary slice function for
weight, polynomial height and inverse-polynomial sep- f is a binary weighted linear threshold function g such
aration. Whilst the perceptron learning algorithm ap- that for all k Z and all i E Zk,
pears to make exponentially many mistakes for these f(A) 'a i '* g(x, y(i)) = 1,
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of height h and separation A* = A/d of the unary

procedure multiwinnow-learning(n, k, ot) slice function for f. Since inputs (...,) for

for i:= 1 to n+k-2 dowi := 1; function f are from Z , we can not apply the bi-
tk-1 = (k - 1)(n + k -2); nary winnow learning algorithm directly to learnf k -the unary slice function for f on inputs (z, y(i)) =
for i k -2 downto 1 do ti = tY+ - (, ,Yk-l). But, we can use the binary
repeat winnow learning algorithm with learning parameter a

for each z = (zi,... , n) E Z do and threshold t = n + k - 2 to learn a modified unaryp :=e (w,. • •. ,w,, t ,t2, . .. , tk-.) (z); slice function

if f(X) 6 p then

multiwinnow.update(x, p, a /(k- 1 )); (wI, ... , wn, t 2-tl t 3-t 2,, •.. , tk-l-tk-2, tk-1(k-1))Output (w, . .. , w,,t 1 t2, . . .,tk-.1).
Outputil ( .. .on compressed inputsuntil f(z) = jqn(wl,..., wn, tl,...,tk-l)()

for all x E RZxff -)fo al Z z/(- ).... xn/(k- 1), yl/(k- 1),..., jyk-21(k- 1)",

procedure multiwinnow-update(z, p, a) from {{0} U [1/(k - 1), ]}n.
for i := 1 to n do zi := xi; Finally, observe that
for i := 1 to k - 2 do zn+i := 0; _Zlk-w

if f(x) > p then 6 := a; ind := p + 1
else 6 := 1/a; ind := p; and also

for i:= ind to k - 2 do Zn+i :1; n k-2
for i := t n + k - 2 dowi := wi6z'; w--- +Ewn+i <(n+k-2)
for i:= k - 2 downto 1 do t= ti+ - Wn+i; i=1 i=1

iff

n k-2
Figure 6: The k-ary Winnow Learning Algorithm. wixi + wn+,Yi < (k - 1)(n + k - 2).

i1 i=1

Nhere y: {1,..., k - 1) -* {0, 1}k-1 is defined by So, for learning we can actually use binary winnow al-
gorithm with learning parameter al/(k- 1 ) and thresh-

y(i) = (Yl,...,Yk-2) with yj = 1 iffj > i. old t = (k - 1)(n + k - 2) on the original inputs
(l, ... , xn, Yi, ... , Yk-). It is easy to see that this al-
gorithm realizes Figure 6. Substituting t = 1 + A*/2,

Lemma 4.5 If (vl,...,vn,tl, ... ,tk-1) is a positive t = n + k - 2 and 6 = 1/(k - 1) in the Theorem 4.3
representation of height h, width d, and separation A we obtain the mistake bound from the claim of this
of a k-ary weighted multilinear threshold function f, theorem. 0then (wi, . .. , wnt2 -tl, ts-t2,- .. ., tk-I - tk-2,tk-1)
is a positive representation of height h and separation The mistake bound of the k-ary winnow algorithm
A/d of the unary slice function for f . is a significant improvement over the k-ary percep-

tron learning algorithm for (A, h,d)-separable func-
Proof: Follows immediately from the definition of the tions when \ is large and h and d are small.
unary slice function. 0 A slightly better mistake bound can be obtained if

the input x E Z" is encoded in binary as x* E Znlogk

Theorem 4.6 If a = 1 + A/(2d), then the num- and the k-ary winnow algorithm is used on a k-ary per-
ber of mistakes made by the k-ary winnow algorithm ceptron with n log k binary inputs instead of n k-ary
in Figure 6 learning an n-input, positive, (A, h, d)- inputs. Instead of learning k-ary weighted multilin-
separable k-ary weighted multilinear threshold function ear threshold functions, we can substitute binary-to-
is bounded above by k-ary weighted multilinear threshold functions, which

are simply k-ary weighted multilinear threshold func-
(14d 2 log((k -1)(n+k-2)) +d .... + 8d 2  tions whose domain is restricted to Zn , and Der-

A2  (- n "T form a small amount of pre-processing of the in-
puts. Without loss of generality, we will henceforth

Proof: (Sketch) By Lemma 4.5 the learning algo- assume that k is a power of two. Define function
rithm, instead of iearning a positive representation Encode : Zn --- ZnIogk, which simply encodes a k-

ary input in binary, by Encode(x) = (y,...,Yn ogk)
(wI,... ,wn,tlt2,,...,tk-1) where x = (xi,...,zn) E Z and

of height h and separation A for a k-ary weighted mul- log k
tilinear threshold function f , can learn a positive rep- i= E 2-lyj+(-,)ogk -

resentation j=1

(W , Y • ,wn, t2 - t l, t3 - t2, . .... tk_ - tk-2, tk_ 1)
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Lemma 4.7 For every n.input, positive, k-ary iff its binary encoded equivalent f* : Z"lgk - Zk is
weighted multilinear threshold function f of height h (A, (k - 1)h, d)-separable, where separation is A E R+,
and depth d there ezists an (nlogk)-input binary- 0 < A < 1, if for all x E Zlog k and all i E Zk,
to-k-ary weighted multilinear threshold function g of i < k - 1,

height (k - 1)h and width d such-that for all z E Zn, (z) < iif
f(x) = g(Encode(x)). 

:5 iagk

n log k n log k

Proof: If f = On(Wl,...,Wnf,tl,...,tk-! then g is jwjl j _ (1 - A)(ti+l + E (Iw, I- w,)/2)).
the function On(wi:,..., w ,,oi, .. , t& -. with do-1 jg .t=1

main restricted to Zn logk, where wij = 2j'lwi for Then we have the extension of the result to the non-
1 < i < n, i < j <log k. 0 positive case:

Lemma 4.8 If (W,..., wn.+k-2, t) is the represen- Corollary 4.11 Any n-input (A, h, d)-separable k-ary
tation of the unary slice function of a binary-to-k- weighted multilinear threshold function can be learned
ary weighted multilinear threshold function f, then on a k-ary neural circuit of depth 4 and size O(nk)
(wl,...,wn,tl,,...,tk.l) is a representation of f, with latency O(nlogk + k) and mistake bound
where

n+k-2 f14d2 log(n log k + k - 2) 5d) 8d 2

ti=t- E Wj. + - (k-1)h+
j= +, 

A

Proof: Follows immediately from the definition of the Proof: (Sketch) Suppose f is a (A, h, d)-separable k-
unary slice function. 03 ary weighted multilinear threshold function. Then it

has an (n log k)-input (A, (k- 1)h, d)-separable binary-

Theorem 4.9 Any n-input, positive, (A, h, d)-separa- to-k-ary weighted multilinear threshold function!f1 by
ble binary-to-k-ary weighted multilinearthresholdfunc- Lemma 4.7. By Lemma 4.5, fi has an (n log k+k-2)-tion can be learned on a k-ary perceptron with latency input (A/d, (k- 1)h)-separable unary slice function f2,O(n + k) and mistake bound which can be replaced by an (n log k+k-2)-input posi-tive (A/d, (k- 1)h)-separable unary slice function fa by

14d2 log (n + k - 2) 5d 8d2  Lemma 4.1. A depth 2, size O(nk) k-ary threshold cir-

A2  + h + cuit can compute function Encode -and the negations
of the appropriate inputs. The winnow algorithm is

Proof: (Sketch) The domain of binary-to-k-ary used to learn a representation for f3. By Theorem 4.3,

weighted multilinear threshold function is restricted the latency is O(n log k + k) and the mistake bound is
to Zn. So, the learning algorithm, instead of learning 214d

2 1og(nlogk+k-2) 5d\ 8d2

f, can learn the unary slice function for f using the + (k - 1)h +
binary winnow learning algorithm. The threshold is A2

chosen equal to n + k - 2 by Lemma 4.2. The unary A careful analysis gives the required mistake bound.
slice function for f is guaranteed to exist by Lemma [3
4.5. Once the unary slice function has been learned, f
can be reconstructed using Lemma 4.8. The mistake The k-ary winnow algorithm can also be used to
bound is given by Theorem 4.3. 0 learn k-ary weighted multilinear threshold functions

on a network of size k and depth 2 by using essentially
Theorem 4.10 Any n-input, positive, (A, h, d)-sepa- the same techniques as were used for the perceptron
rable k-ary weighted multilinear threshold function can learning algorithm in Section 3. The details are left
be-learned on a k-ary neural circuit of depth 4 and size for the interested reader.
O(nk) with latency O(n log k + k) and mistake bound

(14d 2 log(n log k + k - 2) 5d) (k - 1)h + 8d2  5 Conclusion
A2  + - ( )+ 2  The study of k-ary neural networks was justified by

the observation that they are closely related to analog
Proof. (Sketch) The result is an immediate conse- neural networks of bounded precision. We have seen
quence of Lemma 4.7 and Theorem 4.9. A depth 3, size two learning results for k-ary neural networks. Firstly,
O(nk) k-ary threshold circuit can compute function we have demonstrated a k-ary perceptron learning rule
Encode. The details are left to the interested reader. with guaranteed convergence. Secondly, Littlestone's
[] winnow algorithm, which learns binary weighted linear

threshold functions with a mistake bound dependent
The definition of (A, h, d)-separability can be ex- on their height has been extended to a k-ary winnow

tended to non-positive weighted multilinear thresh- algorithm whose mistake bound depends on the height
old functions as follows. A k-ary weighted multilinear and width of the k-ary weighted multilinear threshold
threshold function f : Z - + Zk is (A, h, d)-separable function being learned.
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The General Utility Problem in Machine Learning
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Abstract Two additional obstacles block the integration of

Experiments have revealed that uncon- current learning methods with knowledge-based sys-

trolled application of the analytical learning tems. First, the performance goals for the tasks us-

paradigm results in knowledge having low ing the knowledge may change over time. Knowledge

utility. Because the performance element transformations made by machine learning methods
must consider low utility knowledge along must adapt to changes in the performance goals for
with high utility knowledge, the prolifera- the desired tasks. Second, the knowledge may sup-
tion of low utility knowledge eventually de- port different tasks from multiple domains. Knowledge
feats the goal of improved performance. Ex- transformations to improve performance on one task
periments in empirical learning have demon- must preserve the performance goals of other-tasks us-
strated a similar phenomenon. Uncontrolled ing the knowledge. These additional constraints along

application of an empirical learning paradigm with the original utility problem combine to form the
may result in inaccurate knowledge, and a general utility problem. The general utility problem

post-processing stage is typically needed to in machine learning is the degradation of performance

repair the degradation in performance. The for tasks using the knowledge due to the unconstrained

results from experimentation in both analyt- transformation of the knowledge by machine learning

ical and empirical learning imply a general methods.

utility problem in machine learning. This Recent solutions to the utility problem -have gen-

paper presents evidence for such a perspec- erally followed the trend of applying the learning

tive and recommel. ; a closer dependence be- method to every task and then pruning away the

tween the learning paradigm and the perfor- knowledge that eventually turns out to degrade perfor-

mance goals for which it is designed. A new mance. This research offers a different approach called

approach is presented along with experimen- performance-driven knowledge transformation that se-

tation that illustrates the applicability of the lectively applies learning methods only when necessary

approach to the general utility problem. to achieve a desired performance goal for some task.
The approach acquires knowledge for controlling the

1 Introduction application of multiple learning methods.
The next section reviews work related to the utility

One of the main goals for research in machine learning problem in analytical learning and casts recent work
is the eventual integration of learning methods with in empirical learning in the context of the utility prob-
knowledge-based systems. Learning methods offer the lem. Section 3 defines the general utility problem for
ability to transform the knowledge of the system to in- machine learning and discusses alternative solutions.
prove performance on the tasks using the knowledge. Section 4 describes the performance-driven knowledge
The ability to transform knowledge will reduce the de- transformation approach to solving the general utility
pendency of system performance on the quality of the problem. Section 5 illustrates experiments performed
knowledge initially entered by the knowledge engineer, with an implementation of the approach in the PEAK

Recent experimentation with machine learning system. Section 6 concludes with plans for further im-
methods has uncovered a new obstacle to their inte- provements to the proposed approach.
gration with knowledge-based systems. Experiments
with several analytical learning systems demonstrated 2 Utility Problem in Learning
an eventual degradation in performance due to uncon-
trolled application of the learning paradigm. This ob- Research in both empirical and analytical learning has
stacle has been named the utihty problem [Minton88]. uncovered deficiencies in the employed methodologies.
Experiments with empirical learning methods are also The major deficiencies stem from the naive view that
uncovering this phenomenon of performance degrada- the methodology in question is always applicable to
tion due to unconstrained application, the learning task and therefore should always be ap-
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plied to the data. In a performance-driven system, one complexity of the match is kept linear in the number of
methodology is rarely sufficient to handle the variety matching conditions [Tambe89]. Results of using this
of learning tasks. technique within SOAR indicate a greater number of

less expressive rules are needed to attain the generality
2.1 Analytical Learning ,f the more expressive rules, but the match cost is no
Research on analytical (explanation-based) learning longer exponential. However, the results are unclear
tectiniques began to focus more attention on perfor- on whether an exponential number of simpler rules will
mance with the appearance of Keller's work on the be needed to achieve the generality of the more expres-
definition of operationality (Keller88]. Analytical tech- sive rules. Also, the trend toward generating ground
niques learn from a single example by proving the ex- instances of the general rules seems contradictory to
ample is an instance of the concept to be learned. The the purported benefits of analytical learning.
proof terminates when the leaves of the proof tree are
all operational predicates. The proof tree is then gen- 2.1.3 EGGS
eralized, yielding an operational description of the con-
cept. Earlier work on explanation-based learning de- Despite the aforementioned evidence for degrading
fined an operational concept as one whose description performance in analytical learning systems, other such
is composed from a set of predicates deemed easy to systems have demonstrated improved performance
evaluate [DeJong86, Mitchell86]. Keller pointed out without concern for the number ,.r form of the learned
that operationality is more intimately related to the rules. Looking at systems by O'Rorke [O'Rorke87]
performance element and the desired performance im- and Shavlik [Shavlik88] Mooney recently uncovered
provement. This view of operationality was used in the reason for the contradictory results [Mooney89].
the METALEx system that learns heuristics for solv- The performance element for Mooney's experiments
ing calculus problems. METALEx defines an opera- was EGGS [Mooney86], which includes a Horn-clause
tional concept as one that improves the performance theorem prover and standard explanation-based learn-
element's (problem solver's) run-time efficiency on a ing techniques [DeJong86, Mitchell86] for generalizing
set of benchmark calculus problems, while maintain- the proofs.
ing effectiveness so that some percentage of the prcb- Experiments with EGGS revealed that limited use
lems are still solved correctly. The increased attention of the learned rules provided greater performance in
on performance has led to the reevaluation of several accuracy and speed than full use. Because Shavik
analytical learning systems and the observation that constrained the proofs to be no longer than a specified
performance may degrade with repeated application. depth bound, his system was making only limited use

2.1.1 PRODIGY of the learned rules (i.e., only those rules that requiredlimited chaining).
In experimentation with the MORRIS analytical learn-
ing system, Minton found that performance degrades Mooney also demonstrated that using a breadth-
as the number of rules grows large [Minton85]. In order first search for theorem proving, instead of depth-first,
to learn a concept, the system acquires several rules also forced a limited use of learned rules. Learned rules
whose disjunction forms the system's understanding that would have required deep sub-goaling to reach a
of the concept. As the number of rules increase, the solution are circumvented by the simultaneous con-
cost of determining the applicability of a rule may sideration of proofs from the original domain theory.
outweigh the benefits of applying, and thus, retain- The use of breadth-first search in O'Rorke's system ac-
ing the rule. Minton calls this phenomenon the utility counts for much of the favorable performance. Mooney
problem and offers the PRODIGY system as a solution concludes that limited use of learned rules is advis-
[Minton88]. PRODIGY maintains empirical estimates able until the system has learned the rules necessary
of match costs, application savings and frequency of to solve the more common problems.
application for each rule. These estimates are used
to compute a utility value for the rule. If this value 2.1.4 Summary
becomes negative, the rule is no longer considered.
Minton found that maintenance of a rule's utility value Experimentation on analytical learning systems
and compression of the rule's conditions result in a demonstrates performance degradation with uncon-
substantial performance improvement. These results trolled application of the paradigm. In response, many
indicate that a system should be sensitive to the cost researchers have opted for more specific instances of
and savings of the learned descriptions, the learned rules. The level of specificity of the

knowledge should not be arbitrary, but determined by
2.1.2 SOAR the desired performance. In fact, with performance-
Experimentation on the SOAR system has uncovered directed learning the original domain theory may per-
similar results [Tambe88]. Instead of monitoring the form within desired performance thresholds, in which
cost and benefits of rules, Tambe and Rosenbloom re- case, the application of analytical learning may be un-
strict the expressiveness of the learned rules so that the necessary.
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2.2 Empirical Learning be less expensive and more accurate than exact rules.
Empirical learning methods have traditionally been The tradeoff between accuracy and completeness of the
designed to achieve the best classification performance learned rules should be decided by the desired perfor-
possible. However, experimentation described below mance. Modifying the AQ algorithm to return only
indicates that classification performance can actually the one disjunct covering the most positive examples
degrade with repeated application of the empirical may avoid generation of low utility knowledge. Like-
learning method. wise, constraining the ID3 algorithm to stop when the

leaves have reached a desired level of accuracy may
2.2.1 AQ prevent inaccuracies at greater depths in the decision
During experimentation with the AQ system (specif- tree and avoid the need for pruning.
ically, AQ15 [Michalski86]), Michalski found that Typically, empirical learning methods are invoked
repetitive application of AQ can yield less accurate to achieve the best classification accuracy possible. To
concepts than a more conservative application strategy avoid a degradation in classification performance, em-
combined with a simple inference mechanism [Michal- pirical learning methods should be invoked only when
ski87]. The AQ methodology finds a conjunctive de- necessary to achieve a violated performance goal. Fur-
scription that covers as many positive examples as pos- thermore, repair of the performance goal violation may
sible-without covering any negative examples. Positive require only modest generalization as opposed to the
examples not covered by the first description are used large inductive leaps made by most empirical learning
as input for another execution of AQ. This procedure methods. In the extreme case (e.g., small number of
continues until a concept in disjunctive normal form is instances in the concept), rote learning may be prefer-
produced covering all the positive examples and none able to more powerful empirical learning methods.
of the negative examples. Michalski compared the ac-
curacy of the DNF concept with that of the concept 3 General Utility Problem
consisting of only the single disjunct covering the most
positive examples. Using a simple matching proce- The generation of low utility knowledge by bothan-
dure, the truncated concepts out-performed the orig- alytical and empirical learning methods indicates -a
inal -concepts in both accuracy and speed. This ob- utility problem in machine learning more widespread
servation illustrates the need for systems to be more than that identified in the analytical learning litera-
selective in their own behavior when such selectivity is ture. The general utility problem encompasses -not
sufficient to achieve the desired performance goals. only the performance degradation on one task due

to uncontrolled application of learning methods, -but
2.2.2 ID3 also adaptation to changing task performance goals
Similar results have been obtained with the decision and maintenance of performance on other tasks using
trees generated by Quinlan's ID3 program [Quinlan86]. the knowledge. Thus, the general utility problem is
Quinlan found that pruning the rules extracted from informally defined as follows:
a decision tree can improve the accuracy of the rules General Utility Problem: performance
on unseen examples [Quinlan87]. ID3 builds decision degradation on one or more tasks due to the
trees by selecting an attribute from the training ex- transformation of knowledge.
amples providing the best split (according to an infor-
mation theoretic criterion) between positive and neg- In order to address the general utility problem, the
ative examples. The program continues by descending role of machine learning methods must be viewed from
each- branch and recursively applying itself to the ex- a purely performance-based perspective. This perspec-
amples satisfying the attribute value for that branch. tive is similar to that used by Keller in the METALEx
ID3 halts when all the nodes at the frontier of the system [Keller87]. METALEx transforms its knowl-
tree contain all positive or all negative examples. The edge base by retaining a new concept only if the con-
pruning stage removes rules from the decision tree un- cept improves the efficiency and effectiveness of the
til accuracy on a set of test examples begins to de- performance element.
ccease. Compared to the original rules, the pruned Markovitch and Scott address the general utility
r4les performed better on a set of unseen test exam- problem by filtering the information flow from in-
pies. Although the success of pruning is due to noise, stances, to the knowledge base, and then to the perfor-
missing values, and the decreased number of examples mance element [Markovitchsg9. One filter, the uriiza-
available at higher depths in the tree, this stage might tion filter, removes harmful rales from the knowledge
have been unnecessary if the desired accuracy had been used by the performance element.
taken into account during the initial generation of the Learning control knowledge for the application of
decision rules. learning methods to different tasks is addressed by

Rendell's variable-bias management system (VBMS)
2.2.3 Summary [Rendell87]. VBMS maps different tasks to points in
Research on empirical learning has shown that inexact a bias space. Each point in bias space represents a
rules-combined with a simple matching procedure can choice of inductive algorithm, representation language
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035 space, performance-driven knowledge transformation
selects a learning method to transform the knowledge

mance space for the current task moves back inside
the desired-performance hyper-rectangle without mov-

K2 K1 . K, ing the point outside the desired hyper-rectangle in the
O 02 04 performance spaces for other tasks. Referring to Fig-

ure 1, knowledge base Kt has satisfactory performance
(0- pedora goal) for task B, but violates the performance goals of task
(K1- knowledge bme) A. Transforming knowledge base Kt to K 2 achieves

o1 the performance goals of task A and preserves the sat-
(a) TkA 0)Tak B isfactory performance for task B.

This research proposes an approach to performance-
Figure 1: Performance Spaces for Two Tasks driven knowledge transformation implemented in the

PEAK system. When a performance goal violation is
detected while solving a problem from some task, the

and any relevant parameters for the algorithm or lan- PEAK system uses information about the context of
guage. the goal violation (e.g., the difference between desired

The next section describes an approach to the gen- and actual performance) to select a transformation op-
eral utility problem called performance-driven knowl- erator for reducing this difference while maintaining
edge transformation. This approach differs from the other performance levels. Application of the opera-
approach in METALEx by making performance goals tor yields a new knowledge base. If the new knowl-
more explicit and incrementally adapting to changes in edge base achieves the violated performance goal and
desired performance. In contrast to the knowledge fil- preserves other perforn.4nce goals, then the current
tering approach, performance-driven knowledge trans- knowledge base is replaced by the new knowledge base.
formation constrains the initial generation of knowl- Otherwise, another transformation operator is selected
edge as directed by failure performance goals. This for application. Verification of the new knowledge base
approach differs from the approach in VBMS in that is accomplished by using the knowledge to solve previ-
the emphasis is on selecting learning methods to re- ously seen problems from the same task. For each op-
pair violations in desired performance, not to achieve erator, PEAK retains information about the applicabil-
maximum possible performance on an isolated learn- ity of the operator in a given context based on the suc-
ing task. cess of the operator in reducing the goal violation. As

more performance goal violations are repaired, PEAK
4 Performance-Driven Knowledge demonstrates more intelligent selection of transforma-

Transformation tion operators and quicker convergence to a knowledge
base within desired performance thresholds.

Performance-driven knowledge transformation con- In the following discussion, certain assumptions
trols the application of learning methods based on have been made about the knowledge in the knowledge
their ability to achieve desired performance goals on base and the performance element using this knowl-
one task while preserving the performance on other edge. The knowledge base is a set of Horn clause rules.
tasks. Each task for the knowledge base defines a per- The performance element is a deductive retriever sim-
formance space. The dimensions of the performance ilar to Prolog. Performance is measured while the per-
space are the performance goals (e.g., completeness, formance element attempts to solve a query posed by
correctness, response time) to be maintained by the the user. Attached to the query are the performance
knowledge base for that task. The current state of the goals to be maintained during the solution of the query.
knowledge base is represented by a point in the per- Performance goal violations occur when the measured
formance space for each task. A knowledge transfor- performance exceeds the desired- thresholds.
mation can be viewed as a move of the current knowl-
edge base from one point in the performance space of 4.1 Performance Perspective
each task to another. Figure 1 shows the performance Using performance goals as a means of guiding the
spaces for two tasks. Task '. (Figure 1a) consists of maintenance and repair of a knowledge base requires
three performance goals G1, G2 and G3 . Task B (Fig- a precise definition of performance. The definition of
ure 1b) consists of two performance goals G4 and G5. performance depends on the perspective. Four per-
The location of two knowledge bases K1 and K 2 are spectives are applicable for describing the performance

shown for each task. spectiveslee be

The desired performance for each task defines a
hyper-rectangle in that task's performance space. * External performance is the performance mea-
When the knowledge base moves outside the desired- sured from outside the knowledge base, regardless
performance hyper-rectangle in some performance of any internal knowledge transformations.
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" Current performance is the performance the sys- of the error indicates the extent of the transformation.
tern currently maintains for the previously seen The performance measure constrained by a satisfied
queries, goal is useful for selecting transformation operators

" Expected performance is the performance the capable of preserving this performance measure. The
system expects to demonstrate on future queries, magnitude of the error indicates the extent to which
Expected performance is usually the same as cur- the selected operator may degrade performance on the
rent performance. satisfied goals in order to achieve performance on the

violated goals.
" Absolute performance is the performance that A third source of information that will be avail-

the current state of the knowledge would support able upon detection of a performance goal violation
if given every possible query. is the task history. Each task known to the knowledge

When the user specifies a threshold for some per- base maintains a task history of previously seen queries
formance measure, the proper perspective must be from the task. The task history serves two purposes.
used to evaluate the performance of the knowledge First, the task history represents an empirical estimate
base. Absolute performance is rarely available due to of the distribution over the possible queries of the task.
a lack of knowledge about the instance space. Ab- This distribution can be used to verify the achievement
solute performance is inappropriate, because the dis- of violated performance goals in transformed knowl-
tribution over the entire instance space may not give edge. Second, an entry in the task history contains in-
equal probability to each instance. Ezternal perfor- formation about the query-solving episode. One useful
mance provides information about the rate of conver- piece of information about a query-solving episode is
gence towards absolute performance. Changes in ez- the trace of the knowledge accessed during the solu-
ternal performance indicate the need for an increase tion.
or decrease in the extent of the knowledge transforma- The knowledge trace is an and/or tree that records
tions. Current performance evaluates the knowledge the knowledge accessed during the solution of the
only on previously seen queries. Expected performance query and indicates which rules (if any) support the
is the best measure of the current state of the knowl- response to the query. Information about--the -shape
edge base, because the objective of the knowledge base of a task's knowledge traces constrains the selection of
is to maintain its expected ability to perform the task knowledge transformations. For example, wide, shal-
within desired thresholds on possibly unseen queries, low knowledge traces-indicate that the knowledge con-

Performance-driven sists of specific instances of the task; whereas narrow,
knowledge transformation should measure both Both deep knowledge traces indicate a more general -set of
ezpected and ezternal performance should be measured rules for proving queries from the corresponding task
by the performance-driven knowledge transformation Finally, past success of the transformation oper,-
process. Knowledge transformations are triggered only tors provides information upon performance goal vi-
when ezpected performance falls below desired levels. olation. As the knowledge base transforms- to meet
External performance should then be used in the selec- performance goals, a record is kept of the old-and new
tion of an appropriate transformation operator. The knowledge bases along with the operator responsible
greater the difference between ezternal and ezpected for the transformation. If the new knowledge base
performance, the more drastic a transformation oper- achieves a violated goal while preserving non-violated
ator should be recommended by the system. goals, then the system increases the operators appli-

cability for achieving and preserving the appropriate
4.2 Information on Goal Violations goals. Over time, collection of this inform 'ion will
Once a goal violation has been detected, several pieces allow the system to make a more informed rperator
of information are available for selecting an appropri- selection based on past experience.
ate knowledge transformation operator. First, as de-
scribed-in the previous section, the difference between 4.3 Verification of Knowledge Base
expected and external performance indicates the ex- Because no operator application is guaranteed to
tent of -the necessary transformation, achieve the desired results, the system must verify

Second, after the performance element attempts to that the knowledge base resulting from an operator
solve a query, the violated and preserved goals are application achieves the desired performance. Verifi-
known. Each goal contains information about the per- cation can be accomplished by re zolv:ng the queries
formance measure that this goal constrains, the de- in the task history. The size of the task history can be
sired threshold on the measure, the observed value of changed to tradeoff performance coaveegence rates for
the measure on previously seen queries (including the transformation speed. As the system learns operator
query just processed), and the difference between the applicability, there is less chance that several alterna-
observed and desired performance (the error). The tive operator applications must be tried before find-
performance measure constrained by a violated goal is ing one that achieves the violated goal. Because each
useful-for selecting transformation operators capable of transformation attempt requires verification of the re-
improving this performance measure. The magnitude sulting knowledge base, the fewer attempts necessary
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implies fewer verifications; thus, the task history size Starting with an empty knowledge base, PEAK at-
can increased over time. tempts to solve landing queries, while maintaining the

performance goals. Figure 2 plots the three perfor-
5 Experimentation mance goals for 200 randomly chosen queries from the

shuttle landing control domain.

This section illustrates the application of PEAK on two Figure 2a illustrates how PEAK maintains response
tasks from diverse domains. The first experiment in- time performance below 10 seconds. For the first 30
volves learning to improve response time, completeness queries, response time increases as the number of rote-
and correctness while determining whether to land the learned rules increases. Eventually, the large number
space shuttle manually or automatically depending on of rules in the knowledge base cannot be traversed
environmental conditions. The second experiment in- within the response time threshold.
volves learning to improve response time while con- While processing the 30th query, PEAK was unable
structing plans to build towers in the blocks-world do- to solve the query, generating a completeness failure.
main. Together, the two experiments demonstrate the PEAK first trys to transform the knowledge base by
ability of performance-drive knowledge transformation rote-learning a new rule. However, verification of the
to selectively apply appropriate learning methods to new knowledge base uncovers a response time fail-
achieve desired performance goals. ure. Because the rote learning operator was ineffec-

tive, PEAK chose to apply the ID3 operator. ID3 gen-
5.1 Shuttle Domain eralized the 29 learned instances into 8 general rules.

This experiment executes the PEAK system on the As Figure 2a indicates, the resulting transformation

shuttle landing control database available from the drastically improves response time performance.

machine learning databases maintained by University The plot of completeness performance in Figure 2b
of California at Irvine. The problem is to determine illustrates how PEAK quickly learns the initial query

whether to land the shuttle manually or automatically knowledge. After the 1D3 transformation, complete-
based on environmental attributes. The corresponding ness remained above the 95% threshold for the remain-

task is labeled the landing task, and the queries are der of the 200 queries.

of the form landing (ENV,?x). The ENV in the query The correctness plot in Figure 2c shows how per-
represents the environmental situation to be evalu- formance starts at 100% and converges to the desired
ated. The performance element attempts to fill in the 90% threshold. The initial values of 100% for correct-
?x with the recommended landing control: auto or ness are due to the fact that many ofthe initial queries
noauto. could not be answered. Correctness performance only

Prior to query answering, the user inputs the per- measures the correctness of answered queries. Imme-
formance thresholds to be maintained by the knowl- diately following the application of ID3, correctness
edge base while answering landing queries using the falls to 94% due to the next two queries being incor-
performance element (a backward-chaining deductive rectly answered according to the new knowledge base.
theorem prover for Horn clauses). For this experi- As query answering continues, the over-generalization
ment, three performance goals are specified: correct- in the rules eventually brings correctness down below
ness, completeness and response time. The correctness the 90% threshold. Correctness violations occur at

goal specifies that the answers to queries must be cor- queries 89, 98, 153 and 163. In each case, PEAK uses
rect 90% of the time. The completeness goal specifies the rote-learning operator to memorize the incorrectly
that the query must be answered 95% of the time. answered query and restore 90% correctness perfor-

That is, the answer should be either auto or noauto mance.
and not "I don't know". The response time goal speci- The final knowledge base after completion of the
fies that the performance element must respond within 200 queries consists of the 12 rules shown in Figure 3.
10 seconds. Rules 5-12 are the general rules learned by ID3. Rules

Two knowledge transformation operators are avail- 1-4 are the specific instances learned to repair the over-
able: rote learning and empirical learning. Application generalization in ID3's rules. After 200 queries, the
of the rote learning operator asks the user for the cor- knowledge base converged to 8 general rules describing
rect answer to the query. A new rule is added to the major trends in the shuttle landing domain and four
kniowledge base having the instantiated qntery as the specific rules for speci.o! ,zs not handled correctly by
consequent, and the facts defined before query execu- the general rules.
tion j. the antecedent. The empirical learning oper- One final observation from Figure 2 is the conver-
ator utilizes the ID3 program to build a decision tree gence of the performance t,.L.:,rds the desired thresh-
from examples in the knowledge base. The examples olds and not towards the maximum possible perfor-
are rules such as those learned by the rote operator. mance. This indicates how performance-driven knowl-
Each path in the resulting decision tree is converted edge transformation utilizes flexibility in one dimen-
to a ule. The examples are replaced by the new rules sion of performance to improve performance in another
in the transformed knowledge base. dimension.
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5.2 Blocks-World Domain height two and three) are solved by the original domain

In the task from the blocks-world domain, the user theory within the response time threshold. However,

asks the performance element to construct a plan for the domain theory is unable to maintain the response

building a tower of blocks. The queries are of the form time performance goal while processing the 21st query

tower( B C ?state), where A, B and C are blocks, (tower of height three). At this point, ID3 cannot be

and ?state is a variable to be instantiated with the applied due to the lack of examples in the knowledge

plan for achieving the tower. base. The EGGS operator is chosen over rote learning

Prior to query answering, the user inputs the perfor- due to the knowledge trace for the query. The deep,

mance thresholds to be maintained by the knowledge wide proof tree suggests that EGGS is more likely to

base while answering tower queries. For this experi- succeed than D3.

ment, one performance goal is specified: response-time Application of EGGS yields a general rule that builds

< 10 seconds. Performance goals for completeness and any tower of height three in one step. Thus, the re-

correctness are inappropriate, because the domain the- mainder of the- tower queries for height three are com-

ory is assumed complete and correct. pleted within the response time threshold. Similar

In addition to the rote learning and ID3 opera- rules are learned for the 31st query (tower of height

tors used with the first experiment, an explanation- four) and 41st query (tower of height five). Figure 4

based generalizer, EGGS [Mooney86], is included in the shows that retrying the towers of heights two through

PEAK system. EGOS applies standard explanation- five (queries 50-100) results in no response time perfor-

based techniques [DeJong86, Mitchell86] to general- mance violations due to the previously learned rules.

ize the proofs obtained by the performance element. This experiment demonstrates PEAK's ability to

When EGGS is applied to a proof, the result is a gen- constrain the application of the EGGS analytical learn-

eral rule that is added to the knowledge base. ing algorithm. Application of EGGS was unnecessary
for towers of height two and three, because the original
domain theory was able to solve these queries within
the desired performance thresholds. However, the -do-

s.- main theory was unable to support the desired perfor-
mance for towers of height four, five and six, requiring

t-0 three applications of EGGS to learn general rules for
40- ....... Desired Perf. these specific cases. As the performance on the-second

Actual Pert. 50 queries indicates, the original domain theory plus

. 3 0 - the three learned rules was sufficient to maintain the
desired performance for the tower-building task.

U-

6 Conclusions

In order to integrate machine learning methods with
10.... ........... knowledge-based systems, the general utility problem

in machine learning must be addressed. Evidence for
0 the general utility problem has been found in exper-

0 10 20 30 40 50 60 70 80 90 100 imentation on both analytical and empirical learning
Query# methods. Unconstrained application of these meth-

ods has been shown to degrade the performance they
Figure 4: Plot of Response Time for Tower Domain were designed to improve. Learning methods should

be invoked only after a performance failure has beenStarting with the blocks-world domain theory, PEAK detected, and then, only if the learning method is ap-

attempts to solve tower queries, while maintaining the plicable to the properties of the failure. Furthermore,
response time performance goal. The initial state of learning methods must permit transformation of thethe blocks world contained six blocks. Figure 4 shows knowledge to achieve performance goals without vi-

the response time obtained by PEAK for 100 semi- olating the performance goals associated with other
randomly chosen tower queries. Semi-random means tasks using the knowledge. The learning methods must
that the first ten queries ..,ere all to,;vers of height t.;ho also bil t.. 'b'ity to adapt to changing performance
(the two blocks to be in the tower were chosen ran- goals.
domly from the six blocks in the initial state). The Performance-driven knowledge transformation offers
second ten queries were all towers of height three, and an approach that addresses the general utility prob-
so on for the first 50 queries. The second 50 queries lem. Learning methods are invoked only when neces-
repeat the above sequence to show the effects on re- sary to improve performance, and in accordance with
sponse time of the rules learned during the first 50 previous success in repairing the violated performance
queries, goal. The performance-driven knowledge transforma-

As shown in Figure 4, the first 20 queries (towers of tion approach has been implemented in the PEAK sys-
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A Robust Approach to Numeric Discovery

Bernd Nordhausen and Pat Langley*
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Abstract and Fisher's (1987) COBWEB, to classify new quali-
tative states and incorporate them into a taxonomic

IDS is an integrated discovery system that hierarchy. IDS also stores links that indicate temporal
forms taxonomic hierarchies, notes qualita- succession among states, along with transition condi-
tive relations, and finds numeric laws. This tions between pairs of states. Moreover, the system
paper focuses on the system's algorithm for forms generalized links that connect abstract qualita-
numeric discovery. We describe the basic tive states in its hierarchy; together with the transi-
method in terms of heuristic search through a tion conditions, these constitute an important class of
space of numeric terms, provide a simple ex- qualitative laws.
ample, and show how IDS uses the algorithm
to find three classes of numeric relations. We 2 Numeric Discovery in IDS
then evaluate the system's law-finding ability
through experiments with artificial domains, In addition to the above activities, IDS searches for
examining the effect of system parameters, numeric laws to augment its qualitative descriptions.
noise level, number of irrelevant terms, and These may specify the conditions for moving from one
law complexity on both asymptotic accuracy state to another, a relation between numeric attributes
and learning rate. Finally, we consider the al- within a given qualitative state, or a quantitative re-
gorithm's relation to other numeric methods lation between variables in different states. Each of
and outline directions for future work. these cases involves storing a law at a node or link

in the taxonomy that summarizes information in the
children of that node or link. Nordhausen (1989) de-

l Introduction scribes the overall system in detail; in this paper we
will limit our attention to numeric discovery.

The discovery of numeric laws is a central part of the
scientific process. In this paper we focus on he nu-
meric discovery component of IDS (Nordhausen, 1989), 2.1 The Basic Numeric Discovery Algorithm

an empirical discovery system. In the following sec- IDS uses a single procedure to find all forms of numeric
tions, we detail the system's algorithm for finding laws. Briefly, whenever the system adds a new qualita-
quantitative relations, and then report experiments tive state S (or transition link T) to an existing node
with artificial domains to evaluate the algorithm's abil- (or link) in the hierarchy, it checks to see if S (or T)
ity to find laws under a variety of conditions. Finally, obeys the laws currently stored at the node. If not,
we consider some directions for future research and dis- IDS searches for new laws that cover the new child and
cuss the method's relation to earlier work. However, its siblings, using the old law as a starting point.
let us first briefly describe the overall system in which For a given data set, the system attempts to find
this algorithm plays a role. a law that covers these data by conducting a beam

IDS is an integrated discovery system that represents search through the space of numeric terms. More pre-
observations and laws using Forbus' (1985) qualitative cisely, the search task can be stated as:
process formalism. Each observed history consists of a * Given: a set of base terms a, b, c,..., along with
temporal sequence of qualitative states, which repre- one dcignated term (a) from that set;
sent intervals during which the signs of derivatives re-
main constant and during which the structure remains l Find: a term = aof t bfr a en... such that a
unchanged. The system employs an incremental clus- linear relation of the form a mx + n holds.
tering method, similar to Lebowitz' (1987) UNIMEM IDS searches from simple terms to more complex ones,

using correlation analysis (Freund & Walpole, 1980)
*Current address: AI Research Branch, Mail Stop 244- to direct the search process. As in Langley, Brad-

17, NASA Ames Research Center, Moffett Field, CA 94035 shaw, and Simon's (1983) BACON, the basic operators



412 Nordhausen and Langley

Table 1. The IDS algorithm for finding numeric laws.

t(a)= 0.01 p(a) + 20.00

Variables:-S is the set of base terms;

D is the designated term;
A is a defined term;
C -is the set of current terms;
P and Q are sets of terms.

Find-numeric-law(D, S, C)
Let A be the term in C that has the highest 0

correlation with D.
If the correlation between D and A is high enough, gas(b) gas(c) gas(d)

Then call linear regression on D and A t(b)=21.0 t(c)=22.0 t(d)=23.0
to find the slope and intercept. p(b)=100.0 p(c)=200.0 p(d)=300.0

Return A, the slope, and the intercept. v(b)=24.46 v(c)=12.27 v(d)=8.21
Else -if the maximum search depth is reached,

then-return the empty set.
Else-let-C' be Find-best-terms(D, S, C). Figure 1. A spurious relation found during the

Find-numeric-law(D, S, C). rediscovery of the ideal gas law.

Find-best-terms(D, S, C)
Let P-be the products of the terms of S and C. IDS is attempting to revise an existing law, C contains
Let Q be-the quotients of the terms of S and C. only the term occurring in the right-hand side of thatFor eachterm A in the union of P and Q, law. If the system is searching for a new law, C is the

Compute the correlation between D and A. set of observable terms S.
Return-the terms with the N- highest correlations. At each point in the search, IDS defines all of the

products and ratioe between the terms in the set S
Parameters: and those in C, but it retains only those terms having

Width- of the beam N (memory size); the highest correlations with the designated term D.
Threshold of the correlation (accuracy); These new terms become the current set C, and the
Maximum-degree of terms (law complexity); function find-numeric-law is called recursively, with
Maximum search depth (when to halt). the designated term D and the base terms S remain-

ing the same. If any term in C has a sufficiently high
correlation with D, IDS ends the search and uses a re-
gression technique to find the slope and intercept of
the line relating -them. The system continues in thisinvolve defining new terms as products and ratios of fashion until it finds such a linear relation or until it

existing terms. The system initially examines corrat- exceeds the maximum search depth. If the search fails,
tions between the designated term and observable at- IDS assumes that no law covers all the observed data.tributes, uses these to select promising products and As we discuss in Section 3, the system includes four

ratios, and then recurses if it cannot find a law with Araeters a ctin it se f nuer

the existing terms. parameters that constrain its search for numeric laws.

This search technique has a semi-incremental fla-
vor. In cases where IDS has rejected an existing law, 2.2 An-Example: Finding the Ideal Gas Law
there is no need to reconsider the term in that law and As an example, let us consider how IDS rediscovers the
those leading to the law. Thus, it uses the old term as ideal gas law. The system receives data in the form of
the starting point for the new search, saving consider- states with gaseous objects at different temperatures,
able effort-over an approach that-starts from scratch. pressures, and volumes. Figure 1 shows the hierarchy
However, this method does require that one store and after the system has processed three states, with all
reprocess all-te data natl ea to the rejected law. As instances stored under a common parent node. Given
a result, it does not quite fit with the strict definition these data, IDS finds a law relating the temperature
of an incremental learning system, though we hope to and the pressure, because one can express the tem-
modify this in future versions of IDS. perature as a linear function of the pressure. Now

Table 1 gives the basic algorithm for finding numeric the system observes a fourth instance, which it adds
relations. The top-level function, find-numeric-law, as a child of Node 1 because it matches the parent
is given three arguments: the designated' term D, the completely. 2 However, this new instance violates the
set of base -terms S, and a set of current terms C. If numeric law stored at the parent node, causing IDS to

search for a new relation that covers all four instances.
'As detailed in Section 2.3, the system iterates through

multiple base terms, treating each in turn as the designated 2The system does not consider whether instances satisfy
term and searching for a law that predicts each one. numeric laws during the clustering process.
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them to N. As a result, IDS finds that the intercept i is
constant regardless of the number of moles N, but that

gas(a) the slope s is proportional to N. The system stores both
t(a)= 0.12 p(a) v(a) - 273 laws at a more abstract state in the hierarchy, giving

a set of relations equivalent to the standard version of
the ideal gas law: PV = 8.32 N (T + 273).

2.3 Three Uses of the Basic Algorithm

Now that we have explained the basic method for dis-
covering numeric laws, let us describe how IDs usesS@dthis algorithm to discover three different forms of such
laws. The system augments the hierarchy of qualita-
tive states with numeric relations in three ways, each

gas(b) gas(c) gas(d) gas(e) of which serves a different purpose:
t(b)21.0 t(c)=22.0 t(d)=23.0 t(e)=24.0 * A law within a state relates quantities that are

p(b)=100.0 p(c)=200.0 p(d)=300.0 p(e)=230.0 constant within that state.3

v(b)=24.46 v(c)=12.27 v(d)=8.21 v(e)=10.74 * A numeric relation on a transition link specifies

the numeric conditions for moving from the cur-
Figure 2. A correct version of the ideal gas law. rent state to its immediate successor.

* A numeric law between two states within the same
qualitative history relates a quantity in a succes-

Because the term P was used in the rejected law, IDS sor state (sometimes many steps ahead) to quan-
calls the function find-numeric-law with {P} as the tities in the current state.

current set C, T as the designated term, and {P, V, T}

as the set of base terms, S. In other words, IDS uses the Recall that find-numeric-law takes as arguments the

term P as the entry point in the search space, starting designated term D, the set of base terms S, and the set

by combining P with the terms in S to form prod- of current terms C. The initial settings of these argu-

ucts and ratios such as PV, P2, P/T, and P/V. Of ments differ in the three forms because they emphasize

these new terms, PV has a high enough correlation to different quantities.

end the search. Regression produces the numeric law Thus, when IDS encounters the first case - finding a
T= 0.12 x PV - 273; this version is equivalent to the relation involving some quantity that occurs within-a
standard form of the law, PV= 8.32(T + 273). Figure state - it calls find-numeric-law with that quantity
2 shows the hierarchy that emerges after this revision as the designated term D, and the union of all within-
is complete. As the system processes more instances state quantities and the transition quantities as the set
and stores them under the parent node, it finds that of base terms S. The system repeats this process for
they obey this new relation, so find-numeric-law is each quantity in the state. Nordhausen (1989) reports
not called again, a number of within-state relations that IDS finds-in

IDs also defines new terms by a second method simni- this manner, including the ideal gas law, the equalitylar to that used in BACON. Whenever the system finds of final temperatures in heat-mixture experiments, andlinear relations, it introduces the slopes and the inter- the constant ratios of molar concentrations that occur

cepts of these relations as new numeric terms. Then in reactions involving chemical equilibrium.
IDS uses these new quantities to find more complex Similarly, when IDS attempts to find relations on a
quantitative laws at higher levels in the state hier- transition link between two states, a transition quan-
archy. Consider again the discovery of the ideal gas tity becomes the designated term D, whereas the set of
law. In addition to the temperature (T), the pressure base terms is again the union of all within-state quan-
(P), and the volume (V), suppose IDS is also given the tities and transition quantities. This lets the system
number of moles (N) of each gas. When the system ob- discover the conditions for moving between qualitative
serves gases with 1.0 mole at different temperatures, states. Nordhausen (1989) recounts a variety of such
pressures, and volumes, it finds a linear relation be- discoveries, involving melting and boiling points, fluid
tween T and PV in the manner described above. At flow phenomena, and the raies of c hcincal reactions.
this point, IDS defines the slope s and the intercept i For instance, we presented IDS with a set of three-
of the relation, which have values of 0.12 and -273, state histories in which two containers a and b begin
respectively, with different levels of fluid La and Lb. After opening

Upon processing new states with different numbers a conduit between the containers, one level increases

of moles, the system calls on find-numeric-law with 3When IDS is given a qualitative history, it is told which
{ PV} as the set of current terms. In this manner, IDS quantities are constant within each state and which are
finds that T is linearly related to PV without search. changing. The current system attempts to find numeric
Moreover, the system treats the slope and intercept laws only for the former terms, but in principle the algo-
(s and i) as higher-level dependent terms, calling on rithm in Table 1 could also be used to discover relations
its numeric discovery method to find a law relating between changing variables.
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and the other decreases for a time, until both quanti- threshold, does impact the behavior of the system. IDS
ties stop changing simultaneously. Given these data, uses this threshold value as a termination criterion to
the system discovers that the transition from the sec- end its search for numeric terms. For example, con-
ond state to the third state occurs when L . = Lb, sider the law z = a2. If the data contain no noise, then
that is, when the system reaches equilibrium. Transi- the correlation between z and a2 is one. However, if
tion laws can also involve simple constants, as in the there is noise in either z or a, then the correlation be-
case of melting and boiling points. Such relations let tween z and a2 will never be perfect. Hence, if the
IDS implicitly specify inequalities, since they state that numeric data are likely to contain noise, then the cor-
certain changes continue to occur until the transition relation threshold must be set to a lower value.
conditions are met. In order to determine an optimal value for the corre-

The system uses a forward propagation method in lation threshold in the presence of noisy data, we per-
order to find numeric laws between qualitative states. formed an experiment in which we varied this param-
It first attempts to relate a quantity in the current eter. We randomly generated values- for six numeric
state to the quantities in the immediate successor attributes (a, b, c, d, e, and x) obeying the relation
state. If IDS cannot infer a law between-a state and x = 2.0 x ldbj + 30.0. The range of variables a through
its immediate successor, it looks for a numeric rela- e was 10.0 to 100.0, and values of z ranged from 30.2
tion between the state and the successor of the suc- to 20030.0. Attribute e was not used ini the law, and
cessor, continuing this chain until it finds a -relation thus was an irrelevant attribute. Furthermore, we in-
or it reaches a state with no successor.O Nordhausen troduced noise into the values of x, using constant in-
(1989) presents numerous examples of across-state re- accuracy with a = 100.0, as described in Section-3.2.
lations that IDS discovers, including Black's-law of spe- We gave IDS these data with the goal of finding a law
cific heat, the chemical law of combining weights, and that related x to the other numeric- variables.
Archimedes' principle of displacement. For instance, Because IDS is incremental, it generates a hypoth-
in the fluid-flow domain described above, the system esis for the law as it incorporates each instance. We
finds a numeric relation L, = 1La + I, where La ' then used this hypothesis to -measure the-accuracy of
the initial level of container a, L! is the final level, prediction using an independent noise-free test set. We
and I is constant for a given value of Lb, the initial chose noise-free rather than noisy test data to measure
level of container b. Moreover, IDs finds -a second law the accuracy of prediction because the former allows a
that holds at a more abstract level of its state-and link standard control to compare -the different experimen-
hierarchy: I = !Lb. Taken together, these expressions tal conditions. In this experiment, wemeasured the
can be rewritten as Lf = !La + Lb, giving a more absolute difference between the predicted- and -actual
general law relating the three quantities. values of z after every three instances (for efficiency

reasons) and recorded the average difference -over 30
3 Experimental Studies of Numeric test instances. IDS did not incorporate the instances

Discovery of the test set, but only used them to measure the
accuracy of the current hypothesis.

In this section, we evaluate the robustness of IDS' nu- Figure 3a displays the learning curves for three dif-
meric discovery component using artificial domains. ferent values of the correlation threshold (0.99, 0.98,
We first examine the effect of varying certain system and 0.97) averaged over 30 different -runs. When the
parameters and then investigate how different -levels of threshold was 0.99, IDS needed at most lb instances
noise in numeric data influence the system's predictive to find the correct term ("jb). It then continued to
accuracy. Finally, we study the effects of irrelevant at- adjust the slope and intercept of the linear relation,
tributes and law complexity on the learning rate. which slowly approached the correct values and pro-

vided increasing predictive accuracy. When the cor-
3.1 Influence of the Correlation Threshold relation was 0.98, the system found the correct term

in all but one run after at most 30 instances. 5 Us-
IDS' numeric discovery component incorporates four ing a correlation threshold of 0.97, the system found
system parameters. The beam width determines the the correct term in 26 out of 30 runs after it had pro-
memory size used in the search process, whereas the cessed 75 instances. As IDS observes more instances,
maximum degree of term- and the maxm..m. depth it will eventually find the correct term and predict the
the search tree limit the amount of search. Experience value with greater accuracy. Thus, it appears that
has shown that these parameters do not have a sub- the higher correlation thresholds yield better learning
stantial influence on the system, provided they are suf- rates. However, we also ran the same data with 0.999
ficiently large; for the experiments reported below, we as the threshold value. In many runs, IDS failed to find
used five as the value for the beam size and the max- a term that has a correlation higher than 0.999 within
imum degree, and 12 as the value for the maximum 75 training instances, for reasons that we will explain
depth. However, the fourth parameter, the correlation in Section 3.2.

'This search process would be expensive in complex do- 'Thie one incorrect term is the reason for the difference
mains, but the worst-case cost should increase only as the (after 30 instances) between the learning curves when the
square of the length of the histories, threshold is 0.99 and when the threshold is 0.98.
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Figure 3. (a) The effect of varying IDS' correlation threshold on predictive ability.
(b) The influence of noise due to constant inaccuracy on predictive-ability.

Hence, the value of the correlation threshold impacts 1.0 volts. In domains involving the first type of in-
the behavior of the system. If the value is set too high, accuracy (constant), it seems appropriate to evaluate
IDS will fail to find a term with an acceptable level of predictive ability in terms of absolute error; in domains
correlation. If the level is too low, the learning rate de- involving the second type of inaccuracy (relative), one
creases. However, we will show in the next section that should instead measure the percentage error.
one correlation threshold value can be-used with data To study the effect of noise due to constant inac-
over a- wide range of noise levels. We will use a value curacy, we gave IDS the same data as in the previ-
of 0.99 as the correlation threshold for the remainder ous experiment: randomly generated values of six nu-
of this paper. meric attributes (a, b, c, d,e, z) that obeyed the rela-

tion z = 2.0 x S + 30.0. We then corrupted each
3.2 The Influence of Noise value of x by replacing its value with a sample taken,

from a normal distribution with a mean of x and a
Much of the early work on empirical discovery assumed standard deviation of a. In each experimental condi-
that data were noise free (e.g., Lenat, 1978; Langley et tion we used a different value of or. We did not corrupt
al., 1983). This is clearly a simplification, and in this the values of the other attributes even though it is un-
section we study how different levels of noise influence realistic to assume real-word noise occurs only in one
the behavior of IDS' numeric discovery algorithm. All attribute. However, this allows for a far better tom-
numeric data in science ultimately come from mea- parison of different levels of noise in the data, because
surement instruments, and one primary source of er- the amount of noise is independent of the function.
ror stems from the inaccuracy of the instruments or As in the previous experiment, we used an indepen-
the operator handling the instrument, dent test set of 30 noise-free instances to measure the

We considered two kinds of measurement inaccura- average (absolute) accuracy of prediction over 30 dif-
cies: con iant and relative. For example, a thermome- ferent runs. The value of the correlation threshold for
ter that is calibrated to ±0.50 measures all values on this and all other experiments was 0.99.
its scale to within one degree of accuracy regardless Figure 3b shows the learning curves for IDS as the
of the value of the measured quantity. However, the noise levels vary. The learning rate does not differ sub-
expected- error also can depend on the magnitude of stantially for different amounts of noise. In most runs,
the measured quantity. For example, the accuracy of it took the system less than 25 instances to find the
a voltmeter might be ±0.5%. That is, if the volt- correct term regardless of the noise level. However,
age measures 10 volts, we can expect this measure- the noise level influences the estimates for the slope
ment to be accurate within ± 0.5% of 10 volts, or 0.1 and the intercept, which determine the accuracy after
volts. However, if the voltmeter displays a value of 100 the correct term is found. We should note that when
volts, then this measurement is only accurate within
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the noise level was at or = 250.0, IDS often could not 3.3 The Influence of Irrelevant Attributes
find a law using the training set. Given only 75 data In the real world, one cannot always determine rel-
points, even the correlation between x and the correct Ine rean woribue anno In the re-
numeric term was often less than 0.99 because of the evance of an attribute a priori. In the previous
noise in the data. However, if we set the correlation experiments, we always included one irrelevant at-
threshold to -a -lower value or used more training in- tribute in the data. In another experiment, we in-

stances, then the system found the correct term in all vestigated how irrelevant attributes affect IDs' learn-

runs. ing rate. We again gave the system randomly gener-
ated data of numeric attributes obeying the function

In dealing-with constant inaccuracy, IDS uses a least x - 2.0 x b,+ 3 0 .0. Wecorrupted the values of z using
squares regression algorithm to estimate the slope and noise due -to constant inaccuracy (with o = 100.0) as
intercept, which minimizes the sum of the squares described in the previous section. However, in this ex-
of the deviations over all data points and thus also periment we varied the number of irrelevant attributes
minimizes the variance. However, relative inaccuracy included in the data from zero to 20.
causes the expected error to increase as the magnitude
of the attribute- becomes larger, so that deviations are As before, we gave the system 30 different data sets

not equally distributed over the range of values. Thus, for each experimental condition, and measured the

if the expected error is proportional-to the magnitude absolute difference between the actual and predicted

of the value and the values are spread over a wide value. Figure 4a shows that the number of irrelevant

range, thenthe basic least squares method will essen- attributes only increases the number of observations

tially ignore the small values in its estimation and pro- required to find the correct term. Even with 20 irrel-

duce poor estimates for the parameters in the linear evant attributes, IDS found the correct term within

relation. at most 24 instances. As the number of irrelevant
attributes increases, the probability of an accidental

In order tofavoid this problem, IDS uses a variant correlation between x and a term involving irrelevant
of the weighted least squares method (Boz, Hunter, & attributes becomes higher. However, given enough
Hunter, 1978)to calculate the parameters of a linear instances the numeric discovery component finds the
relation if the-~expected error is proportional to the correct term, so that irrelevant attributes affect only
magnitude of the attribute. In such cases, this variant the learning rate. Once the system has identified the
produces better estimates for the slope and intercept correct term, it ignores the irrelevant attributes, and
than the regular least squares method. Nordhausen- the predictive accuracy becomes identical in all cases.
(1989) reports an experiment similar to the one above, Thus, the numeric learning component is robust even
in which IDS uses this second method to discover laws in the presence of many irrelevant variables.
with different levels of relative inaccuracy. As before,

the learning-rate -(with percentage error as the depen- 3.4 The Influence of Function Complexity
dent variable) decreased only slightly as the noise level

increased, and in most runs IDS took less than 25 in- Finally, in order to test the influence of function com-
stances to find the correct term. Again the error rate plexity, we ran the system on data obeying different
affected the predictive accuracy once the-correct term laws in which we varied the number of variables and
was found. Furthermore, the data with a 10% noise their degree. In this experiment, we randomly gener-
level proved- too noisy in some cases, and the system ated data for numeric attributes obeying one of three
failed to discover any law in five out of the 30 runs. laws: x = 2.0 x ab + 30.0, x = 2.0 x 9 + 30.0, or

C

Whether the noise results from constant or rela- z = 2.0 x b + 30.0. These functions were chosen
tive inaccuracy of the measurement instruments, IDS' arbitrarily but increase in complexity. As before, we
numeric discovery component proved to be robust, included one irrelevant attribute in each of the three
Correlation analysis seems to be a good heuristic to data sets. The values for attributes a through d ranged
guide the search through Irs' space of possible numeric from 10.0 to 100.0. Because of the different terms, the
terms, even in the presence of noise. Once the system values of x ranged over a different interval for each
finds the correct term, the noise affects the estimation function. Thus, we chose to introduce noise from rel-
of the parameters of the linear relation, but as the sys- ative inaccuracy (with a value of o, = 0.75%) rather
tem receives more instances, the regression algorithm than constant inaccuracy, so the level of noise was com-
produce.a-estimatpA of incremino accuracy. Moreover, parable for each data set. Hencc, vc umcd pcrcentage
we used the same correlation threshold value for all error rather than the absolute difference as the depen-
conditions in the two experiments reported in this dent measure in this experiment.
section. These experiments demonstrate that, even Figure 4b shows the learning curves for the three
though the value of the correlation threshold affects functions averaged over 30 random data sets, each
the behavior of IDS, the system is not overly sensi- containing 75 instances.6 For the simplest function,
tive to this parameter and that the same correlation
threshold value can be used for data covering a wide 'The reason for the aberrations in the learning curves
range of noise. can be attributed to the runs in which the system replaces

an incorrect term with an improved term that describes
the processed training data better, but which actually does
wore than the replaced term on the test data.
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Figure 4. (a) The influence of irrelevant attributes on predictive ability.
(b) The influence of the function complexity on predictive ability.

IDS found the correct term rather quickly, requiring at of data with varying degrees of noise. In addition, the
most nine instances. There are two reasons the sys- system tolerates noise that- results from both constant
tern needs more instances to discover the term as the and relative inaccuracy of measurement instruments.
complexity of the function increases. As we showed in One must adjust the regression algorithm fo r the two
the-previous experiment, when the number of observed kinds of noise, but it seems reasonable to assume one
attributes increases, then the probability for acc; IIen- knows the kind of error a measurement instrument pro-
tal correlations between x and an incorrect term aiji duces. Furthermore, we ran experiments that showed
increases. Furthermore, as the function becomes more IDS tolerates irrelevant variables well. In these stud-
complex, the path for the correct term through the ies, the learning rate was hardly affected even when a
space of possible numeric terms increases in length. large percentage of the observed attributes were irrel-
However, once IDS finds the correct term, the pre- evant. Finally, we showed that the learning rate de-
dictive accuracy is similar regardless of the function's creases only slowly as the complexity of the function
complexity. This suggests that function complexity describing the data increases.
only affects the number of instances required to find However, one should treat these results with cau-
the-correct term, but not the predictive accuracy once tion, because there are some well-known problems with
this term is found. correlation and regression analysis (Boz et al., 1978).

For example, if a numeric attribute has only a limited
4 Discussion range, then correlation analysis will fail to detect a

law including that attribute. Furthermore, although
In closing, we should attempt to draw some conclu- we examined the effects of noise, irrelevant terms, and
sions from our experiences with IDS. Below we discuss complexity in isolation, we did not consider the pos-
some strengths and limitations of the numeric algo- sibility of interactions among these factors. It seems
rithm, followed by the advances we believe our research plausible that IDS would encounter difficulty in noisy
has made over earlier approaches to discovery, domains with complex functions and many irrelevant

terms. Moreover, since the numeric discovery process
4.1 Strengths and Limitations is embedded within IDS' mechanisms for taxonomy for-

In the previous section, we reported a number of exper- mation and qualitative discovery, it relies on the suc-
iments with IDS' numeric discovery component. The cessful operation of these mechanisms to obtain useful
studies produced encouraging results on the use of cor- results. The experiments described above tested the

relation analysis as a heuristic to guide the search for numeric component in isolation, rather than in the
constant numeric terms. We saw that IDS is not overly context of the complete system. Finally, we have yet

sensitive to the setting of the correlation threshold, to determine the algorithm's behavior on real-world
and that it can use a single value to discover relations data. Future studies should address all of these issues.
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4.2 Advanetes Over Previous Work the discovery of terms and laws that other systems
cannot handle. Thus, IDS defines the boiling point of

IDS finds numeic laws similar in form to those pro- a substance as an intrinsic property associated with
duced by BACON (Langley et al., 1983), ABACUS a law describing the transition between states. Also,
(Falkenhainer & Michalski, 1986), and FAHRENHEIT by treating the duration of a qualitative state as an
(Langley & Zytkow, 1989). Moreover, they employ explicit quantity, the system can discover the law gov-
similar methods to control their search for useful nu- erning radioactive decay, in which the 'rate of reaction'
meric terms, using correlation-like techniques to focus depends on the amount of material. In summary, IDS'
attention. However, these systems differ in the de- augmented representation allows some significant ad-
tails of their search control. BACON and FAHRENHEIT vances over previous approaches to numeric discovery.
employ a heuristic form of depth-first search, focus-
ing on more recently defined terms. ABACUS creates a Acknowledgements
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Abstract truth-functional rule base refinement.

We now report new results that extends the com-
The refinement of knowledge bases is an plexity analysis of 11nowledge base refinement to sys-
important activity in the expert system tems that are not truth-functional, viz. belief networks.
lifecycle. Belief networks have been pro- Belief networks are gaining popularity as a for-
posed and studied as an alternative to rules malism for implementing knowledge bases for expert
in expert system knowledge bases. The systems. With respect to the more common MYCIN-
problems of synthesis and refinement of style rule bases, belief networks overcome the prob-
belief networks arising from the develop- lems arising from a truth-functional approach to evi-
ment- of a large belief-network-based dence propagation, by adopting a model-based (or
knowledge-based system, are presented and intensional) approach, as explained, e.g.,- in [Pearl,
formally analyzed. We prove that, for very 1988, chapter 1]. The use of a sounder approach to
simple Dempster-Shafer networks (trees), handling uncertainty has its drawback in the worst-case
defining parameter values (synthesis) is inefficiency of belief computation in belief networks
NP-Complete. Additional results that [Cooper, 1988; Provan, 1989].
given without proof include the computa- A key feature of belief networks is their use of
tional -intractability of refining expert-
estimated values (refinement), even when numerical parameters. These parameters are probabil-
we sette for approximate values or demand ity masses in Dempster-Shafer networks (see [Smets,
agreement on only a certain percentage of 1988] for a brief introduction) and conditional proba-
cases. The potential impact of these results bilities (or. 'ted parameters, such as likelihood ratios)

nthe practice of expert system construe- in Bayesian ,,wrks (see [Pearl, 1988] for the canoni-
tion-is discussed. cal treatment]). These numerical parameters can beestimated using statistical techniques. However, this

1. Introduction may be practically unfeasible, and developers must
resort to knowledge engineering techniques, as docu-

Knowledge base refinement is concerned with mented in the construction of MUNIN.
modifications to a knowledge base that increase its There are only very few large applications of
breadth and accuracy. belief networks. Of these, probably the best known is

Most published work in knowledge base MUNIN [Andreassen et al, 1987]. As of mid-June
refinement has addressed truth-functional rule bases. 1989, MUNIN had grown to a network of approxi-
From the point of view of knowledge-base refinement, mately 1000 nodes.' "Estimating the 270 conditional
truth-functional (or extensional) and non-truth- probabilities [in the MUNIN belief network of 1987]
functional- (or intensional) systems are distinctly prwould require at least 10000 cases. Instead of
different [Ruspini, 1982; Pearl, 1988]. A rule-based (...) on repircal least w ave ied oexpert system is truth-functional if the belief asoiae relying on this empirical approach, we have tried to
"Peth systempstrut-fction al if the deiesso ate rely as much as possible on 'deep knowledge', using
with a proposition in the system depends only on the an understanding of patophysiological processes as
belief in propositions that appear in the premise of expressed in medical textbooks and papers"
rules that conclude the original proposition, with an [Andreassen et al., 1987, p.3 69]. In any case, whatever
obvious exception for the propositions that are not con-
eluded by any rule. In his contribution to the Steen Andreassen, personal communication. MUNIN has
knowledge-base refinement track of last year's Interna- beea developed in the context of ESPRIT project 599.
tional Workshop on Machine Learning, Valtorta
[1989c] addressed the computational complexity of
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the source of the numerical parameters, they need to be For simplicity (and again, without loss of gen-
refined. In MUNIN, "Discrepancies between the net- erality), each of the variables in the DS-tree will be
work and the medical experts lead to revision of the assumed to be two-valued. Call the two values 0 and
model parameters (...). Occasionally, it may even be 1. We will express the mass assigned to a subset of
necessary to modify the structure of the network, the frame of discernment2 of variable a as m(a=vi),
adding or deleting states or nodes" [Andreassen et al., where v, = 0,1, or as m(l.), where I a, -a. The mass
1987, p.3701. Discrepancies between the network and
the expert are uncovered by comparing the belief assigned to the frame of discernment of variable a will

assigned to particular variables in particular nodes by be indicated as m(0(a)) or, in case there is no ambi-

the expert and by the network, when the same evidence guity, simply as m(e). For joint variables, we will

is presented to the expert and to the network. In indicate a subset of the frame of discernment by a pro-

MUNIN, the evidence typically describes the findings positional formula. For example, consider the joint
for a patient, while the particular variables correspond variable (a,b) whose frame of discernment is 0((ab)) =f((aOb=0), (a=0,b=l, (a=l,b=0), (a=lb=l). The
to possible diagnoses. mass assigned to the subset ((a=0,b=0), {a=0, b=l),

This paper addresses the problem of synthesis [a=i, b=l)) will be indicated as m(a v b)- or as m(a
and refinement of numerical parameters in Dempster- => b). The mass assigned to the frame of discernment
Shafer belief networks from an algorithmic standpoint. of the joint variable (a,b) will be -indicated as
The author has obtained analogous results for Bayesian m(O((ab))) or, in case there is no ambiguity, simply as
networks [Valtorta and Loveland, 1989]. Section 2 m(O). Following Pearl [1988, p. 418], we call-a-subset
formalizes the problem already described in this intro- of the frame of discernment such as (a v b) a-compa-
duction, by defining, among others, the notion of case. tibility relation. (Intuitively, m(a v b) quantifies-the
In section 3 we show that the synthesis of masses in constraint that a is not compatible with "b.)
Dempster-Shafer networks from cases is NP-Complete.
Additional results, including the proof that the ADS-presentation is defined as a triple consist-
refinement of masses in Dempster-Shafer networks ing of a DS-tree, a set of compatibility relations, and

from cases is NP-Complete, and some settings involv- an assignment of masses to some of thecompatibility
ing approximations, are presented (without proof) in relations and their frames of discernment. Figure 1

section 4. Section 5 discusses related work. Section 6 shows a DS-presentation when values st, s?,...s% are

concludes the paper with an assessment of results. fixed. DS-presentations will be considered- asrealizing
a function from the vector of masses assigned to theThe proofs that are not in the paper and much leaf nodes of a DS-tree to a belief (simply a mass for

additional material can be found in [Valtorta and Love- the nets that we consider in this paper) for the root
land, 1989], which has been submitted for journal pub- node (via a process involving Dempster's rule -and
lication, summarized later). A point in the graph of the-func-
2. Formalizing Mass Refinement tion will be called a case.! We now describe how this

models the situation described by Andreassen et al.

Without loss of generality, since we are after [1987] and summarized in the introduction. The output
!ower bound results, we consider Dempster-Shafer net- part of a case describes the desired "answer" of the
works (from now on, DS-nets) in the form of a tree DS-tree when "queried" with the evidence-encoded as
(and call them, simply, DS-trees). There are a consid- the input part of the same case. Typically, there will
erable number of different versions of DS-trees in the be a discrepancy (output error) between the value of
literature, all related in rather straightforward ways. In the belief as computed by the tree and the belief given
this paper, alternating Markov trees are used. Our as output part of the case. This discrepancy must be
definition is adapted from [Mellouli, 1988, pp.66 ,8 5]. eliminated in order for the DS-tree to work correctly.
A (qualitative) Markov tree of variables in a set S is a Before addressing the task of refinement, we
tree T = (N, E), such that N is a subset of the power address in the next section the more basic task of
set of S (i.e., the nodes of the tree are subsets of S)
and such 'U-at thie interxection of two nodes 11 ald n2 is 2See, e.g., [Smets, 19881 or [Gordon and Shortliffe, 1985] for
contained in node no if no lies between n, and n2 in the definition. Informally, the frame of discernment for a set S of
some branch of T. A Markov tree T = (NE) is alter- vari,.es (where all variables have a discrete range of values) is the
nating if every node in the tree is either contained in Cartesian product of the set of variable-value pain for all variables in

all its neighbors or contains all its neighbors. (For S.

example, the tree in Figure 1 is an alternating Markov T through T4 of Figure A (in the Appendix) are examples of
tree for variables in the set S = [c,, c2,..., cn, u;) aes. Each case is an input-output pir.
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parameter instantiation (assigning values to the parame- Problem instance: A DS-tree and associated com-
ters). We call this the synthesis task. patibility relations as given in Figure 1; an assignment

of values4 for s ...,s ; a positive constant e; a set of
3. Initial Mass Synthesis Is NP-Hard cams.

The problem considered in this section is a prob- Question: Find an assignment of values to s
lem of synthesis, rather than a problem of refinement e s.

ofeach of which is at most e away from the given assign-
ment and such that the function realized by the DS-tree

Problem name: Mass Synthesis (MS). satisfies the cases.

Problem instance: A DS-tree and associated com- MRS is NP-Hard if the following decision prob-
patibility relations as given in Figure 1; a set of cases. lem is:

Question: Is there an assignment of values to Problem name: Mass Refinement (MR).
sl,...,s, such that the function realized by the DS-tree Problem instance: A DS-tree and associated com-
satisfies the cases? patibility relations as given in Figure 1; an assignment

Theorem I of values for s,,...,s.; a positive constant e; a set of

MS is NP-Complete. cases.

The proof is given in the Appendix. Question: Is there an assignment of values to
s...,s. each of which is at most e away from the given

4. Mass Refinement Is NP-Hard
Problem name: Mass Refinement, Search Version 4Thee values may be expert-give or oherwie esti-aed.

(MRS).

d

mc, => d) = s , , m,(@) = -s,

m (, => d) =%, m(e)= I -s.

n(cn => d) = sn, m(O) = 1

Figure 1 DS-tree and associated compatibility relations for problem MS.
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assignment and such that the function realized by the expert system using the belief network is to classify,
DS-tree satisfies the cases? the user is concerned with the relative ranking (rather

Theorem 2 than the exact values) of beliefs associated to the ter-
minal nodes5 of a DS-net or a Ba-net. Cooper [1988,

MR is NP-Complete for any fixed e. sections 5A and 5.5] and Valtorta [1989a, 1989c] pro-

We now present three problems that arise from vide additional motivation and techniques. The
attempts to define meaningful approximate solutions to corresponding refinement problems are NP-Hard.
the refinement of numerical parameters. The introduction points to some of the work on

Problem name: Approximate Mass Synthesis rule bases, a common form of knowledge base. Syn-
(AMS). thesis of numerical parameters in rule bases is some-

Problem instance: As for problem MS in section what analogous to training in neural networks. Indeed
3. there are apparently similar results of intractability.

Question: Find an assignment to s (Cf. [Judd, 1987, 1988; Blum and Rivest, 1988; Lin
ot .s strictly and Vitter, 1989].) However, the functions used in

within 0.5 of the correct assignment, where the correct neural networks to process weights are different from
assignment is the assignment such that the function those used in rule bases or belief networks. (Cf. [Fu,
realized by the DS-tree satisfies the cases. 1988; Valtorta, 1989a].) As done in much of the neural

Theorem 3 network training work, we assume that the structure of

AMS is NP-Hard. the net is fixed. Typically, it is given by the expert.
The fixed network assumption is therefore more

Problem name: Mass Synthesis, Bounded output appropriate in belief network refinement than in neural
Error (MSBE). network training. We conjecture that refinement of

Problem instance: A DS-tree and associated com- belief networks remains NP-Hard when limited changes
patibility relations, as given in Figure 1; a set of cases; to the structure of the network are permitted.
a constant e.

Question: Is there an assignment of values to 6. Conclusion
s,,...,% such that the maximum output error on the The networks used in the problem instance of
cases is less than or equal to e? MS and MR are trees. It is well known (e.g., [Kong,

Theorem 4 1986; Pearl, 1988; Lauritzen and Spiegelhalter, 1988;
Shenoy and Shafer, 1988]) that the computation of

MSBE is NP-Hard for all e<=d<.5. beliefs in trees6 is tractable. Therefore, a developer

Remark could be faced with the unpleasant situation in which
To prove Theorem 4, we need some technical the belief network is nicely structured for efficientconitios pove theporsilem 4,lwes n sm t ra computation of beliefs, but refinement is extremely

conditions on the possible values of si,..,n . For a difficult.
different kind of refinement involving bounded output
error, see the discussion at the beginning of the next Synthesis of numerical parameters in knowledge
section. bases is a kind of refinement of knowledge bases: the

numerical estimates of the par meters are not available,
Problem name: Noisy Mass Refinement (NMR). while the structure of the knowledge base is. The

Problem instance: A DS-tree and associated com- structure of the knowledge base can be determined by
patibility relations as given in Figure 1; an assignment answering relatively simple questions about indepen-
of values for sl..,sn; a positive constant e; a positive dence of events. Therefore, the knowledge engineer
constant k less than 100; a set of cases. should believe more strongly in the (qualitative) net-

work structure than in the values of the numerical
Question: Is there an assignment of values to parameters, and it is natural to use an expert to obtain

.s each of which is at most e away from the given the knowledge structure and initial guesses. These
on n nd such that the function satisfies k% of the considerations suggest a methodology for tie construc-
cases? tion of knowledge-based systems that use belief net-

Theorem 5 works. At the heart of this methodology is a propose

NMR is NP-Hard. and fit cycle. In this cycle, after interviewing an

5. Related Work 5when suitably defined, in the obvious way.
fthe same is true for some kinds of graphs thtt are not trees.

In applications (such as diagnosis) in which the
task (as defined, e.g., in [Breuker et al., 1987]) of the



More Results on the Complexity of Knowledge Base Refinement: Belief Networks 423

expert, the structure of a belief network is proposed. Fu, L. "Truth Maintenance Under Uncertainty."
The network parameters are set or adjusted to fit Proceedings of the Fourth Workshop on Uncertainty in
selected test cases. If parameters can be set to fit the Artificial Intelligence, 119-126, 1988.
cases, the development is complete. If they cannot, the Garey, M.R. and D.S. Johnson. Computers and
designer needs to consult the expert further until a new Intractability: A Guide to the Theory of NP-
(qualitative) network structure is proposed. Another Completeness. New York: Freeman, 1989.
attempt is made to set the parameters to fit the cases, Gordon, J. and E.H. Shortliffe. "A Method for
and so on. Our results indicate that it is hard to auto- Managing Evidential Reasoning in a Hierarchical
mate the "fit" step of this methodology. Hypothesis Space." Artificial Intelligence, 26 (1985),

As an example of alternative methods for valida- 323-357.
don and refinement, consider the use of a type of ora- Judd, S. "Complexity of Connectionist Learning

cles: If an expert is available after construction of the with Various Node Functions." Technical Report 87-60,

knowledge base, the expert could be used as an oracle University of Massachusetts at Amherst, July 1987.

to facilitate knowledge base refinement. In this mode, Judd, S. "Learning in Neural Networks." Proceed-

the expert would be queried with specially focused ings of the 1988 Workshop on Computational Learning

questions allowing the synthesis or refinement of Theory (COLT-88), 2-8.
specific masses or likelihoods. A result by Valtorta Kong, C.T.A. "Multivariate Belief Functions and

concerning rule bases [1987, chapter 4 and chapter 7; Graphical Models." Ph.D. Dissertation, Department of

1989b] indicates that automatic synthesis or refinement Statistics, Harvard University, 1986. (Available as

in certain belief networks that are trees is doable in Research Report S-107, Department of Statistics, Har-

polynomial time and suggests that it is intractable for yard University.)
graphs. More remains to be done along this line of Lauritzen, S.L. and DJ. Spiegelhalter. "Local Com-work. putations with Probabilities on Graphical Structures andtheir Applications to Expert Systems." Journal of the

Royal Statistical Society, Series B (Methodological), 50
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P., E.H. Mamdani, D. Dubois, and H. Prade. Non- Appendix: proof of Theorem 1
Standard Logics for Automated Reasoning. London: One in Three Satisfiability (OTS) [Garey and
Academic Press, 1988. Johnson, 1979, p.2591 will be transformed into MS.

Valtorta, M. "Automating Rule Strengths in Expert The variant in which no clause in the formula contains
Systems." Ph.D. Dissertation, Department of Computer a negative literal will be used. The generic OTS
Science, Duke University, April 1987. (Also: Techni- instance is a formula in 3-conjunctive normal form,
cal Report CS-1987-15, Department of Computer Sci- with no negated variables. The question is whether
ence, Duke University and available as number there is a model for the expression such that each
ADG87-25869 from University Microfilm Interna- clause has exactly one true variable.
tional.)

Valtorta, M. (a) "Some Results on the Complexity of Given a formula E in monotone 3-conjunctive
Knowledge Base Refinement" Technical Report normal form, the following algorithm produces in time
TR89004, Department of Computer Science, University polynomial in the size of E an instance of MS such
of South Carolina, April 1989 (Revised version that the Question has answer yes if and only if E has a
accepted for publication in the International Journal of model in which only one variable per clause is true.
Approximate Reasoning.) Let n be the number of distinct propositional

Valtorta, M. (b) "Some Results on Knowledge Base variables in E, m be the number of clauses in E. (n
Refinement with an Oracle." Technical Report and m can be obtained in polynomial time from any
TR89005, Department of Computer Science, University reasonable encoding of E.) (Name the variables x
of South Carolina, April 1989. for convenience.)

Valtorta, M. (c) "Some Results on the Complexity of The number of leaves in the DS-tree of the
Knowledge-base Refinement." Proceedings of the Sixth corresponding MS-instanceis n. The number of cases
International Workshop on Machine Learning, 323-331. in the corresponding MS-instance is 2m.

Valtorta, M. and D.W. Loveland. "On the Complex-
ity of Belief Network Synthesis and Refinement." There are 2 cases for each clause in E. The cases
Technical Report TR8901 1, Department of Computer are defined as follows. Let a and b be a pair of
Science, University of South Carolina, November 1989 numbers such that 0<a<b<l. Let a generic clause con-
(submitted for journal publication). tain the variables xi, xj, xk. The input part of the -first

case for each clause has m(ci) = m(c) = m(k) = a-and
0 everywhere else. The output part of the first case for
each clause is a. To obtain the second case for this
clause, substitute b for a.

The reader can easily verify that the algorithm
just given runs in time polynomial in the size of E.

As an example, Figure A shows the instance of
MS corresponding to E = (xvx2vx3) & (xlvxIvx). In
the Figure, T1 and T2 correspond to the first clause in
E, while T3 and T4 correspond to the second clause in
E.

In order to prove that an instance of MS built
according to the algorithm just given is a yes-instance
if and only if the corresponding instance of OTS is a
yes-instance, the following fact is useful.

Let [p+] denote the probabilistic sum operator,
defined as a [p+] b = a + b -ab. It is easy to show, on
the basis of an observation by Gordon and Shortliffe
(1985, section 3.3], that, indicating the belief in d as
Bel(d),
Bel(d) = m(ci)*si [p-] ... [p+] m(cn)*s%.!

7Each m should have a different subscript, which is dropped
for readability.
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d

c ,d c2,d c3,d c4,d

C 2  C3  C

m,(c, => d) = s,, m,(0) = 1 - s,

m4 (c4 =>d)=s 4 , m 4(0)= 1 -s4

T,: ((aaaO),a)
Ti2: ((b,b,b,O),b)

T3: ((a,a,O,a),a)

T4: ((b,b,Ob),b)

Figure A Instance of MS corresponding to (xivx2vx) & (xlvx 2vx4.

The "if part" is simpler. If variable xi in the pair of cases is satisfied if and oi )llowing
model for E is true, set s. to 1. Otherwise, set it to 0. system has a solution:

This insures that exactly one of the masses correspond-
ing to each case is 1 and the other two are 0. There- ax[p+]ay[pl+]z = afore, the computed Eel is equal to the mass. There- bx[p+i]by[p+]bz = b,
fore, each case is satisfied. i.e., after carrying out the probabilistic sums and divid-fore eah cse i saisfed.ing each side by a,

The "only if' part is proved now. Assume that
we have a yes-instance of MS. It will be shown that, x+y-axy+z-axz-ayz+a 2 xyz
in order for an instance of MS to be a yes-instance, it
must be that exactly one of the s, corresponding to x+y-bxy+z-bxz-byz+b 2 xyz=1.

each case is 1 and the other two are 0. By assigning If any two of x, y, and z have value 0, the sys-
true to variable corresponding to this single s., a model tem has a solution if and only if the other variable has
f r E is obtainp thra cati Fi g thtef "one in Lliree" condi- value 1.
tion. Consider a generic pair of cases corresponding to To show that the system has no solution if only
a clause in E. We show, by algebraic manipulation, one of the three variables is 0, subtract the second
that this pair is satisfied if and only if exactly one of from the first equation side by side and divide by (b-a):
the three si corresponding to the cases is 1 and the
other two are 0. Call the strengths x, y, and z. The xy + xz +yz = (b+a)xyz.
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This equation has no solution if only one of the
three variabies is 0.

The only case left is that in which the three vari-
ables are all positive (and, of course, no greater than
1). In this case, each of the products xy, xz, and yz is
greater than or equal to xyz:
xy + xz + yz > 2xyz > (b+a)xyz, and tht-fore it is
impossible that
xy + xz + yz = (b+a)xyz.

It has been shown that MS is NP-Hard. In order
to complete the proof that MS is NP-Complete, it
remains to show that MS is in NP. A non-
deterministic program to solve MS has a loop whose
body assigns (non-deterministically) a value to each
mass and tests whether for that assignment the function
realized by the DS-tree satisfies all cases. Since the
test can be performed in deterministic polynomial time,
the whole program runs in non-deterministic polyno-
mial time.

(End of proof of Theorem 1)

Remark.

Note that we have not specified the possible
values for s,,...,n in the statement of problem MS. The
proof of NP-Hardness shows that MS is NP-Complete
even when the values are restricted to be in (0,1}. If
there are more than a constant number of different
values, MS remains NP-Hard, but we cannot show it to
be NP-Complete. Similarly, we have not specified the
possible values for the -input part of the cases. The
proof shows that MS is NP-Hard even when the values
are restricted to a and b, 0<a<b<l. Finally, MS is
NP-Complete even if both input and si values are res-
tricted as just outlined at the same time.
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